interface SMESH_Gen : Engines::Component, SALOMEDS::Driver
{
+ //GEOM::GEOM_Gen SetGeomEngine( in string containerLoc );
+ void SetGeomEngine( in GEOM::GEOM_Gen geomcompo );
+
FilterManager CreateFilterManager();
SMESH_Pattern GetPattern();
GEOM::GEOM_Object_var aGeomObj = GEOM::GEOM_Object::_narrow( aList[ 0 ]->GetObject() );
if ( !aGeomObj->_is_nil() )
{
- GEOM::GEOM_Gen_var aGEOMGen = SMESH_Gen_i::GetGeomEngine();
+ GEOM::GEOM_Gen_ptr aGEOMGen = SMESH_Gen_i::GetGeomEngine();
TopoDS_Shape aLocShape = aSMESHGen->GetShapeReader()->GetShape( aGEOMGen, aGeomObj );
return aLocShape;
}
if ( !aGeomObj->_is_nil() )
{
- GEOM::GEOM_Gen_var aGEOMGen = SMESH_Gen_i::GetGeomEngine();
+ GEOM::GEOM_Gen_ptr aGEOMGen = SMESH_Gen_i::GetGeomEngine();
TopoDS_Shape aLocShape = aSMESHGen->GetShapeReader()->GetShape( aGEOMGen, aGeomObj );
return aLocShape;
}
if ( theGeom->_is_nil() )
return;
SMESH_Gen_i* aSMESHGen = SMESH_Gen_i::GetSMESHGen();
- GEOM::GEOM_Gen_var aGEOMGen = SMESH_Gen_i::GetGeomEngine();
+ GEOM::GEOM_Gen_ptr aGEOMGen = SMESH_Gen_i::GetGeomEngine();
TopoDS_Shape aLocShape = aSMESHGen->GetShapeReader()->GetShape( aGEOMGen, theGeom );
myBelongToGeomPtr->SetGeom( aLocShape );
TPythonDump()<<this<<".SetGeom("<<theGeom<<")";
if ( theGeom->_is_nil() )
return;
SMESH_Gen_i* aSMESHGen = SMESH_Gen_i::GetSMESHGen();
- GEOM::GEOM_Gen_var aGEOMGen = SMESH_Gen_i::GetGeomEngine();
+ GEOM::GEOM_Gen_ptr aGEOMGen = SMESH_Gen_i::GetGeomEngine();
TopoDS_Shape aLocShape = aSMESHGen->GetShapeReader()->GetShape( aGEOMGen, theGeom );
if ( aLocShape.ShapeType() == TopAbs_FACE )
if ( theGeom->_is_nil() )
return;
SMESH_Gen_i* aSMESHGen = SMESH_Gen_i::GetSMESHGen();
- GEOM::GEOM_Gen_var aGEOMGen = SMESH_Gen_i::GetGeomEngine();
+ GEOM::GEOM_Gen_ptr aGEOMGen = SMESH_Gen_i::GetGeomEngine();
TopoDS_Shape aLocShape = aSMESHGen->GetShapeReader()->GetShape( aGEOMGen, theGeom );
myLyingOnGeomPtr->SetGeom( aLocShape );
TPythonDump()<<this<<".SetGeom("<<theGeom<<")";
#endif
// Static variables definition
+GEOM::GEOM_Gen_var SMESH_Gen_i::myGeomGen=GEOM::GEOM_Gen::_nil();
CORBA::ORB_var SMESH_Gen_i::myOrb;
PortableServer::POA_var SMESH_Gen_i::myPoa;
SALOME_NamingService* SMESH_Gen_i::myNS = NULL;
* Get GEOM::GEOM_Gen reference
*/
//=============================================================================
-GEOM::GEOM_Gen_ptr SMESH_Gen_i::GetGeomEngine() {
- GEOM::GEOM_Gen_var aGeomEngine =
- GEOM::GEOM_Gen::_narrow( GetLCC()->FindOrLoad_Component("FactoryServer","GEOM") );
- return aGeomEngine._retn();
+GEOM::GEOM_Gen_ptr SMESH_Gen_i::GetGeomEngine()
+{
+ if (CORBA::is_nil(myGeomGen))
+ {
+ Engines::Component_ptr temp=GetLCC()->FindOrLoad_Component("FactoryServer","GEOM");
+ myGeomGen = GEOM::GEOM_Gen::_narrow(temp);
+ }
+ return myGeomGen;
}
//=============================================================================
return myShapeReader;
}
+//=============================================================================
+/*!
+ * SMESH_Gen_i::SetGeomEngine
+ *
+ * Set GEOM::GEOM_Gen reference
+ */
+//=============================================================================
+//GEOM::GEOM_Gen_ptr SMESH_Gen_i::SetGeomEngine( const char* containerLoc )
+void SMESH_Gen_i::SetGeomEngine( GEOM::GEOM_Gen_ptr geomcompo )
+{
+ //Engines::Component_ptr temp=GetLCC()->FindOrLoad_Component(containerLoc,"GEOM");
+ //myGeomGen=GEOM::GEOM_Gen::_narrow(temp);
+ myGeomGen=GEOM::GEOM_Gen::_duplicate(geomcompo);
+ //return myGeomGen;
+}
+
//=============================================================================
/*!
* SMESH_Gen_i::SetEmbeddedMode
GEOM::GEOM_Object_var geom = FindGeometryByMeshElement(theMesh, theElementID);
if ( !geom->_is_nil() ) {
GEOM::GEOM_Object_var mainShape = theMesh->GetShapeToMesh();
- GEOM::GEOM_Gen_var geomGen = GetGeomEngine();
+ GEOM::GEOM_Gen_ptr geomGen = GetGeomEngine();
// try to find the corresponding SObject
SALOMEDS::SObject_var SObj = ObjectToSObject( myCurrentStudy, geom.in() );
THROW_SALOME_CORBA_EXCEPTION( "bad Mesh reference", SALOME::BAD_PARAM );
GEOM::GEOM_Object_var mainShape = theMesh->GetShapeToMesh();
- GEOM::GEOM_Gen_var geomGen = GetGeomEngine();
+ GEOM::GEOM_Gen_ptr geomGen = GetGeomEngine();
// get a core mesh DS
SMESH_Mesh_i* meshServant = SMESH::DownCast<SMESH_Mesh_i*>( theMesh );
const char* interfaceName );
// Destructor
virtual ~SMESH_Gen_i();
-
+
// *****************************************
// Interface methods
// *****************************************
+ //GEOM::GEOM_Gen_ptr SetGeomEngine( const char* containerLoc );
+ void SetGeomEngine( GEOM::GEOM_Gen_ptr geomcompo );
// Set current study
void SetEmbeddedMode( CORBA::Boolean theMode );
static void loadGeomData( SALOMEDS::SComponent_ptr theCompRoot );
private:
-
+ static GEOM::GEOM_Gen_var myGeomGen;
static CORBA::ORB_var myOrb; // ORB reference
static PortableServer::POA_var myPoa; // POA reference
static SALOME_NamingService* myNS; // Naming Service
TopoDS_Shape S;
if ( !theGeomObject->_is_nil() ) {
GEOM_Client* aClient = GetShapeReader();
- GEOM::GEOM_Gen_var aGeomEngine = GetGeomEngine();
+ GEOM::GEOM_Gen_ptr aGeomEngine = GetGeomEngine();
if ( aClient && !aGeomEngine->_is_nil () )
S = aClient->GetShape( aGeomEngine, theGeomObject );
}
dist_salomescript_DATA= \
libSMESH_Swig.py \
smesh.py \
+ smeshDC.py \
batchmode_smesh.py \
batchmode_mefisto.py \
ex00_all.py \
# Author : Francis KLOSS, OCC
# Module : SMESH
-"""
- \namespace smesh
+"""@package smesh
\brief Module smesh
"""
import salome
-import geompy
-
-import SMESH
-from SMESH import *
-
-import StdMeshers
-
-import SALOME
-
-# import NETGENPlugin module if possible
-noNETGENPlugin = 0
-try:
- import NETGENPlugin
-except ImportError:
- noNETGENPlugin = 1
- pass
-
-# Types of algo
-REGULAR = 1
-PYTHON = 2
-COMPOSITE = 3
-
-MEFISTO = 3
-NETGEN = 4
-GHS3D = 5
-FULL_NETGEN = 6
-Hexa = 7
-Hexotic = 8
-BLSURF = 9
-
-# MirrorType enumeration
-POINT = SMESH_MeshEditor.POINT
-AXIS = SMESH_MeshEditor.AXIS
-PLANE = SMESH_MeshEditor.PLANE
-
-# Smooth_Method enumeration
-LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
-CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
-
-# Fineness enumeration(for NETGEN)
-VeryCoarse = 0
-Coarse = 1
-Moderate = 2
-Fine = 3
-VeryFine = 4
-Custom = 5
-
-
-NO_NAME = "NoName"
+from salome import *
+import geompy
+import smeshDC
+from smeshDC import *
smesh = salome.lcc.FindOrLoadComponent("FactoryServer", "SMESH")
-smesh.SetCurrentStudy(salome.myStudy)
-
-# Global functions
-
-## Gets object name
-def GetName(obj):
- ior = salome.orb.object_to_string(obj)
- sobj = salome.myStudy.FindObjectIOR(ior)
- if sobj is None:
- return NO_NAME
- else:
- attr = sobj.FindAttribute("AttributeName")[1]
- return attr.Value()
-
-## Sets name to object
-def SetName(obj, name):
- ior = salome.orb.object_to_string(obj)
- sobj = salome.myStudy.FindObjectIOR(ior)
- if not sobj is None:
- attr = sobj.FindAttribute("AttributeName")[1]
- attr.SetValue(name)
-
-## Returns long value from enumeration
-# Uses for SMESH.FunctorType enumeration
-def EnumToLong(theItem):
- return theItem._v
-
-## Get PointStruct from vertex
-# @param theVertex is GEOM object(vertex)
-# @return SMESH.PointStruct
-def GetPointStruct(theVertex):
- [x, y, z] = geompy.PointCoordinates(theVertex)
- return PointStruct(x,y,z)
-
-## Get DirStruct from vector
-# @param theVector is GEOM object(vector)
-# @return SMESH.DirStruct
-def GetDirStruct(theVector):
- vertices = geompy.SubShapeAll( theVector, geompy.ShapeType["VERTEX"] )
- if(len(vertices) != 2):
- print "Error: vector object is incorrect."
- return None
- p1 = geompy.PointCoordinates(vertices[0])
- p2 = geompy.PointCoordinates(vertices[1])
- pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
- dir = DirStruct(pnt)
- return dir
-
-## Get AxisStruct from object
-# @param theObj is GEOM object(line or plane)
-# @return SMESH.AxisStruct
-def GetAxisStruct(theObj):
- edges = geompy.SubShapeAll( theObj, geompy.ShapeType["EDGE"] )
- if len(edges) > 1:
- vertex1, vertex2 = geompy.SubShapeAll( edges[0], geompy.ShapeType["VERTEX"] )
- vertex3, vertex4 = geompy.SubShapeAll( edges[1], geompy.ShapeType["VERTEX"] )
- vertex1 = geompy.PointCoordinates(vertex1)
- vertex2 = geompy.PointCoordinates(vertex2)
- vertex3 = geompy.PointCoordinates(vertex3)
- vertex4 = geompy.PointCoordinates(vertex4)
- v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
- v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
- normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
- axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
- return axis
- elif len(edges) == 1:
- vertex1, vertex2 = geompy.SubShapeAll( edges[0], geompy.ShapeType["VERTEX"] )
- p1 = geompy.PointCoordinates( vertex1 )
- p2 = geompy.PointCoordinates( vertex2 )
- axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
- return axis
- return None
-
-# From SMESH_Gen interface:
-# ------------------------
-
-## Set the current mode
-def SetEmbeddedMode( theMode ):
- smesh.SetEmbeddedMode(theMode)
-
-## Get the current mode
-def IsEmbeddedMode():
- return smesh.IsEmbeddedMode()
-
-## Set the current study
-def SetCurrentStudy( theStudy ):
- smesh.SetCurrentStudy(theStudy)
-
-## Get the current study
-def GetCurrentStudy():
- return smesh.GetCurrentStudy()
-
-## Create Mesh object importing data from given UNV file
-# @return an instance of Mesh class
-def CreateMeshesFromUNV( theFileName ):
- aSmeshMesh = smesh.CreateMeshesFromUNV(theFileName)
- aMesh = Mesh(aSmeshMesh)
- return aMesh
-
-## Create Mesh object(s) importing data from given MED file
-# @return a list of Mesh class instances
-def CreateMeshesFromMED( theFileName ):
- aSmeshMeshes, aStatus = smesh.CreateMeshesFromMED(theFileName)
- aMeshes = []
- for iMesh in range(len(aSmeshMeshes)) :
- aMesh = Mesh(aSmeshMeshes[iMesh])
- aMeshes.append(aMesh)
- return aMeshes, aStatus
-
-## Create Mesh object importing data from given STL file
-# @return an instance of Mesh class
-def CreateMeshesFromSTL( theFileName ):
- aSmeshMesh = smesh.CreateMeshesFromSTL(theFileName)
- aMesh = Mesh(aSmeshMesh)
- return aMesh
-
-## From SMESH_Gen interface
-def GetSubShapesId( theMainObject, theListOfSubObjects ):
- return smesh.GetSubShapesId(theMainObject, theListOfSubObjects)
-
-## From SMESH_Gen interface. Creates pattern
-def GetPattern():
- return smesh.GetPattern()
-
-
-
-# Filtering. Auxiliary functions:
-# ------------------------------
-
-## Creates an empty criterion
-# @return SMESH.Filter.Criterion
-def GetEmptyCriterion():
- Type = EnumToLong(FT_Undefined)
- Compare = EnumToLong(FT_Undefined)
- Threshold = 0
- ThresholdStr = ""
- ThresholdID = ""
- UnaryOp = EnumToLong(FT_Undefined)
- BinaryOp = EnumToLong(FT_Undefined)
- Tolerance = 1e-07
- TypeOfElement = ALL
- Precision = -1 ##@1e-07
- return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
- UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
-
-## Creates a criterion by given parameters
-# @param elementType is the type of elements(NODE, EDGE, FACE, VOLUME)
-# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
-# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
-# @param Treshold is threshold value (range of ids as string, shape, numeric)
-# @param UnaryOp is FT_LogicalNOT or FT_Undefined
-# @param BinaryOp is binary logical operation FT_LogicalAND, FT_LogicalOR or
-# FT_Undefined(must be for the last criterion in criteria)
-# @return SMESH.Filter.Criterion
-def GetCriterion(elementType,
- CritType,
- Compare = FT_EqualTo,
- Treshold="",
- UnaryOp=FT_Undefined,
- BinaryOp=FT_Undefined):
- aCriterion = GetEmptyCriterion()
- aCriterion.TypeOfElement = elementType
- aCriterion.Type = EnumToLong(CritType)
-
- aTreshold = Treshold
-
- if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
- aCriterion.Compare = EnumToLong(Compare)
- elif Compare == "=" or Compare == "==":
- aCriterion.Compare = EnumToLong(FT_EqualTo)
- elif Compare == "<":
- aCriterion.Compare = EnumToLong(FT_LessThan)
- elif Compare == ">":
- aCriterion.Compare = EnumToLong(FT_MoreThan)
- else:
- aCriterion.Compare = EnumToLong(FT_EqualTo)
- aTreshold = Compare
-
- if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface,
- FT_BelongToCylinder, FT_LyingOnGeom]:
- # Check treshold
- if isinstance(aTreshold, geompy.GEOM._objref_GEOM_Object):
- aCriterion.ThresholdStr = GetName(aTreshold)
- aCriterion.ThresholdID = salome.ObjectToID(aTreshold)
- else:
- print "Error: Treshold should be a shape."
