self.assertTrue(m.getCoords()[ptsExpToBeModified].isEqual(ptsPosExp,1e-12))
pass
+ def testRenumberNodesInConnOpt(self):
+ """ Test of MEDCouplingPointSet.renumberNodesInConn with map as input coming from DataArrayInt.invertArrayN2O2O2NOptimized
+ """
+ m=MEDCouplingUMesh("mesh",2)
+ m.allocateCells()
+ m.insertNextCell(NORM_QUAD4,[10000,10002,10001,10003])
+ coo=DataArrayDouble([(0,0),(1,1),(1,0),(0,1)])
+ m.setCoords(coo)
+ m.checkConsistencyLight()
+ #
+ d=DataArrayInt([10000,10001,10002,10003])
+ myMap=d.invertArrayN2O2O2NOptimized()
+ myMap2=d.giveN2OOptimized()
+ m.checkConsistencyLight()
+ #
+ m.renumberNodesInConn(myMap) # <- test is here for UMesh
+ self.assertTrue(m.getNodalConnectivity().isEqual(DataArrayInt([4,0,2,1,3])))
+ m.renumberNodesInConn(myMap2) # <- test is here for UMesh
+ self.assertTrue(m.getNodalConnectivity().isEqual(DataArrayInt([4,10000,10002,10001,10003])))
+ #
+ m=MEDCoupling1SGTUMesh("mesh",NORM_QUAD4)
+ m.setNodalConnectivity(DataArrayInt([10000,10002,10001,10003]))
+ m.setCoords(coo)
+ m.checkConsistencyLight()
+ m.renumberNodesInConn(myMap) # <- test is here for 1SGTUMesh
+ self.assertTrue(m.getNodalConnectivity().isEqual(DataArrayInt([0,2,1,3])))
+ #
+ m=MEDCoupling1DGTUMesh("mesh",NORM_POLYGON)
+ m.setCoords(coo)
+ m.setNodalConnectivity(DataArrayInt([10000,10002,10001,10003]),DataArrayInt([0,4]))
+ m.checkConsistencyLight()
+ m.renumberNodesInConn(myMap) # <- test is here for 1DGTUMesh
+ self.assertTrue(m.getNodalConnectivity().isEqual(DataArrayInt([0,2,1,3])))
+ self.assertTrue(m.getNodalConnectivityIndex().isEqual(DataArrayInt([0,4])))
+ pass
+
+ def testSeg2bGP(self):
+ """Test of Gauss points on SEG2 using SEG2B style as ref coords
+ """
+ coo=DataArrayDouble([[0.,0.,0.],[1.,1.,1.]])
+ m=MEDCouplingUMesh("mesh",1) ; m.setCoords(coo)
+ m.allocateCells()
+ # the cell description is exactly those described in the description of HEXA27 in MED file 3.0.7 documentation
+ m.insertNextCell(NORM_SEG2,[0,1])
+ refCoo=[0.,1.]
+ weights=[0.8,0.1,0.1]
+ gCoords=[0.2,0.5,0.9]
+ fGauss=MEDCouplingFieldDouble(ON_GAUSS_PT) ; fGauss.setName("fGauss")
+ fGauss.setMesh(m)
+ fGauss.setGaussLocalizationOnType(NORM_SEG2,refCoo,gCoords,weights)
+ arr=DataArrayDouble(fGauss.getNumberOfTuplesExpected()) ; arr.iota()
+ fGauss.setArray(arr)
+ fGauss.checkConsistencyLight()
+ arrOfDisc=fGauss.getLocalizationOfDiscr()
+ self.assertTrue(arrOfDisc.isEqual(DataArrayDouble([0.2,0.2,0.2,0.5,0.5,0.5,0.9,0.9,0.9],3,3),1e-12))
+ pass
+
+ def testUMeshGetCellsContainingPtOn2DNonDynQuadraticCells(self):
+ """getCellsContainingPoint is now dealing curves of quadratic 2D elements.
+ This test is a mesh containing 2 QUAD8 cells. The input point is located at a special loc.
+ If true geometry (with curve as edges) is considered the result of getCellsContainingPoint is not the same as if only linear part of cells is considered."""
+ coords=DataArrayDouble([-0.9428090415820631,0.9428090415820631,-1.06066017177982,1.06066017177982,-1.1785113019775801,1.1785113019775801,-1.2963624321753402,1.2963624321753402,-1.4142135623731,1.41421356237309,-0.7653668647301801,1.8477590650225701,-0.6378057206084831,1.53979922085214,-0.510244576486786,1.23183937668172,-0.701586292669331,1.6937791429373599,-0.574025148547635,1.38581929876693,-0.9259503883660041,1.38578268717091,-0.740760310692803,1.10862614973673,-1.1111404660392,1.66293922460509],13,2)
+ m=MEDCouplingUMesh("mesh",2)
+ m.setCoords(coords)
+ m.allocateCells()
+ m.insertNextCell(NORM_QUAD8,[4,2,6,5,3,10,8,12])
+ m.insertNextCell(NORM_QUAD8,[2,0,7,6,1,11,9,10])
+ #
+ zePt=DataArrayDouble([-0.85863751450784975,1.4203162316045934],1,2)
+ a,b=m.getCellsContainingPoints(zePt,1e-12)
+ self.assertTrue(b.isEqual(DataArrayInt([0,1])))
+ self.assertTrue(a.isEqual(DataArrayInt([1]))) # <- test is here. 0 if only linear parts are considered.
+ #
+ a,b=m.getCellsContainingPointsLinearPartOnlyOnNonDynType(zePt,1e-12)
+ self.assertTrue(b.isEqual(DataArrayInt([0,1])))
+ self.assertTrue(a.isEqual(DataArrayInt([0]))) # <- like before
+ pass
+
++
pass
if __name__ == '__main__':