- return None
- elif CritType == FT_RangeOfIds:
- # Check treshold
- if isinstance(aTreshold, str):
- aCriterion.ThresholdStr = aTreshold
- else:
- print "Error: Treshold should be a string."
- return None
- elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume]:
- # Here we don't need treshold
- if aTreshold == FT_LogicalNOT:
- aCriterion.UnaryOp = EnumToLong(FT_LogicalNOT)
- elif aTreshold in [FT_LogicalAND, FT_LogicalOR]:
- aCriterion.BinaryOp = aTreshold
- else:
- # Check treshold
- try:
- aTreshold = float(aTreshold)
- aCriterion.Threshold = aTreshold
- except:
- print "Error: Treshold should be a number."
- return None
-
- if Treshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
- aCriterion.UnaryOp = EnumToLong(FT_LogicalNOT)
-
- if Treshold in [FT_LogicalAND, FT_LogicalOR]:
- aCriterion.BinaryOp = EnumToLong(Treshold)
-
- if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
- aCriterion.BinaryOp = EnumToLong(UnaryOp)
-
- if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
- aCriterion.BinaryOp = EnumToLong(BinaryOp)
-
- return aCriterion
-
-## Creates filter by given parameters of criterion
-# @param elementType is the type of elements in the group
-# @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
-# @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
-# @param Treshold is threshold value (range of id ids as string, shape, numeric)
-# @param UnaryOp is FT_LogicalNOT or FT_Undefined
-# @return SMESH_Filter
-def GetFilter(elementType,
- CritType=FT_Undefined,
- Compare=FT_EqualTo,
- Treshold="",
- UnaryOp=FT_Undefined):
- aCriterion = GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
- aFilterMgr = smesh.CreateFilterManager()
- aFilter = aFilterMgr.CreateFilter()
- aCriteria = []
- aCriteria.append(aCriterion)
- aFilter.SetCriteria(aCriteria)
- return aFilter
-
-## Creates numerical functor by its type
-# @param theCrierion is FT_...; functor type
-# @return SMESH_NumericalFunctor
-def GetFunctor(theCriterion):
- aFilterMgr = smesh.CreateFilterManager()
- if theCriterion == FT_AspectRatio:
- return aFilterMgr.CreateAspectRatio()
- elif theCriterion == FT_AspectRatio3D:
- return aFilterMgr.CreateAspectRatio3D()
- elif theCriterion == FT_Warping:
- return aFilterMgr.CreateWarping()
- elif theCriterion == FT_MinimumAngle:
- return aFilterMgr.CreateMinimumAngle()
- elif theCriterion == FT_Taper:
- return aFilterMgr.CreateTaper()
- elif theCriterion == FT_Skew:
- return aFilterMgr.CreateSkew()
- elif theCriterion == FT_Area:
- return aFilterMgr.CreateArea()
- elif theCriterion == FT_Volume3D:
- return aFilterMgr.CreateVolume3D()
- elif theCriterion == FT_MultiConnection:
- return aFilterMgr.CreateMultiConnection()
- elif theCriterion == FT_MultiConnection2D:
- return aFilterMgr.CreateMultiConnection2D()
- elif theCriterion == FT_Length:
- return aFilterMgr.CreateLength()
- elif theCriterion == FT_Length2D:
- return aFilterMgr.CreateLength2D()
- else:
- print "Error: given parameter is not numerucal functor type."
-
-
-## Print error message if a hypothesis was not assigned.
-def TreatHypoStatus(status, hypName, geomName, isAlgo):
- if isAlgo:
- hypType = "algorithm"
- else:
- hypType = "hypothesis"
- pass
- if status == HYP_UNKNOWN_FATAL :
- reason = "for unknown reason"
- elif status == HYP_INCOMPATIBLE :
- reason = "this hypothesis mismatches algorithm"
- elif status == HYP_NOTCONFORM :
- reason = "not conform mesh would be built"
- elif status == HYP_ALREADY_EXIST :
- reason = hypType + " of the same dimension already assigned to this shape"
- elif status == HYP_BAD_DIM :
- reason = hypType + " mismatches shape"
- elif status == HYP_CONCURENT :
- reason = "there are concurrent hypotheses on sub-shapes"
- elif status == HYP_BAD_SUBSHAPE :
- reason = "shape is neither the main one, nor its subshape, nor a valid group"
- elif status == HYP_BAD_GEOMETRY:
- reason = "geometry mismatches algorithm's expectation"
- elif status == HYP_HIDDEN_ALGO:
- reason = "it is hidden by an algorithm of upper dimension generating all-dimensions elements"
- elif status == HYP_HIDING_ALGO:
- reason = "it hides algorithm(s) of lower dimension by generating all-dimensions elements"
- else:
- return
- hypName = '"' + hypName + '"'
- geomName= '"' + geomName+ '"'
- if status < HYP_UNKNOWN_FATAL:
- print hypName, "was assigned to", geomName,"but", reason
- else:
- print hypName, "was not assigned to",geomName,":", reason
- pass
-
-
-
-## Mother class to define algorithm, recommended to don't use directly.
-#
-# More details.
-class Mesh_Algorithm:
- # @class Mesh_Algorithm
- # @brief Class Mesh_Algorithm
-
- mesh = 0
- geom = 0
- subm = 0
- algo = 0
-
- ## If the algorithm is global, return 0; \n
- # else return the submesh associated to this algorithm.
- def GetSubMesh(self):
- return self.subm
-
- ## Return the wrapped mesher.
- def GetAlgorithm(self):
- return self.algo
-
- ## Get list of hypothesis that can be used with this algorithm
- def GetCompatibleHypothesis(self):
- list = []
- if self.algo:
- list = self.algo.GetCompatibleHypothesis()
- return list
-
- ## Get name of algo
- def GetName(self):
- GetName(self.algo)
-
- ## Set name to algo
- def SetName(self, name):
- SetName(self.algo, name)
-
- ## Get id of algo
- def GetId(self):
- return self.algo.GetId()
-
- ## Private method.
- def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
- if geom is None:
- raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape"
- self.mesh = mesh
- piece = mesh.geom
- if geom==0:
- self.geom = piece
- name = GetName(piece)
- else:
- self.geom = geom
- name = GetName(geom)
- if name==NO_NAME:
- name = geompy.SubShapeName(geom, piece)
- geompy.addToStudyInFather(piece, geom, name)
- self.subm = mesh.mesh.GetSubMesh(geom, hypo)
-
- self.algo = smesh.CreateHypothesis(hypo, so)
- SetName(self.algo, name + "/" + hypo)
- status = mesh.mesh.AddHypothesis(self.geom, self.algo)
- TreatHypoStatus( status, hypo, name, 1 )
-
- ## Private method
- def Hypothesis(self, hyp, args=[], so="libStdMeshersEngine.so"):
- hypo = smesh.CreateHypothesis(hyp, so)
- a = ""
- s = "="
- i = 0
- n = len(args)
- while i<n:
- a = a + s + str(args[i])
- s = ","
- i = i + 1
- name = GetName(self.geom)
- SetName(hypo, name + "/" + hyp + a)
- status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
- TreatHypoStatus( status, hyp, name, 0 )
- return hypo
-
-
-# Public class: Mesh_Segment
-# --------------------------
-
-## Class to define a segment 1D algorithm for discretization
-#
-# More details.
-class Mesh_Segment(Mesh_Algorithm):
-
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- self.Create(mesh, geom, "Regular_1D")
-
- ## Define "LocalLength" hypothesis to cut an edge in several segments with the same length
- # @param l for the length of segments that cut an edge
- def LocalLength(self, l):
- hyp = self.Hypothesis("LocalLength", [l])
- hyp.SetLength(l)
- return hyp
-
- ## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments
- # @param n for the number of segments that cut an edge
- # @param s for the scale factor (optional)
- def NumberOfSegments(self, n, s=[]):
- if s == []:
- hyp = self.Hypothesis("NumberOfSegments", [n])
- else:
- hyp = self.Hypothesis("NumberOfSegments", [n,s])
- hyp.SetDistrType( 1 )
- hyp.SetScaleFactor(s)
- hyp.SetNumberOfSegments(n)
- return hyp
-
- ## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing
- # @param start for the length of the first segment
- # @param end for the length of the last segment
- def Arithmetic1D(self, start, end):
- hyp = self.Hypothesis("Arithmetic1D", [start, end])
- hyp.SetLength(start, 1)
- hyp.SetLength(end , 0)
- return hyp
-
- ## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing
- # @param start for the length of the first segment
- # @param end for the length of the last segment
- def StartEndLength(self, start, end):
- hyp = self.Hypothesis("StartEndLength", [start, end])
- hyp.SetLength(start, 1)
- hyp.SetLength(end , 0)
- return hyp
-
- ## Define "Deflection1D" hypothesis
- # @param d for the deflection
- def Deflection1D(self, d):
- hyp = self.Hypothesis("Deflection1D", [d])
- hyp.SetDeflection(d)
- return hyp
-
- ## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in
- # the opposite side in the case of quadrangular faces
- def Propagation(self):
- return self.Hypothesis("Propagation")
-
- ## Define "AutomaticLength" hypothesis
- # @param fineness for the fineness [0-1]
- def AutomaticLength(self, fineness=0):
- hyp = self.Hypothesis("AutomaticLength")
- hyp.SetFineness( fineness )
- return hyp
-
- ## Define "SegmentLengthAroundVertex" hypothesis
- # @param length for the segment length
- # @param vertex for the length localization: vertex index [0,1] | verext object
- def LengthNearVertex(self, length, vertex=0):
- import types
- store_geom = self.geom
- if vertex:
- if type(vertex) is types.IntType:
- vertex = geompy.SubShapeAllSorted(self.geom,geompy.ShapeType["VERTEX"])[vertex]
- pass
- self.geom = vertex
- pass
- hyp = self.Hypothesis("SegmentAroundVertex_0D")
- hyp = self.Hypothesis("SegmentLengthAroundVertex")
- self.geom = store_geom
- hyp.SetLength( length )
- return hyp
-
- ## Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
- # If the 2D mesher sees that all boundary edges are quadratic ones,
- # it generates quadratic faces, else it generates linear faces using
- # medium nodes as if they were vertex ones.
- # The 3D mesher generates quadratic volumes only if all boundary faces
- # are quadratic ones, else it fails.
- def QuadraticMesh(self):
- hyp = self.Hypothesis("QuadraticMesh")
- return hyp
-
-# Public class: Mesh_CompositeSegment
-# --------------------------
-
-## Class to define a segment 1D algorithm for discretization
-#
-# More details.
-class Mesh_CompositeSegment(Mesh_Segment):
-
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- self.Create(mesh, geom, "CompositeSegment_1D")
-
-
-# Public class: Mesh_Segment_Python
-# ---------------------------------
-
-## Class to define a segment 1D algorithm for discretization with python function
-#
-# More details.
-class Mesh_Segment_Python(Mesh_Segment):
-
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- import Python1dPlugin
- self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
-
- ## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality
- # @param n for the number of segments that cut an edge
- # @param func for the python function that calculate the length of all segments
- def PythonSplit1D(self, n, func):
- hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so")
- hyp.SetNumberOfSegments(n)
- hyp.SetPythonLog10RatioFunction(func)
- return hyp
-
-# Public class: Mesh_Triangle
-# ---------------------------
-
-## Class to define a triangle 2D algorithm
-#
-# More details.
-class Mesh_Triangle(Mesh_Algorithm):
-
- algoType = 0
- params = 0
- _angleMeshS = 8
- _gradation = 1.1
-
- ## Private constructor.
- def __init__(self, mesh, algoType, geom=0):
- self.algoType = algoType
- if algoType == MEFISTO:
- self.Create(mesh, geom, "MEFISTO_2D")
- elif algoType == BLSURF:
- import BLSURFPlugin
- self.Create(mesh, geom, "BLSURF", "libBLSURFEngine.so")
- self.SetPhysicalMesh()
- elif algoType == NETGEN:
- if noNETGENPlugin:
- print "Warning: NETGENPlugin module has not been imported."
- self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
-
- ## Define "MaxElementArea" hypothesis to give the maximun area of each triangles
- # @param area for the maximum area of each triangles
- def MaxElementArea(self, area):
- if self.algoType == MEFISTO:
- hyp = self.Hypothesis("MaxElementArea", [area])
- hyp.SetMaxElementArea(area)
- return hyp
- elif self.algoType == NETGEN:
- print "Netgen 1D-2D algo doesn't support this hypothesis"
- return None
-
- ## Define "LengthFromEdges" hypothesis to build triangles based on the length of the edges taken from the wire
- def LengthFromEdges(self):
- if self.algoType == MEFISTO:
- hyp = self.Hypothesis("LengthFromEdges")
- return hyp
- elif self.algoType == NETGEN:
- print "Netgen 1D-2D algo doesn't support this hypothesis"
- return None
-
- ## Define "Netgen 2D Parameters" hypothesis
- def Parameters(self):
- if self.algoType == NETGEN:
- self.params = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so")
- return self.params
- elif self.algoType == MEFISTO:
- print "Mefisto algo doesn't support this hypothesis"
- return None
- elif self.algoType == BLSURF:
- self.params = self.Hypothesis("BLSURF_Parameters", [], "libBLSURFEngine.so")
- return self.params
-
- ## Set MaxSize
- def SetMaxSize(self, theSize):
- if self.params == 0:
- self.Parameters()
- self.params.SetMaxSize(theSize)
-
- ## Set SecondOrder flag
- def SetSecondOrder(seld, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetSecondOrder(theVal)
-
- ## Set Optimize flag
- def SetOptimize(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetOptimize(theVal)
-
- ## Set Fineness
- # @param theFineness is:
- # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
- def SetFineness(self, theFineness):
- if self.params == 0:
- self.Parameters()
- self.params.SetFineness(theFineness)
-
- ## Set GrowthRate
- def SetGrowthRate(self, theRate):
- if self.params == 0:
- self.Parameters()
- self.params.SetGrowthRate(theRate)
-
- ## Set NbSegPerEdge
- def SetNbSegPerEdge(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetNbSegPerEdge(theVal)
-
- ## Set NbSegPerRadius
- def SetNbSegPerRadius(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetNbSegPerRadius(theVal)
-
- ## Set PhysicalMesh
- # @param thePhysicalMesh is:
- # DefaultSize or Custom
- def SetPhysicalMesh(self, thePhysicalMesh=1):
- if self.params == 0:
- self.Parameters()
- self.params.SetPhysicalMesh(thePhysicalMesh)
-
- ## Set PhySize flag
- def SetPhySize(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetPhySize(theVal)
-
- ## Set GeometricMesh
- # @param theGeometricMesh is:
- # DefaultGeom or Custom
- def SetGeometricMesh(self, theGeometricMesh=0):
- if self.params == 0:
- self.Parameters()
- if self.params.GetPhysicalMesh() == 0: theGeometricMesh = 1
- self.params.SetGeometricMesh(theGeometricMesh)
-
- ## Set AngleMeshS flag
- def SetAngleMeshS(self, theVal=_angleMeshS):
- if self.params == 0:
- self.Parameters()
- if self.params.GetGeometricMesh() == 0: theVal = self._angleMeshS
- self.params.SetAngleMeshS(theVal)
-
- ## Set Gradation flag
- def SetGradation(self, theVal=_gradation):
- if self.params == 0:
- self.Parameters()
- if self.params.GetGeometricMesh() == 0: theVal = self._gradation
- self.params.SetGradation(theVal)
-
- ## Set QuadAllowed flag
- def SetQuadAllowed(self, toAllow=False):
- if self.params == 0:
- self.Parameters()
- self.params.SetQuadAllowed(toAllow)
-
- ## Set Decimesh flag
- def SetDecimesh(self, toAllow=False):
- if self.params == 0:
- self.Parameters()
- self.params.SetDecimesh(toAllow)
-
-# Public class: Mesh_Quadrangle
-# -----------------------------
-
-## Class to define a quadrangle 2D algorithm
-#
-# More details.
-class Mesh_Quadrangle(Mesh_Algorithm):
-
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- self.Create(mesh, geom, "Quadrangle_2D")
-
- ## Define "QuadranglePreference" hypothesis, forcing construction
- # of quadrangles if the number of nodes on opposite edges is not the same
- # in the case where the global number of nodes on edges is even
- def QuadranglePreference(self):
- hyp = self.Hypothesis("QuadranglePreference")
- return hyp
-
-# Public class: Mesh_Tetrahedron
-# ------------------------------
-
-## Class to define a tetrahedron 3D algorithm
-#
-# More details.
-class Mesh_Tetrahedron(Mesh_Algorithm):
-
- params = 0
- algoType = 0
-
- ## Private constructor.
- def __init__(self, mesh, algoType, geom=0):
- if algoType == NETGEN:
- self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
- elif algoType == GHS3D:
- import GHS3DPlugin
- self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
- elif algoType == FULL_NETGEN:
- if noNETGENPlugin:
- print "Warning: NETGENPlugin module has not been imported."
- self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
- self.algoType = algoType
-
- ## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral
- # @param vol for the maximum volume of each tetrahedral
- def MaxElementVolume(self, vol):
- hyp = self.Hypothesis("MaxElementVolume", [vol])
- hyp.SetMaxElementVolume(vol)
- return hyp
-
- ## Define "Netgen 3D Parameters" hypothesis
- def Parameters(self):
- if (self.algoType == FULL_NETGEN):
- self.params = self.Hypothesis("NETGEN_Parameters", [], "libNETGENEngine.so")
- return self.params
- else:
- print "Algo doesn't support this hypothesis"
- return None
-
- ## Set MaxSize
- def SetMaxSize(self, theSize):
- if self.params == 0:
- self.Parameters()
- self.params.SetMaxSize(theSize)
-
- ## Set SecondOrder flag
- def SetSecondOrder(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetSecondOrder(theVal)
-
- ## Set Optimize flag
- def SetOptimize(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetOptimize(theVal)
-
- ## Set Fineness
- # @param theFineness is:
- # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
- def SetFineness(self, theFineness):
- if self.params == 0:
- self.Parameters()
- self.params.SetFineness(theFineness)
-
- ## Set GrowthRate
- def SetGrowthRate(self, theRate):
- if self.params == 0:
- self.Parameters()
- self.params.SetGrowthRate(theRate)
-
- ## Set NbSegPerEdge
- def SetNbSegPerEdge(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetNbSegPerEdge(theVal)
-
- ## Set NbSegPerRadius
- def SetNbSegPerRadius(self, theVal):
- if self.params == 0:
- self.Parameters()
- self.params.SetNbSegPerRadius(theVal)
-
-# Public class: Mesh_Hexahedron
-# ------------------------------
-
-## Class to define a hexahedron 3D algorithm
-#
-# More details.
-class Mesh_Hexahedron(Mesh_Algorithm):
-
- ## Private constructor.
- ## def __init__(self, mesh, geom=0):
- ## self.Create(mesh, geom, "Hexa_3D")
- def __init__(self, mesh, algo, geom):
- if algo == Hexa:
- self.Create(mesh, geom, "Hexa_3D")
- elif algo == Hexotic:
- import HexoticPlugin
- self.Create(mesh, geom, "Hexotic_3D" , "libHexoticEngine.so")
-
- ## Define "MinMaxQuad" hypothesis to give the three hexotic parameters
- def MinMaxQuad(self, min=3, max=8, quad=True):
- hyp = self.Hypothesis("Hexotic_Parameters", [], "libHexoticEngine.so")
- hyp.SetHexesMinLevel(min)
- hyp.SetHexesMaxLevel(max)
- hyp.SetHexoticQuadrangles(quad)
- return hyp
-
-# Deprecated, only for compatibility!
-# Public class: Mesh_Netgen
-# ------------------------------
-
-## Class to define a NETGEN-based 2D or 3D algorithm
-# that need no discrete boundary (i.e. independent)
-#
-# This class is deprecated, only for compatibility!
-#
-# More details.
-class Mesh_Netgen(Mesh_Algorithm):
-
- is3D = 0
-
- ## Private constructor.
- def __init__(self, mesh, is3D, geom=0):
- if noNETGENPlugin:
- print "Warning: NETGENPlugin module has not been imported."
-
- self.is3D = is3D
- if is3D:
- self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
- else:
- self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
-
- ## Define hypothesis containing parameters of the algorithm
- def Parameters(self):
- if self.is3D:
- hyp = self.Hypothesis("NETGEN_Parameters", [], "libNETGENEngine.so")
- else:
- hyp = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so")
- return hyp
-
-# Public class: Mesh_Projection1D
-# ------------------------------
-
-## Class to define a projection 1D algorithm
-#
-# More details.
-class Mesh_Projection1D(Mesh_Algorithm):
-
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- self.Create(mesh, geom, "Projection_1D")
-
- ## Define "Source Edge" hypothesis, specifying a meshed edge to
- # take a mesh pattern from, and optionally association of vertices
- # between the source edge and a target one (where a hipothesis is assigned to)
- # @param edge to take nodes distribution from
- # @param mesh to take nodes distribution from (optional)
- # @param srcV is vertex of \a edge to associate with \a tgtV (optional)
- # @param tgtV is vertex of \a the edge where the algorithm is assigned,
- # to associate with \a srcV (optional)
- def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None):
- hyp = self.Hypothesis("ProjectionSource1D")
- hyp.SetSourceEdge( edge )
- if not mesh is None and isinstance(mesh, Mesh):
- mesh = mesh.GetMesh()
- hyp.SetSourceMesh( mesh )
- hyp.SetVertexAssociation( srcV, tgtV )
- return hyp
-
-
-# Public class: Mesh_Projection2D
-# ------------------------------
-
-## Class to define a projection 2D algorithm
-#
-# More details.
-class Mesh_Projection2D(Mesh_Algorithm):
-
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- self.Create(mesh, geom, "Projection_2D")
-
- ## Define "Source Face" hypothesis, specifying a meshed face to
- # take a mesh pattern from, and optionally association of vertices
- # between the source face and a target one (where a hipothesis is assigned to)
- # @param face to take mesh pattern from
- # @param mesh to take mesh pattern from (optional)
- # @param srcV1 is vertex of \a face to associate with \a tgtV1 (optional)
- # @param tgtV1 is vertex of \a the face where the algorithm is assigned,
- # to associate with \a srcV1 (optional)
- # @param srcV2 is vertex of \a face to associate with \a tgtV1 (optional)
- # @param tgtV2 is vertex of \a the face where the algorithm is assigned,
- # to associate with \a srcV2 (optional)
- #
- # Note: association vertices must belong to one edge of a face
- def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None, srcV2=None, tgtV2=None):
- hyp = self.Hypothesis("ProjectionSource2D")
- hyp.SetSourceFace( face )
- if not mesh is None and isinstance(mesh, Mesh):
- mesh = mesh.GetMesh()
- hyp.SetSourceMesh( mesh )
- hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
- return hyp
-
-# Public class: Mesh_Projection3D
-# ------------------------------
-
-## Class to define a projection 3D algorithm
-#
-# More details.
-class Mesh_Projection3D(Mesh_Algorithm):
-
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- self.Create(mesh, geom, "Projection_3D")
-
- ## Define "Source Shape 3D" hypothesis, specifying a meshed solid to
- # take a mesh pattern from, and optionally association of vertices
- # between the source solid and a target one (where a hipothesis is assigned to)
- # @param solid to take mesh pattern from
- # @param mesh to take mesh pattern from (optional)
- # @param srcV1 is vertex of \a solid to associate with \a tgtV1 (optional)
- # @param tgtV1 is vertex of \a the solid where the algorithm is assigned,
- # to associate with \a srcV1 (optional)
- # @param srcV2 is vertex of \a solid to associate with \a tgtV1 (optional)
- # @param tgtV2 is vertex of \a the solid where the algorithm is assigned,
- # to associate with \a srcV2 (optional)
- #
- # Note: association vertices must belong to one edge of a solid
- def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0, srcV2=0, tgtV2=0):
- hyp = self.Hypothesis("ProjectionSource3D")
- hyp.SetSource3DShape( solid )
- if not mesh is None and isinstance(mesh, Mesh):
- mesh = mesh.GetMesh()
- hyp.SetSourceMesh( mesh )
- hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
- return hyp
-
-
-# Public class: Mesh_Prism
-# ------------------------
-
-## Class to define a 3D extrusion algorithm
-#
-# More details.
-class Mesh_Prism3D(Mesh_Algorithm):
-
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- self.Create(mesh, geom, "Prism_3D")
-
-# Public class: Mesh_RadialPrism
-# -------------------------------
-
-## Class to define a Radial Prism 3D algorithm
-#
-# More details.
-class Mesh_RadialPrism3D(Mesh_Algorithm):
-
- ## Private constructor.
- def __init__(self, mesh, geom=0):
- self.Create(mesh, geom, "RadialPrism_3D")
- self.distribHyp = self.Hypothesis( "LayerDistribution" )
- self.nbLayers = None
-
- ## Return 3D hypothesis holding the 1D one
- def Get3DHypothesis(self):
- return self.distribHyp
-
- ## Private method creating 1D hypothes and storing it in the LayerDistribution
- # hypothes. Returns the created hypothes
- def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
- if not self.nbLayers is None:
- self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
- self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
- study = GetCurrentStudy() # prevent publishing of own 1D hypothesis
- hyp = smesh.CreateHypothesis(hypType, so)
- SetCurrentStudy( study ) # anable publishing
- self.distribHyp.SetLayerDistribution( hyp )
- return hyp
-
- ## Define "NumberOfLayers" hypothesis, specifying a number of layers of
- # prisms to build between the inner and outer shells
- def NumberOfLayers(self, n ):
- self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
- self.nbLayers = self.Hypothesis("NumberOfLayers")
- self.nbLayers.SetNumberOfLayers( n )
- return self.nbLayers
-
- ## Define "LocalLength" hypothesis, specifying segment length
- # to build between the inner and outer shells
- # @param l for the length of segments
- def LocalLength(self, l):
- hyp = self.OwnHypothesis("LocalLength", [l])
- hyp.SetLength(l)
- return hyp
-
- ## Define "NumberOfSegments" hypothesis, specifying a number of layers of
- # prisms to build between the inner and outer shells
- # @param n for the number of segments
- # @param s for the scale factor (optional)
- def NumberOfSegments(self, n, s=[]):
- if s == []:
- hyp = self.OwnHypothesis("NumberOfSegments", [n])
- else:
- hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
- hyp.SetDistrType( 1 )
- hyp.SetScaleFactor(s)
- hyp.SetNumberOfSegments(n)
- return hyp
-
- ## Define "Arithmetic1D" hypothesis, specifying distribution of segments
- # to build between the inner and outer shells as arithmetic length increasing
- # @param start for the length of the first segment
- # @param end for the length of the last segment
- def Arithmetic1D(self, start, end):
- hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
- hyp.SetLength(start, 1)
- hyp.SetLength(end , 0)
- return hyp
-
- ## Define "StartEndLength" hypothesis, specifying distribution of segments
- # to build between the inner and outer shells as geometric length increasing
- # @param start for the length of the first segment
- # @param end for the length of the last segment
- def StartEndLength(self, start, end):
- hyp = self.OwnHypothesis("StartEndLength", [start, end])
- hyp.SetLength(start, 1)
- hyp.SetLength(end , 0)
- return hyp
-
- ## Define "AutomaticLength" hypothesis, specifying number of segments
- # to build between the inner and outer shells
- # @param fineness for the fineness [0-1]
- def AutomaticLength(self, fineness=0):
- hyp = self.OwnHypothesis("AutomaticLength")
- hyp.SetFineness( fineness )
- return hyp
-
-
-# Public class: Mesh
-# ==================
-
-## Class to define a mesh
-#
-# The class contains mesh shape, SMESH_Mesh, SMESH_MeshEditor
-# More details.
-class Mesh:
-
- geom = 0
- mesh = 0
- editor = 0
-
- ## Constructor
- #
- # Creates mesh on the shape \a geom(or the empty mesh if geom equal to 0),
- # sets GUI name of this mesh to \a name.
- # @param obj Shape to be meshed or SMESH_Mesh object
- # @param name Study name of the mesh
- def __init__(self, obj=0, name=0):
- if obj is None:
- obj = 0
- if obj != 0:
- if isinstance(obj, geompy.GEOM._objref_GEOM_Object):
- self.geom = obj
- self.mesh = smesh.CreateMesh(self.geom)
- elif isinstance(obj, SMESH._objref_SMESH_Mesh):
- self.SetMesh(obj)
- else:
- self.mesh = smesh.CreateEmptyMesh()
- if name != 0:
- SetName(self.mesh, name)
- elif obj != 0:
- SetName(self.mesh, GetName(obj))
-
- self.editor = self.mesh.GetMeshEditor()
-
- ## Method that inits the Mesh object from SMESH_Mesh interface
- # @param theMesh is SMESH_Mesh object
- def SetMesh(self, theMesh):
- self.mesh = theMesh
- self.geom = self.mesh.GetShapeToMesh()
-
- ## Method that returns the mesh
- # @return SMESH_Mesh object
- def GetMesh(self):
- return self.mesh
-
- ## Get mesh name
- def GetName(self):
- name = GetName(self.GetMesh())
- return name
-
- ## Set name to mesh
- def SetName(self, name):
- SetName(self.GetMesh(), name)
-
- ## Get the subMesh object associated to a subShape. The subMesh object
- # gives access to nodes and elements IDs.
- # \n SubMesh will be used instead of SubShape in a next idl version to
- # adress a specific subMesh...
- def GetSubMesh(self, theSubObject, name):
- submesh = self.mesh.GetSubMesh(theSubObject, name)
- return submesh
-
- ## Method that returns the shape associated to the mesh
- # @return GEOM_Object
- def GetShape(self):
- return self.geom
-
- ## Method that associates given shape to the mesh(entails the mesh recreation)
- # @param geom shape to be meshed(GEOM_Object)
- def SetShape(self, geom):
- self.mesh = smesh.CreateMesh(geom)
-
- ## Return true if hypotheses are defined well
- # @param theMesh is an instance of Mesh class
- # @param theSubObject subshape of a mesh shape
- def IsReadyToCompute(self, theSubObject):
- return smesh.IsReadyToCompute(self.mesh, theSubObject)
-
- ## Return errors of hypotheses definintion
- # error list is empty if everything is OK
- # @param theMesh is an instance of Mesh class
- # @param theSubObject subshape of a mesh shape
- # @return a list of errors
- def GetAlgoState(self, theSubObject):
- return smesh.GetAlgoState(self.mesh, theSubObject)
-
- ## Return geometrical object the given element is built on.
- # The returned geometrical object, if not nil, is either found in the
- # study or is published by this method with the given name
- # @param theMesh is an instance of Mesh class
- # @param theElementID an id of the mesh element
- # @param theGeomName user defined name of geometrical object
- # @return GEOM::GEOM_Object instance
- def GetGeometryByMeshElement(self, theElementID, theGeomName):
- return smesh.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
-
- ## Returns mesh dimension depending on shape one
- def MeshDimension(self):
- shells = geompy.SubShapeAllIDs( self.geom, geompy.ShapeType["SHELL"] )
- if len( shells ) > 0 :
- return 3
- elif geompy.NumberOfFaces( self.geom ) > 0 :
- return 2
- elif geompy.NumberOfEdges( self.geom ) > 0 :
- return 1
- else:
- return 0;
- pass
-
- ## Creates a segment discretization 1D algorithm.
- # If the optional \a algo parameter is not sets, this algorithm is REGULAR.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param algo values are smesh.REGULAR or smesh.PYTHON for discretization via python function
- # @param geom If defined, subshape to be meshed
- def Segment(self, algo=REGULAR, geom=0):
- ## if Segment(geom) is called by mistake
- if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
- algo, geom = geom, algo
- pass
- if algo == REGULAR:
- return Mesh_Segment(self, geom)
- elif algo == PYTHON:
- return Mesh_Segment_Python(self, geom)
- elif algo == COMPOSITE:
- return Mesh_CompositeSegment(self, geom)
- else:
- return Mesh_Segment(self, geom)
-
- ## Creates a triangle 2D algorithm for faces.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param algo values are: smesh.MEFISTO or smesh.NETGEN
- # @param geom If defined, subshape to be meshed
- def Triangle(self, algo=MEFISTO, geom=0):
- ## if Triangle(geom) is called by mistake
- if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
- geom = algo
- algo = MEFISTO
-
- return Mesh_Triangle(self, algo, geom)
-
- ## Creates a quadrangle 2D algorithm for faces.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
- def Quadrangle(self, geom=0):
- return Mesh_Quadrangle(self, geom)
-
- ## Creates a tetrahedron 3D algorithm for solids.
- # The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.FULL_NETGEN
- # @param geom If defined, subshape to be meshed
- def Tetrahedron(self, algo=NETGEN, geom=0):
- ## if Tetrahedron(geom) is called by mistake
- if ( isinstance( algo, geompy.GEOM._objref_GEOM_Object)):
- algo, geom = geom, algo
- pass
- return Mesh_Tetrahedron(self, algo, geom)
-
- ## Creates a hexahedron 3D algorithm for solids.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
- ## def Hexahedron(self, geom=0):
- ## return Mesh_Hexahedron(self, geom)
- def Hexahedron(self, algo=Hexa, geom=0):
- ## if Hexahedron(geom, algo) or Hexahedron(geom) is called by mistake
- if ( isinstance(algo, geompy.GEOM._objref_GEOM_Object) ):
- if geom in [Hexa, Hexotic]: algo, geom = geom, algo
- elif geom == 0: algo, geom = Hexa, algo
- return Mesh_Hexahedron(self, algo, geom)
-
- ## Deprecated, only for compatibility!
- def Netgen(self, is3D, geom=0):
- return Mesh_Netgen(self, is3D, geom)
-
- ## Creates a projection 1D algorithm for edges.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
- def Projection1D(self, geom=0):
- return Mesh_Projection1D(self, geom)
-
- ## Creates a projection 2D algorithm for faces.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
- def Projection2D(self, geom=0):
- return Mesh_Projection2D(self, geom)
-
- ## Creates a projection 3D algorithm for solids.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
- def Projection3D(self, geom=0):
- return Mesh_Projection3D(self, geom)
-
- ## Creates a 3D extrusion (Prism 3D) or RadialPrism 3D algorithm for solids.
- # If the optional \a geom parameter is not sets, this algorithm is global.
- # Otherwise, this algorithm define a submesh based on \a geom subshape.
- # @param geom If defined, subshape to be meshed
- def Prism(self, geom=0):
- shape = geom
- if shape==0:
- shape = self.geom
- nbSolids = len( geompy.SubShapeAll( shape, geompy.ShapeType["SOLID"] ))
- nbShells = len( geompy.SubShapeAll( shape, geompy.ShapeType["SHELL"] ))
- if nbSolids == 0 or nbSolids == nbShells:
- return Mesh_Prism3D(self, geom)
- return Mesh_RadialPrism3D(self, geom)
-
- ## Compute the mesh and return the status of the computation
- def Compute(self, geom=0):
- if geom == 0 or not isinstance(geom, geompy.GEOM._objref_GEOM_Object):
- if self.geom == 0:
- print "Compute impossible: mesh is not constructed on geom shape."
- return 0
- else:
- geom = self.geom
- ok = False
- try:
- ok = smesh.Compute(self.mesh, geom)
- except SALOME.SALOME_Exception, ex:
- print "Mesh computation failed, exception cought:"
- print " ", ex.details.text
- except:
- import traceback
- print "Mesh computation failed, exception cought:"
- traceback.print_exc()
- if not ok:
- errors = smesh.GetAlgoState( self.mesh, geom )
- allReasons = ""
- for err in errors:
- if err.isGlobalAlgo:
- glob = " global "
- else:
- glob = " local "
- pass
- dim = str(err.algoDim)
- if err.name == MISSING_ALGO:
- reason = glob + dim + "D algorithm is missing"
- elif err.name == MISSING_HYPO:
- name = '"' + err.algoName + '"'
- reason = glob + dim + "D algorithm " + name + " misses " + dim + "D hypothesis"
- elif err.name == NOT_CONFORM_MESH:
- reason = "Global \"Not Conform mesh allowed\" hypothesis is missing"
- elif err.name == BAD_PARAM_VALUE:
- name = '"' + err.algoName + '"'
- reason = "Hypothesis of" + glob + dim + "D algorithm " + name +\
- " has a bad parameter value"
- else:
- reason = "For unknown reason."+\
- " Revise Mesh.Compute() implementation in smesh.py!"
- pass
- if allReasons != "":
- allReasons += "\n"
- pass
- allReasons += reason
- pass
- if allReasons != "":
- print '"' + GetName(self.mesh) + '"',"has not been computed:"
- print allReasons
- else:
- print '"' + GetName(self.mesh) + '"',"has not been computed."
- pass
- pass
- if salome.sg.hasDesktop():
- smeshgui = salome.ImportComponentGUI("SMESH")
- smeshgui.Init(salome.myStudyId)
- smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) )
- salome.sg.updateObjBrowser(1)
- pass
- return ok
-
- ## Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
- # The parameter \a fineness [0,-1] defines mesh fineness
- def AutomaticTetrahedralization(self, fineness=0):
- dim = self.MeshDimension()
- # assign hypotheses
- self.RemoveGlobalHypotheses()
- self.Segment().AutomaticLength(fineness)
- if dim > 1 :
- self.Triangle().LengthFromEdges()
- pass
- if dim > 2 :
- self.Tetrahedron(NETGEN)
- pass
- return self.Compute()
-
- ## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
- # The parameter \a fineness [0,-1] defines mesh fineness
- def AutomaticHexahedralization(self, fineness=0):
- dim = self.MeshDimension()
- # assign hypotheses
- self.RemoveGlobalHypotheses()
- self.Segment().AutomaticLength(fineness)
- if dim > 1 :
- self.Quadrangle()
- pass
- if dim > 2 :
- self.Hexahedron()
- pass
- return self.Compute()
-
- ## Assign hypothesis
- # @param hyp is a hypothesis to assign
- # @param geom is subhape of mesh geometry
- def AddHypothesis(self, hyp, geom=0 ):
- if isinstance( hyp, Mesh_Algorithm ):
- hyp = hyp.GetAlgorithm()
- pass
- if not geom:
- geom = self.geom
- pass
- status = self.mesh.AddHypothesis(geom, hyp)
- isAlgo = ( hyp._narrow( SMESH.SMESH_Algo ) is not None )
- TreatHypoStatus( status, GetName( hyp ), GetName( geom ), isAlgo )
- return status
-
- ## Get the list of hypothesis added on a geom
- # @param geom is subhape of mesh geometry
- def GetHypothesisList(self, geom):
- return self.mesh.GetHypothesisList( geom )
-
- ## Removes all global hypotheses
- def RemoveGlobalHypotheses(self):
- current_hyps = self.mesh.GetHypothesisList( self.geom )
- for hyp in current_hyps:
- self.mesh.RemoveHypothesis( self.geom, hyp )
- pass
- pass
-
- ## Create a mesh group based on geometric object \a grp
- # and give a \a name, \n if this parameter is not defined
- # the name is the same as the geometric group name \n
- # Note: Works like GroupOnGeom().
- # @param grp is a geometric group, a vertex, an edge, a face or a solid
- # @param name is the name of the mesh group
- # @return SMESH_GroupOnGeom
- def Group(self, grp, name=""):
- return self.GroupOnGeom(grp, name)
-
- ## Deprecated, only for compatibility! Please, use ExportMED() method instead.
- # Export the mesh in a file with the MED format and choice the \a version of MED format
- # @param f is the file name
- # @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
- def ExportToMED(self, f, version, opt=0):
- self.mesh.ExportToMED(f, opt, version)
-
- ## Export the mesh in a file with the MED format
- # @param f is the file name
- # @param auto_groups boolean parameter for creating/not creating
- # the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
- # the typical use is auto_groups=false.
- # @param version MED format version(MED_V2_1 or MED_V2_2)
- def ExportMED(self, f, auto_groups=0, version=MED_V2_2):
- self.mesh.ExportToMED(f, auto_groups, version)
-
- ## Export the mesh in a file with the DAT format
- # @param f is the file name
- def ExportDAT(self, f):
- self.mesh.ExportDAT(f)
-
- ## Export the mesh in a file with the UNV format
- # @param f is the file name
- def ExportUNV(self, f):
- self.mesh.ExportUNV(f)
-
- ## Export the mesh in a file with the STL format
- # @param f is the file name
- # @param ascii defined the kind of file contents
- def ExportSTL(self, f, ascii=1):
- self.mesh.ExportSTL(f, ascii)
-
-
- # Operations with groups:
- # ----------------------
-
- ## Creates an empty mesh group
- # @param elementType is the type of elements in the group
- # @param name is the name of the mesh group
- # @return SMESH_Group
- def CreateEmptyGroup(self, elementType, name):
- return self.mesh.CreateGroup(elementType, name)
-
- ## Creates a mesh group based on geometric object \a grp
- # and give a \a name, \n if this parameter is not defined
- # the name is the same as the geometric group name
- # @param grp is a geometric group, a vertex, an edge, a face or a solid
- # @param name is the name of the mesh group
- # @return SMESH_GroupOnGeom
- def GroupOnGeom(self, grp, name="", type=None):
- if name == "":
- name = grp.GetName()
-
- if type == None:
- tgeo = str(grp.GetShapeType())
- if tgeo == "VERTEX":
- type = NODE
- elif tgeo == "EDGE":
- type = EDGE
- elif tgeo == "FACE":
- type = FACE
- elif tgeo == "SOLID":
- type = VOLUME
- elif tgeo == "SHELL":
- type = VOLUME
- elif tgeo == "COMPOUND":
- if len( geompy.GetObjectIDs( grp )) == 0:
- print "Mesh.Group: empty geometric group", GetName( grp )
- return 0
- tgeo = geompy.GetType(grp)
- if tgeo == geompy.ShapeType["VERTEX"]:
- type = NODE
- elif tgeo == geompy.ShapeType["EDGE"]:
- type = EDGE
- elif tgeo == geompy.ShapeType["FACE"]:
- type = FACE
- elif tgeo == geompy.ShapeType["SOLID"]:
- type = VOLUME
-
- if type == None:
- print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
- return 0
- else:
- return self.mesh.CreateGroupFromGEOM(type, name, grp)
-
- ## Create a mesh group by the given ids of elements
- # @param groupName is the name of the mesh group
- # @param elementType is the type of elements in the group
- # @param elemIDs is the list of ids
- # @return SMESH_Group
- def MakeGroupByIds(self, groupName, elementType, elemIDs):
- group = self.mesh.CreateGroup(elementType, groupName)
- group.Add(elemIDs)
- return group
-
- ## Create a mesh group by the given conditions
- # @param groupName is the name of the mesh group
- # @param elementType is the type of elements in the group
- # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
- # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
- # @param Treshold is threshold value (range of id ids as string, shape, numeric)
- # @param UnaryOp is FT_LogicalNOT or FT_Undefined
- # @return SMESH_Group
- def MakeGroup(self,
- groupName,
- elementType,
- CritType=FT_Undefined,
- Compare=FT_EqualTo,
- Treshold="",
- UnaryOp=FT_Undefined):
- aCriterion = GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
- group = self.MakeGroupByCriterion(groupName, aCriterion)
- return group
-
- ## Create a mesh group by the given criterion
- # @param groupName is the name of the mesh group
- # @param Criterion is the instance of Criterion class
- # @return SMESH_Group
- def MakeGroupByCriterion(self, groupName, Criterion):
- aFilterMgr = smesh.CreateFilterManager()
- aFilter = aFilterMgr.CreateFilter()
- aCriteria = []
- aCriteria.append(Criterion)
- aFilter.SetCriteria(aCriteria)
- group = self.MakeGroupByFilter(groupName, aFilter)
- return group
-
- ## Create a mesh group by the given criteria(list of criterions)
- # @param groupName is the name of the mesh group
- # @param Criteria is the list of criterions
- # @return SMESH_Group
- def MakeGroupByCriteria(self, groupName, theCriteria):
- aFilterMgr = smesh.CreateFilterManager()
- aFilter = aFilterMgr.CreateFilter()
- aFilter.SetCriteria(theCriteria)
- group = self.MakeGroupByFilter(groupName, aFilter)
- return group
-
- ## Create a mesh group by the given filter
- # @param groupName is the name of the mesh group
- # @param Criterion is the instance of Filter class
- # @return SMESH_Group
- def MakeGroupByFilter(self, groupName, theFilter):
- anIds = theFilter.GetElementsId(self.mesh)
- anElemType = theFilter.GetElementType()
- group = self.MakeGroupByIds(groupName, anElemType, anIds)
- return group
-
- ## Pass mesh elements through the given filter and return ids
- # @param theFilter is SMESH_Filter
- # @return list of ids
- def GetIdsFromFilter(self, theFilter):
- return theFilter.GetElementsId(self.mesh)
-
- ## Verify whether 2D mesh element has free edges(edges connected to one face only)\n
- # Returns list of special structures(borders).
- # @return list of SMESH.FreeEdges.Border structure: edge id and two its nodes ids.
- def GetFreeBorders(self):
- aFilterMgr = smesh.CreateFilterManager()
- aPredicate = aFilterMgr.CreateFreeEdges()
- aPredicate.SetMesh(self.mesh)
- aBorders = aPredicate.GetBorders()
- return aBorders
-
- ## Remove a group
- def RemoveGroup(self, group):
- self.mesh.RemoveGroup(group)
-
- ## Remove group with its contents
- def RemoveGroupWithContents(self, group):
- self.mesh.RemoveGroupWithContents(group)
-
- ## Get the list of groups existing in the mesh
- def GetGroups(self):
- return self.mesh.GetGroups()
-
- ## Get the list of names of groups existing in the mesh
- def GetGroupNames(self):
- groups = self.GetGroups()
- names = []
- for group in groups:
- names.append(group.GetName())
- return names
-
- ## Union of two groups
- # New group is created. All mesh elements that are
- # present in initial groups are added to the new one
- def UnionGroups(self, group1, group2, name):
- return self.mesh.UnionGroups(group1, group2, name)
-
- ## Intersection of two groups
- # New group is created. All mesh elements that are
- # present in both initial groups are added to the new one.
- def IntersectGroups(self, group1, group2, name):
- return self.mesh.IntersectGroups(group1, group2, name)
-
- ## Cut of two groups
- # New group is created. All mesh elements that are present in
- # main group but do not present in tool group are added to the new one
- def CutGroups(self, mainGroup, toolGroup, name):
- return self.mesh.CutGroups(mainGroup, toolGroup, name)
-
-
- # Get some info about mesh:
- # ------------------------
-
- ## Get the log of nodes and elements added or removed since previous
- # clear of the log.
- # @param clearAfterGet log is emptied after Get (safe if concurrents access)
- # @return list of log_block structures:
- # commandType
- # number
- # coords
- # indexes
- def GetLog(self, clearAfterGet):
- return self.mesh.GetLog(clearAfterGet)
-
- ## Clear the log of nodes and elements added or removed since previous
- # clear. Must be used immediately after GetLog if clearAfterGet is false.
- def ClearLog(self):
- self.mesh.ClearLog()
-
- ## Get the internal Id
- def GetId(self):
- return self.mesh.GetId()
-
- ## Get the study Id
- def GetStudyId(self):
- return self.mesh.GetStudyId()
-
- ## Check group names for duplications.
- # Consider maximum group name length stored in MED file.
- def HasDuplicatedGroupNamesMED(self):
- return self.mesh.GetStudyId()
-
- ## Obtain instance of SMESH_MeshEditor
- def GetMeshEditor(self):
- return self.mesh.GetMeshEditor()
-
- ## Get MED Mesh
- def GetMEDMesh(self):
- return self.mesh.GetMEDMesh()
-
-
- # Get informations about mesh contents:
- # ------------------------------------
-
- ## Returns number of nodes in mesh
- def NbNodes(self):
- return self.mesh.NbNodes()
-
- ## Returns number of elements in mesh
- def NbElements(self):
- return self.mesh.NbElements()
-
- ## Returns number of edges in mesh
- def NbEdges(self):
- return self.mesh.NbEdges()
-
- ## Returns number of edges with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbEdgesOfOrder(self, elementOrder):
- return self.mesh.NbEdgesOfOrder(elementOrder)
-
- ## Returns number of faces in mesh
- def NbFaces(self):
- return self.mesh.NbFaces()
-
- ## Returns number of faces with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbFacesOfOrder(self, elementOrder):
- return self.mesh.NbFacesOfOrder(elementOrder)
-
- ## Returns number of triangles in mesh
- def NbTriangles(self):
- return self.mesh.NbTriangles()
-
- ## Returns number of triangles with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbTrianglesOfOrder(self, elementOrder):
- return self.mesh.NbTrianglesOfOrder(elementOrder)
-
- ## Returns number of quadrangles in mesh
- def NbQuadrangles(self):
- return self.mesh.NbQuadrangles()
-
- ## Returns number of quadrangles with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbQuadranglesOfOrder(self, elementOrder):
- return self.mesh.NbQuadranglesOfOrder(elementOrder)
-
- ## Returns number of polygons in mesh
- def NbPolygons(self):
- return self.mesh.NbPolygons()
-
- ## Returns number of volumes in mesh
- def NbVolumes(self):
- return self.mesh.NbVolumes()
-
- ## Returns number of volumes with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbVolumesOfOrder(self, elementOrder):
- return self.mesh.NbVolumesOfOrder(elementOrder)
-
- ## Returns number of tetrahedrons in mesh
- def NbTetras(self):
- return self.mesh.NbTetras()
-
- ## Returns number of tetrahedrons with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbTetrasOfOrder(self, elementOrder):
- return self.mesh.NbTetrasOfOrder(elementOrder)
-
- ## Returns number of hexahedrons in mesh
- def NbHexas(self):
- return self.mesh.NbHexas()
-
- ## Returns number of hexahedrons with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbHexasOfOrder(self, elementOrder):
- return self.mesh.NbHexasOfOrder(elementOrder)
-
- ## Returns number of pyramids in mesh
- def NbPyramids(self):
- return self.mesh.NbPyramids()
-
- ## Returns number of pyramids with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbPyramidsOfOrder(self, elementOrder):
- return self.mesh.NbPyramidsOfOrder(elementOrder)
-
- ## Returns number of prisms in mesh
- def NbPrisms(self):
- return self.mesh.NbPrisms()
-
- ## Returns number of prisms with given order in mesh
- # @param elementOrder is order of elements:
- # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
- def NbPrismsOfOrder(self, elementOrder):
- return self.mesh.NbPrismsOfOrder(elementOrder)
-
- ## Returns number of polyhedrons in mesh
- def NbPolyhedrons(self):
- return self.mesh.NbPolyhedrons()
-
- ## Returns number of submeshes in mesh
- def NbSubMesh(self):
- return self.mesh.NbSubMesh()
-
- ## Returns list of mesh elements ids
- def GetElementsId(self):
- return self.mesh.GetElementsId()
-
- ## Returns list of ids of mesh elements with given type
- # @param elementType is required type of elements
- def GetElementsByType(self, elementType):
- return self.mesh.GetElementsByType(elementType)
-
- ## Returns list of mesh nodes ids
- def GetNodesId(self):
- return self.mesh.GetNodesId()
-
- # Get informations about mesh elements:
- # ------------------------------------
-
- ## Returns type of mesh element
- def GetElementType(self, id, iselem):
- return self.mesh.GetElementType(id, iselem)
-
- ## Returns list of submesh elements ids
- # @param shapeID is geom object(subshape) IOR
- def GetSubMeshElementsId(self, shapeID):
- return self.mesh.GetSubMeshElementsId(shapeID)
-
- ## Returns list of submesh nodes ids
- # @param shapeID is geom object(subshape) IOR
- def GetSubMeshNodesId(self, shapeID, all):
- return self.mesh.GetSubMeshNodesId(shapeID, all)
-
- ## Returns list of ids of submesh elements with given type
- # @param shapeID is geom object(subshape) IOR
- def GetSubMeshElementType(self, shapeID):
- return self.mesh.GetSubMeshElementType(shapeID)
-
- ## Get mesh description
- def Dump(self):
- return self.mesh.Dump()
-
-
- # Get information about nodes and elements of mesh by its ids:
- # -----------------------------------------------------------
-
- ## Get XYZ coordinates of node as list of double
- # \n If there is not node for given ID - returns empty list
- def GetNodeXYZ(self, id):
- return self.mesh.GetNodeXYZ(id)
-
- ## For given node returns list of IDs of inverse elements
- # \n If there is not node for given ID - returns empty list
- def GetNodeInverseElements(self, id):
- return self.mesh.GetNodeInverseElements(id)
-
- ## If given element is node returns IDs of shape from position
- # \n If there is not node for given ID - returns -1
- def GetShapeID(self, id):
- return self.mesh.GetShapeID(id)
-
- ## For given element returns ID of result shape after
- # FindShape() from SMESH_MeshEditor
- # \n If there is not element for given ID - returns -1
- def GetShapeIDForElem(id):
- return self.mesh.GetShapeIDForElem(id)
-
- ## Returns number of nodes for given element
- # \n If there is not element for given ID - returns -1
- def GetElemNbNodes(self, id):
- return self.mesh.GetElemNbNodes(id)
-
- ## Returns ID of node by given index for given element
- # \n If there is not element for given ID - returns -1
- # \n If there is not node for given index - returns -2
- def GetElemNode(self, id, index):
- return self.mesh.GetElemNode(id, index)
-
- ## Returns true if given node is medium node
- # in given quadratic element
- def IsMediumNode(self, elementID, nodeID):
- return self.mesh.IsMediumNode(elementID, nodeID)
-
- ## Returns true if given node is medium node
- # in one of quadratic elements
- def IsMediumNodeOfAnyElem(self, nodeID, elementType):
- return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
-
- ## Returns number of edges for given element
- def ElemNbEdges(self, id):
- return self.mesh.ElemNbEdges(id)
-
- ## Returns number of faces for given element
- def ElemNbFaces(self, id):
- return self.mesh.ElemNbFaces(id)
-
- ## Returns true if given element is polygon
- def IsPoly(self, id):
- return self.mesh.IsPoly(id)
-
- ## Returns true if given element is quadratic
- def IsQuadratic(self, id):
- return self.mesh.IsQuadratic(id)
-
- ## Returns XYZ coordinates of bary center for given element
- # as list of double
- # \n If there is not element for given ID - returns empty list
- def BaryCenter(self, id):
- return self.mesh.BaryCenter(id)
-
-
- # Mesh edition (SMESH_MeshEditor functionality):
- # ---------------------------------------------
-
- ## Removes elements from mesh by ids
- # @param IDsOfElements is list of ids of elements to remove
- def RemoveElements(self, IDsOfElements):
- return self.editor.RemoveElements(IDsOfElements)
-
- ## Removes nodes from mesh by ids
- # @param IDsOfNodes is list of ids of nodes to remove
- def RemoveNodes(self, IDsOfNodes):
- return self.editor.RemoveNodes(IDsOfNodes)
-
- ## Add node to mesh by coordinates
- def AddNode(self, x, y, z):
- return self.editor.AddNode( x, y, z)
-
-
- ## Create edge both similar and quadratic (this is determed
- # by number of given nodes).
- # @param IdsOfNodes List of node IDs for creation of element.
- # Needed order of nodes in this list corresponds to description
- # of MED. \n This description is located by the following link:
- # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
- def AddEdge(self, IDsOfNodes):
- return self.editor.AddEdge(IDsOfNodes)
-
- ## Create face both similar and quadratic (this is determed
- # by number of given nodes).
- # @param IdsOfNodes List of node IDs for creation of element.
- # Needed order of nodes in this list corresponds to description
- # of MED. \n This description is located by the following link:
- # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
- def AddFace(self, IDsOfNodes):
- return self.editor.AddFace(IDsOfNodes)
-
- ## Add polygonal face to mesh by list of nodes ids
- def AddPolygonalFace(self, IdsOfNodes):
- return self.editor.AddPolygonalFace(IdsOfNodes)
-
- ## Create volume both similar and quadratic (this is determed
- # by number of given nodes).
- # @param IdsOfNodes List of node IDs for creation of element.
- # Needed order of nodes in this list corresponds to description
- # of MED. \n This description is located by the following link:
- # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
- def AddVolume(self, IDsOfNodes):
- return self.editor.AddVolume(IDsOfNodes)
-
- ## Create volume of many faces, giving nodes for each face.
- # @param IdsOfNodes List of node IDs for volume creation face by face.
- # @param Quantities List of integer values, Quantities[i]
- # gives quantity of nodes in face number i.
- def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
- return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
-
- ## Create volume of many faces, giving IDs of existing faces.
- # @param IdsOfFaces List of face IDs for volume creation.
- #
- # Note: The created volume will refer only to nodes
- # of the given faces, not to the faces itself.
- def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
- return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
-
- ## Move node with given id
- # @param NodeID id of the node
- # @param x new X coordinate
- # @param y new Y coordinate
- # @param z new Z coordinate
- def MoveNode(self, NodeID, x, y, z):
- return self.editor.MoveNode(NodeID, x, y, z)
-
- ## Find a node closest to a point
- # @param x X coordinate of a point
- # @param y Y coordinate of a point
- # @param z Z coordinate of a point
- # @return id of a node
- def FindNodeClosestTo(self, x, y, z):
- preview = self.mesh.GetMeshEditPreviewer()
- return preview.MoveClosestNodeToPoint(x, y, z, -1)
-
- ## Find a node closest to a point and move it to a point location
- # @param x X coordinate of a point
- # @param y Y coordinate of a point
- # @param z Z coordinate of a point
- # @return id of a moved node
- def MeshToPassThroughAPoint(self, x, y, z):
- return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
-
- ## Replace two neighbour triangles sharing Node1-Node2 link
- # with ones built on the same 4 nodes but having other common link.
- # @param NodeID1 first node id
- # @param NodeID2 second node id
- # @return false if proper faces not found
- def InverseDiag(self, NodeID1, NodeID2):
- return self.editor.InverseDiag(NodeID1, NodeID2)
-
- ## Replace two neighbour triangles sharing Node1-Node2 link
- # with a quadrangle built on the same 4 nodes.
- # @param NodeID1 first node id
- # @param NodeID2 second node id
- # @return false if proper faces not found
- def DeleteDiag(self, NodeID1, NodeID2):
- return self.editor.DeleteDiag(NodeID1, NodeID2)
-
- ## Reorient elements by ids
- # @param IDsOfElements if undefined reorient all mesh elements
- def Reorient(self, IDsOfElements=None):
- if IDsOfElements == None:
- IDsOfElements = self.GetElementsId()
- return self.editor.Reorient(IDsOfElements)
-
- ## Reorient all elements of the object
- # @param theObject is mesh, submesh or group
- def ReorientObject(self, theObject):
- return self.editor.ReorientObject(theObject)
-
- ## Fuse neighbour triangles into quadrangles.
- # @param IDsOfElements The triangles to be fused,
- # @param theCriterion is FT_...; used to choose a neighbour to fuse with.
- # @param MaxAngle is a max angle between element normals at which fusion
- # is still performed; theMaxAngle is mesured in radians.
- # @return TRUE in case of success, FALSE otherwise.
- def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- return self.editor.TriToQuad(IDsOfElements, GetFunctor(theCriterion), MaxAngle)
-
- ## Fuse neighbour triangles of the object into quadrangles
- # @param theObject is mesh, submesh or group
- # @param theCriterion is FT_...; used to choose a neighbour to fuse with.
- # @param MaxAngle is a max angle between element normals at which fusion
- # is still performed; theMaxAngle is mesured in radians.
- # @return TRUE in case of success, FALSE otherwise.
- def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
- return self.editor.TriToQuadObject(theObject, GetFunctor(theCriterion), MaxAngle)
-
- ## Split quadrangles into triangles.
- # @param IDsOfElements the faces to be splitted.
- # @param theCriterion is FT_...; used to choose a diagonal for splitting.
- # @param @return TRUE in case of success, FALSE otherwise.
- def QuadToTri (self, IDsOfElements, theCriterion):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- return self.editor.QuadToTri(IDsOfElements, GetFunctor(theCriterion))
-
- ## Split quadrangles into triangles.
- # @param theObject object to taking list of elements from, is mesh, submesh or group
- # @param theCriterion is FT_...; used to choose a diagonal for splitting.
- def QuadToTriObject (self, theObject, theCriterion):
- return self.editor.QuadToTriObject(theObject, GetFunctor(theCriterion))
-
- ## Split quadrangles into triangles.
- # @param theElems The faces to be splitted
- # @param the13Diag is used to choose a diagonal for splitting.
- # @return TRUE in case of success, FALSE otherwise.
- def SplitQuad (self, IDsOfElements, Diag13):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- return self.editor.SplitQuad(IDsOfElements, Diag13)
-
- ## Split quadrangles into triangles.
- # @param theObject is object to taking list of elements from, is mesh, submesh or group
- def SplitQuadObject (self, theObject, Diag13):
- return self.editor.SplitQuadObject(theObject, Diag13)
-
- ## Find better splitting of the given quadrangle.
- # @param IDOfQuad ID of the quadrangle to be splitted.
- # @param theCriterion is FT_...; a criterion to choose a diagonal for splitting.
- # @return 1 if 1-3 diagonal is better, 2 if 2-4
- # diagonal is better, 0 if error occurs.
- def BestSplit (self, IDOfQuad, theCriterion):
- return self.editor.BestSplit(IDOfQuad, GetFunctor(theCriterion))
-
- ## Split quafrangle faces near triangular facets of volumes
- #
- def SplitQuadsNearTriangularFacets(self):
- faces_array = self.GetElementsByType(SMESH.FACE)
- for face_id in faces_array:
- if self.GetElemNbNodes(face_id) == 4: # quadrangle
- quad_nodes = self.mesh.GetElemNodes(face_id)
- node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1])
- isVolumeFound = False
- for node1_elem in node1_elems:
- if not isVolumeFound:
- if self.GetElementType(node1_elem, True) == SMESH.VOLUME:
- nb_nodes = self.GetElemNbNodes(node1_elem)
- if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism
- volume_elem = node1_elem
- volume_nodes = self.mesh.GetElemNodes(volume_elem)
- if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2
- if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4
- isVolumeFound = True
- if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3
- self.SplitQuad([face_id], False) # diagonal 2-4
- elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4
- isVolumeFound = True
- self.SplitQuad([face_id], True) # diagonal 1-3
- elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2
- if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2
- isVolumeFound = True
- self.SplitQuad([face_id], True) # diagonal 1-3
-
- ## @brief Split hexahedrons into tetrahedrons.
- #
- # Use pattern mapping functionality for splitting.
- # @param theObject object to take list of hexahedrons from; is mesh, submesh or group.
- # @param theNode000,theNode001 is in range [0,7]; give an orientation of the
- # pattern relatively each hexahedron: the (0,0,0) key-point of pattern
- # will be mapped into <theNode000>-th node of each volume, the (0,0,1)
- # key-point will be mapped into <theNode001>-th node of each volume.
- # The (0,0,0) key-point of used pattern corresponds to not split corner.
- # @return TRUE in case of success, FALSE otherwise.
- def SplitHexaToTetras (self, theObject, theNode000, theNode001):
- # Pattern: 5.---------.6
- # /|#* /|
- # / | #* / |
- # / | # * / |
- # / | # /* |
- # (0,0,1) 4.---------.7 * |
- # |#* |1 | # *|
- # | # *.----|---#.2
- # | #/ * | /
- # | /# * | /
- # | / # * | /
- # |/ #*|/
- # (0,0,0) 0.---------.3
- pattern_tetra = "!!! Nb of points: \n 8 \n\
- !!! Points: \n\
- 0 0 0 !- 0 \n\
- 0 1 0 !- 1 \n\
- 1 1 0 !- 2 \n\
- 1 0 0 !- 3 \n\
- 0 0 1 !- 4 \n\
- 0 1 1 !- 5 \n\
- 1 1 1 !- 6 \n\
- 1 0 1 !- 7 \n\
- !!! Indices of points of 6 tetras: \n\
- 0 3 4 1 \n\
- 7 4 3 1 \n\
- 4 7 5 1 \n\
- 6 2 5 7 \n\
- 1 5 2 7 \n\
- 2 3 1 7 \n"
-
- pattern = GetPattern()
- isDone = pattern.LoadFromFile(pattern_tetra)
- if not isDone:
- print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
- return isDone
-
- pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
- isDone = pattern.MakeMesh(self.mesh, False, False)
- if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
-
- # split quafrangle faces near triangular facets of volumes
- self.SplitQuadsNearTriangularFacets()
-
- return isDone
-
- ## @brief Split hexahedrons into prisms.
- #
- # Use pattern mapping functionality for splitting.
- # @param theObject object to take list of hexahedrons from; is mesh, submesh or group.
- # @param theNode000,theNode001 is in range [0,7]; give an orientation of the
- # pattern relatively each hexahedron: the (0,0,0) key-point of pattern
- # will be mapped into <theNode000>-th node of each volume, the (0,0,1)
- # key-point will be mapped into <theNode001>-th node of each volume.
- # The edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
- # @param @return TRUE in case of success, FALSE otherwise.
- def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
- # Pattern: 5.---------.6
- # /|# /|
- # / | # / |
- # / | # / |
- # / | # / |
- # (0,0,1) 4.---------.7 |
- # | | | |
- # | 1.----|----.2
- # | / * | /
- # | / * | /
- # | / * | /
- # |/ *|/
- # (0,0,0) 0.---------.3
- pattern_prism = "!!! Nb of points: \n 8 \n\
- !!! Points: \n\
- 0 0 0 !- 0 \n\
- 0 1 0 !- 1 \n\
- 1 1 0 !- 2 \n\
- 1 0 0 !- 3 \n\
- 0 0 1 !- 4 \n\
- 0 1 1 !- 5 \n\
- 1 1 1 !- 6 \n\
- 1 0 1 !- 7 \n\
- !!! Indices of points of 2 prisms: \n\
- 0 1 3 4 5 7 \n\
- 2 3 1 6 7 5 \n"
-
- pattern = GetPattern()
- isDone = pattern.LoadFromFile(pattern_prism)
- if not isDone:
- print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
- return isDone
-
- pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
- isDone = pattern.MakeMesh(self.mesh, False, False)
- if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
-
- # split quafrangle faces near triangular facets of volumes
- self.SplitQuadsNearTriangularFacets()
-
- return isDone
-
- ## Smooth elements
- # @param IDsOfElements list if ids of elements to smooth
- # @param IDsOfFixedNodes list of ids of fixed nodes.
- # Note that nodes built on edges and boundary nodes are always fixed.
- # @param MaxNbOfIterations maximum number of iterations
- # @param MaxAspectRatio varies in range [1.0, inf]
- # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
- def Smooth(self, IDsOfElements, IDsOfFixedNodes,
- MaxNbOfIterations, MaxAspectRatio, Method):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
- MaxNbOfIterations, MaxAspectRatio, Method)
-
- ## Smooth elements belong to given object
- # @param theObject object to smooth
- # @param IDsOfFixedNodes list of ids of fixed nodes.
- # Note that nodes built on edges and boundary nodes are always fixed.
- # @param MaxNbOfIterations maximum number of iterations
- # @param MaxAspectRatio varies in range [1.0, inf]
- # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
- def SmoothObject(self, theObject, IDsOfFixedNodes,
- MaxNbOfIterations, MaxxAspectRatio, Method):
- return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
- MaxNbOfIterations, MaxxAspectRatio, Method)
-
- ## Parametric smooth the given elements
- # @param IDsOfElements list if ids of elements to smooth
- # @param IDsOfFixedNodes list of ids of fixed nodes.
- # Note that nodes built on edges and boundary nodes are always fixed.
- # @param MaxNbOfIterations maximum number of iterations
- # @param MaxAspectRatio varies in range [1.0, inf]
- # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
- def SmoothParametric(IDsOfElements, IDsOfFixedNodes,
- MaxNbOfIterations, MaxAspectRatio, Method):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
- MaxNbOfIterations, MaxAspectRatio, Method)
-
- ## Parametric smooth elements belong to given object
- # @param theObject object to smooth
- # @param IDsOfFixedNodes list of ids of fixed nodes.
- # Note that nodes built on edges and boundary nodes are always fixed.
- # @param MaxNbOfIterations maximum number of iterations
- # @param MaxAspectRatio varies in range [1.0, inf]
- # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
- def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
- MaxNbOfIterations, MaxAspectRatio, Method):
- return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
- MaxNbOfIterations, MaxAspectRatio, Method)
-
- ## Converts all mesh to quadratic one, deletes old elements, replacing
- # them with quadratic ones with the same id.
- def ConvertToQuadratic(self, theForce3d):
- self.editor.ConvertToQuadratic(theForce3d)
-
- ## Converts all mesh from quadratic to ordinary ones,
- # deletes old quadratic elements, \n replacing
- # them with ordinary mesh elements with the same id.
- def ConvertFromQuadratic(self):
- return self.editor.ConvertFromQuadratic()
-
- ## Renumber mesh nodes
- def RenumberNodes(self):
- self.editor.RenumberNodes()
-
- ## Renumber mesh elements
- def RenumberElements(self):
- self.editor.RenumberElements()
-
- ## Generate new elements by rotation of the elements around the axis
- # @param IDsOfElements list of ids of elements to sweep
- # @param Axix axis of rotation, AxisStruct or line(geom object)
- # @param AngleInRadians angle of Rotation
- # @param NbOfSteps number of steps
- # @param Tolerance tolerance
- def RotationSweep(self, IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( Axix, geompy.GEOM._objref_GEOM_Object)):
- Axix = GetAxisStruct(Axix)
- self.editor.RotationSweep(IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance)
-
- ## Generate new elements by rotation of the elements of object around the axis
- # @param theObject object wich elements should be sweeped
- # @param Axix axis of rotation, AxisStruct or line(geom object)
- # @param AngleInRadians angle of Rotation
- # @param NbOfSteps number of steps
- # @param Tolerance tolerance
- def RotationSweepObject(self, theObject, Axix, AngleInRadians, NbOfSteps, Tolerance):
- if ( isinstance( Axix, geompy.GEOM._objref_GEOM_Object)):
- Axix = GetAxisStruct(Axix)
- self.editor.RotationSweepObject(theObject, Axix, AngleInRadians, NbOfSteps, Tolerance)
-
- ## Generate new elements by extrusion of the elements with given ids
- # @param IDsOfElements list of elements ids for extrusion
- # @param StepVector vector, defining the direction and value of extrusion
- # @param NbOfSteps the number of steps
- def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
- StepVector = GetDirStruct(StepVector)
- self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
-
- ## Generate new elements by extrusion of the elements with given ids
- # @param IDsOfElements is ids of elements
- # @param StepVector vector, defining the direction and value of extrusion
- # @param NbOfSteps the number of steps
- # @param ExtrFlags set flags for performing extrusion
- # @param SewTolerance uses for comparing locations of nodes if flag
- # EXTRUSION_FLAG_SEW is set
- def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance):
- if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
- StepVector = GetDirStruct(StepVector)
- self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance)
-
- ## Generate new elements by extrusion of the elements belong to object
- # @param theObject object wich elements should be processed
- # @param StepVector vector, defining the direction and value of extrusion
- # @param NbOfSteps the number of steps
- def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps):
- if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
- StepVector = GetDirStruct(StepVector)
- self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
-
- ## Generate new elements by extrusion of the elements belong to object
- # @param theObject object wich elements should be processed
- # @param StepVector vector, defining the direction and value of extrusion
- # @param NbOfSteps the number of steps
- def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps):
- if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
- StepVector = GetDirStruct(StepVector)
- self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
-
- ## Generate new elements by extrusion of the elements belong to object
- # @param theObject object wich elements should be processed
- # @param StepVector vector, defining the direction and value of extrusion
- # @param NbOfSteps the number of steps
- def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps):
- if ( isinstance( StepVector, geompy.GEOM._objref_GEOM_Object)):
- StepVector = GetDirStruct(StepVector)
- self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
-
- ## Generate new elements by extrusion of the given elements
- # A path of extrusion must be a meshed edge.
- # @param IDsOfElements is ids of elements
- # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
- # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
- # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
- # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
- # @param Angles list of angles
- # @param HasRefPoint allows to use base point
- # @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
- # User can specify any point as the Base Point and the shape will be rotated with respect to this point.
- # @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps
- def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
- HasAngles, Angles, HasRefPoint, RefPoint, LinearVariation=False):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( RefPoint, geompy.GEOM._objref_GEOM_Object)):
- RefPoint = GetPointStruct(RefPoint)
- pass
- return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh.GetMesh(), PathShape, NodeStart,
- HasAngles, Angles, HasRefPoint, RefPoint)
-
- ## Generate new elements by extrusion of the elements belong to object
- # A path of extrusion must be a meshed edge.
- # @param IDsOfElements is ids of elements
- # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
- # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
- # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
- # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
- # @param Angles list of angles
- # @param HasRefPoint allows to use base point
- # @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
- # User can specify any point as the Base Point and the shape will be rotated with respect to this point.
- # @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps
- def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
- HasAngles, Angles, HasRefPoint, RefPoint, LinearVariation=False):
- if ( isinstance( RefPoint, geompy.GEOM._objref_GEOM_Object)):
- RefPoint = GetPointStruct(RefPoint)
- return self.editor.ExtrusionAlongPathObject(theObject, PathMesh.GetMesh(), PathShape, NodeStart,
- HasAngles, Angles, HasRefPoint, RefPoint, LinearVariation)
-
- ## Symmetrical copy of mesh elements
- # @param IDsOfElements list of elements ids
- # @param Mirror is AxisStruct or geom object(point, line, plane)
- # @param theMirrorType is POINT, AXIS or PLANE
- # If the Mirror is geom object this parameter is unnecessary
- # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
- def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( Mirror, geompy.GEOM._objref_GEOM_Object)):
- Mirror = GetAxisStruct(Mirror)
- self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
-
- ## Symmetrical copy of object
- # @param theObject mesh, submesh or group
- # @param Mirror is AxisStruct or geom object(point, line, plane)
- # @param theMirrorType is POINT, AXIS or PLANE
- # If the Mirror is geom object this parameter is unnecessary
- # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
- def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0):
- if ( isinstance( Mirror, geompy.GEOM._objref_GEOM_Object)):
- Mirror = GetAxisStruct(Mirror)
- self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
-
- ## Translates the elements
- # @param IDsOfElements list of elements ids
- # @param Vector direction of translation(DirStruct or vector)
- # @param Copy allows to copy the translated elements
- def Translate(self, IDsOfElements, Vector, Copy):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( Vector, geompy.GEOM._objref_GEOM_Object)):
- Vector = GetDirStruct(Vector)
- self.editor.Translate(IDsOfElements, Vector, Copy)
-
- ## Translates the object
- # @param theObject object to translate(mesh, submesh, or group)
- # @param Vector direction of translation(DirStruct or geom vector)
- # @param Copy allows to copy the translated elements
- def TranslateObject(self, theObject, Vector, Copy):
- if ( isinstance( Vector, geompy.GEOM._objref_GEOM_Object)):
- Vector = GetDirStruct(Vector)
- self.editor.TranslateObject(theObject, Vector, Copy)
-
- ## Rotates the elements
- # @param IDsOfElements list of elements ids
- # @param Axis axis of rotation(AxisStruct or geom line)
- # @param AngleInRadians angle of rotation(in radians)
- # @param Copy allows to copy the rotated elements
- def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy):
- if IDsOfElements == []:
- IDsOfElements = self.GetElementsId()
- if ( isinstance( Axis, geompy.GEOM._objref_GEOM_Object)):
- Axis = GetAxisStruct(Axis)
- self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
-
- ## Rotates the object
- # @param theObject object to rotate(mesh, submesh, or group)
- # @param Axis axis of rotation(AxisStruct or geom line)
- # @param AngleInRadians angle of rotation(in radians)
- # @param Copy allows to copy the rotated elements
- def RotateObject (self, theObject, Axis, AngleInRadians, Copy):
- self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
-
- ## Find group of nodes close to each other within Tolerance.
- # @param Tolerance tolerance value
- # @param list of group of nodes
- def FindCoincidentNodes (self, Tolerance):
- return self.editor.FindCoincidentNodes(Tolerance)
-
- ## Find group of nodes close to each other within Tolerance.
- # @param Tolerance tolerance value
- # @param SubMeshOrGroup SubMesh or Group
- # @param list of group of nodes
- def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance):
- return self.editor.FindCoincidentNodesOnPart(SubMeshOrGroup, Tolerance)
-
- ## Merge nodes
- # @param list of group of nodes
- def MergeNodes (self, GroupsOfNodes):
- self.editor.MergeNodes(GroupsOfNodes)
-
- ## Find elements built on the same nodes.
- # @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching
- # @return a list of groups of equal elements
- def FindEqualElements (self, MeshOrSubMeshOrGroup):
- return self.editor.FindEqualElements(MeshOrSubMeshOrGroup)
-
- ## Merge elements in each given group.
- # @param GroupsOfElementsID groups of elements for merging
- def MergeElements(self, GroupsOfElementsID):
- self.editor.MergeElements(GroupsOfElementsID)
-
- ## Remove all but one of elements built on the same nodes.
- def MergeEqualElements(self):
- self.editor.MergeEqualElements()
-
- ## Sew free borders
- def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
- FirstNodeID2, SecondNodeID2, LastNodeID2,
- CreatePolygons, CreatePolyedrs):
- return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
- FirstNodeID2, SecondNodeID2, LastNodeID2,
- CreatePolygons, CreatePolyedrs)
-
- ## Sew conform free borders
- def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
- FirstNodeID2, SecondNodeID2):
- return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
- FirstNodeID2, SecondNodeID2)
-
- ## Sew border to side
- def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
- FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
- return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
- FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
-
- ## Sew two sides of a mesh. Nodes belonging to Side1 are
- # merged with nodes of elements of Side2.
- # Number of elements in theSide1 and in theSide2 must be
- # equal and they should have similar node connectivity.
- # The nodes to merge should belong to sides borders and
- # the first node should be linked to the second.
- def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
- NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
- NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
- return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
- NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
- NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
+smesh.init_smesh(salome.myStudy,geompy.geom)
- ## Set new nodes for given element.
- # @param ide the element id
- # @param newIDs nodes ids
- # @return If number of nodes is not corresponded to type of element - returns false
- def ChangeElemNodes(self, ide, newIDs):
- return self.editor.ChangeElemNodes(ide, newIDs)
-
- ## If during last operation of MeshEditor some nodes were
- # created this method returns list of it's IDs, \n
- # if new nodes not created - returns empty list
- def GetLastCreatedNodes(self):
- return self.editor.GetLastCreatedNodes()
+# Export the methods of smeshD
+for k in dir(smesh):
+ if k[0] == '_':continue
+ globals()[k]=getattr(smesh,k)
+del k
- ## If during last operation of MeshEditor some elements were
- # created this method returns list of it's IDs, \n
- # if new elements not creared - returns empty list
- def GetLastCreatedElems(self):
- return self.editor.GetLastCreatedElems()
--- /dev/null
+# Copyright (C) 2005 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
+# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# File : smesh.py
+# Author : Francis KLOSS, OCC
+# Module : SMESH
+
+"""
+ \namespace smesh
+ \brief Module smesh
+"""
+
+import salome
+import geompyDC
+
+import SMESH
+from SMESH import *
+
+import StdMeshers
+
+import SALOME
+
+# import NETGENPlugin module if possible
+noNETGENPlugin = 0
+try:
+ import NETGENPlugin
+except ImportError:
+ noNETGENPlugin = 1
+ pass
+
+# Types of algo
+REGULAR = 1
+PYTHON = 2
+COMPOSITE = 3
+
+MEFISTO = 3
+NETGEN = 4
+GHS3D = 5
+FULL_NETGEN = 6
+
+# MirrorType enumeration
+POINT = SMESH_MeshEditor.POINT
+AXIS = SMESH_MeshEditor.AXIS
+PLANE = SMESH_MeshEditor.PLANE
+
+# Smooth_Method enumeration
+LAPLACIAN_SMOOTH = SMESH_MeshEditor.LAPLACIAN_SMOOTH
+CENTROIDAL_SMOOTH = SMESH_MeshEditor.CENTROIDAL_SMOOTH
+
+# Fineness enumeration(for NETGEN)
+VeryCoarse = 0
+Coarse = 1
+Moderate = 2
+Fine = 3
+VeryFine = 4
+Custom = 5
+
+
+NO_NAME = "NoName"
+
+## Gets object name
+def GetName(obj):
+ ior = salome.orb.object_to_string(obj)
+ sobj = salome.myStudy.FindObjectIOR(ior)
+ if sobj is None:
+ return NO_NAME
+ else:
+ attr = sobj.FindAttribute("AttributeName")[1]
+ return attr.Value()
+
+ ## Sets name to object
+def SetName(obj, name):
+ ior = salome.orb.object_to_string(obj)
+ sobj = salome.myStudy.FindObjectIOR(ior)
+ if not sobj is None:
+ attr = sobj.FindAttribute("AttributeName")[1]
+ attr.SetValue(name)
+
+ ## Print error message if a hypothesis was not assigned.
+def TreatHypoStatus(status, hypName, geomName, isAlgo):
+ if isAlgo:
+ hypType = "algorithm"
+ else:
+ hypType = "hypothesis"
+ pass
+ if status == HYP_UNKNOWN_FATAL :
+ reason = "for unknown reason"
+ elif status == HYP_INCOMPATIBLE :
+ reason = "this hypothesis mismatches algorithm"
+ elif status == HYP_NOTCONFORM :
+ reason = "not conform mesh would be built"
+ elif status == HYP_ALREADY_EXIST :
+ reason = hypType + " of the same dimension already assigned to this shape"
+ elif status == HYP_BAD_DIM :
+ reason = hypType + " mismatches shape"
+ elif status == HYP_CONCURENT :
+ reason = "there are concurrent hypotheses on sub-shapes"
+ elif status == HYP_BAD_SUBSHAPE :
+ reason = "shape is neither the main one, nor its subshape, nor a valid group"
+ elif status == HYP_BAD_GEOMETRY:
+ reason = "geometry mismatches algorithm's expectation"
+ elif status == HYP_HIDDEN_ALGO:
+ reason = "it is hidden by an algorithm of upper dimension generating all-dimensions elements"
+ elif status == HYP_HIDING_ALGO:
+ reason = "it hides algorithm(s) of lower dimension by generating all-dimensions elements"
+ else:
+ return
+ hypName = '"' + hypName + '"'
+ geomName= '"' + geomName+ '"'
+ if status < HYP_UNKNOWN_FATAL:
+ print hypName, "was assigned to", geomName,"but", reason
+ else:
+ print hypName, "was not assigned to",geomName,":", reason
+ pass
+
+class smeshDC(SMESH._objref_SMESH_Gen):
+
+ def init_smesh(self,theStudy,geompyD):
+ self.SetCurrentStudy(theStudy)
+ self.geompyD=geompyD
+ self.SetGeomEngine(geompyD)
+
+ def Mesh(self, obj=0, name=0):
+ return Mesh(self,self.geompyD,obj,name)
+
+ ## Returns long value from enumeration
+ # Uses for SMESH.FunctorType enumeration
+ def EnumToLong(self,theItem):
+ return theItem._v
+
+ ## Get PointStruct from vertex
+ # @param theVertex is GEOM object(vertex)
+ # @return SMESH.PointStruct
+ def GetPointStruct(self,theVertex):
+ [x, y, z] = self.geompyD.PointCoordinates(theVertex)
+ return PointStruct(x,y,z)
+
+ ## Get DirStruct from vector
+ # @param theVector is GEOM object(vector)
+ # @return SMESH.DirStruct
+ def GetDirStruct(self,theVector):
+ vertices = self.geompyD.SubShapeAll( theVector, geompyDC.ShapeType["VERTEX"] )
+ if(len(vertices) != 2):
+ print "Error: vector object is incorrect."
+ return None
+ p1 = self.geompyD.PointCoordinates(vertices[0])
+ p2 = self.geompyD.PointCoordinates(vertices[1])
+ pnt = PointStruct(p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
+ dirst = DirStruct(pnt)
+ return dirst
+
+ ## Get AxisStruct from object
+ # @param theObj is GEOM object(line or plane)
+ # @return SMESH.AxisStruct
+ def GetAxisStruct(self,theObj):
+ edges = self.geompyD.SubShapeAll( theObj, geompyDC.ShapeType["EDGE"] )
+ if len(edges) > 1:
+ vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
+ vertex3, vertex4 = self.geompyD.SubShapeAll( edges[1], geompyDC.ShapeType["VERTEX"] )
+ vertex1 = self.geompyD.PointCoordinates(vertex1)
+ vertex2 = self.geompyD.PointCoordinates(vertex2)
+ vertex3 = self.geompyD.PointCoordinates(vertex3)
+ vertex4 = self.geompyD.PointCoordinates(vertex4)
+ v1 = [vertex2[0]-vertex1[0], vertex2[1]-vertex1[1], vertex2[2]-vertex1[2]]
+ v2 = [vertex4[0]-vertex3[0], vertex4[1]-vertex3[1], vertex4[2]-vertex3[2]]
+ normal = [ v1[1]*v2[2]-v2[1]*v1[2], v1[2]*v2[0]-v2[2]*v1[0], v1[0]*v2[1]-v2[0]*v1[1] ]
+ axis = AxisStruct(vertex1[0], vertex1[1], vertex1[2], normal[0], normal[1], normal[2])
+ return axis
+ elif len(edges) == 1:
+ vertex1, vertex2 = self.geompyD.SubShapeAll( edges[0], geompyDC.ShapeType["VERTEX"] )
+ p1 = self.geompyD.PointCoordinates( vertex1 )
+ p2 = self.geompyD.PointCoordinates( vertex2 )
+ axis = AxisStruct(p1[0], p1[1], p1[2], p2[0]-p1[0], p2[1]-p1[1], p2[2]-p1[2])
+ return axis
+ return None
+
+ # From SMESH_Gen interface:
+ # ------------------------
+
+ ## Set the current mode
+ def SetEmbeddedMode( self,theMode ):
+ #self.SetEmbeddedMode(theMode)
+ SMESH._objref_SMESH_Gen.SetEmbeddedMode(self,theMode)
+
+ ## Get the current mode
+ def IsEmbeddedMode(self):
+ #return self.IsEmbeddedMode()
+ return SMESH._objref_SMESH_Gen.IsEmbeddedMode(self)
+
+ ## Set the current study
+ def SetCurrentStudy( self, theStudy ):
+ #self.SetCurrentStudy(theStudy)
+ SMESH._objref_SMESH_Gen.SetCurrentStudy(self,theStudy)
+
+ ## Get the current study
+ def GetCurrentStudy(self):
+ #return self.GetCurrentStudy()
+ return SMESH._objref_SMESH_Gen.GetCurrentStudy(self)
+
+ ## Create Mesh object importing data from given UNV file
+ # @return an instance of Mesh class
+ def CreateMeshesFromUNV( self,theFileName ):
+ aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromUNV(self,theFileName)
+ aMesh = Mesh(self,self.geompyD,aSmeshMesh)
+ return aMesh
+
+ ## Create Mesh object(s) importing data from given MED file
+ # @return a list of Mesh class instances
+ def CreateMeshesFromMED( self,theFileName ):
+ aSmeshMeshes, aStatus = SMESH._objref_SMESH_Gen.CreateMeshesFromMED(self,theFileName)
+ aMeshes = []
+ for iMesh in range(len(aSmeshMeshes)) :
+ aMesh = Mesh(self,self.geompyD,aSmeshMeshes[iMesh])
+ aMeshes.append(aMesh)
+ return aMeshes, aStatus
+
+ ## Create Mesh object importing data from given STL file
+ # @return an instance of Mesh class
+ def CreateMeshesFromSTL( self, theFileName ):
+ aSmeshMesh = SMESH._objref_SMESH_Gen.CreateMeshesFromSTL(self,theFileName)
+ aMesh = Mesh(self,self.geompyD,aSmeshMesh)
+ return aMesh
+
+ ## From SMESH_Gen interface
+ def GetSubShapesId( self, theMainObject, theListOfSubObjects ):
+ return SMESH._objref_SMESH_Gen.GetSubShapesId(self,theMainObject, theListOfSubObjects)
+
+ ## From SMESH_Gen interface. Creates pattern
+ def GetPattern(self):
+ return SMESH._objref_SMESH_Gen.GetPattern(self)
+
+
+
+ # Filtering. Auxiliary functions:
+ # ------------------------------
+
+ ## Creates an empty criterion
+ # @return SMESH.Filter.Criterion
+ def GetEmptyCriterion(self):
+ Type = self.EnumToLong(FT_Undefined)
+ Compare = self.EnumToLong(FT_Undefined)
+ Threshold = 0
+ ThresholdStr = ""
+ ThresholdID = ""
+ UnaryOp = self.EnumToLong(FT_Undefined)
+ BinaryOp = self.EnumToLong(FT_Undefined)
+ Tolerance = 1e-07
+ TypeOfElement = ALL
+ Precision = -1 ##@1e-07
+ return Filter.Criterion(Type, Compare, Threshold, ThresholdStr, ThresholdID,
+ UnaryOp, BinaryOp, Tolerance, TypeOfElement, Precision)
+
+ ## Creates a criterion by given parameters
+ # @param elementType is the type of elements(NODE, EDGE, FACE, VOLUME)
+ # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
+ # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
+ # @param Treshold is threshold value (range of ids as string, shape, numeric)
+ # @param UnaryOp is FT_LogicalNOT or FT_Undefined
+ # @param BinaryOp is binary logical operation FT_LogicalAND, FT_LogicalOR or
+ # FT_Undefined(must be for the last criterion in criteria)
+ # @return SMESH.Filter.Criterion
+ def GetCriterion(self,elementType,
+ CritType,
+ Compare = FT_EqualTo,
+ Treshold="",
+ UnaryOp=FT_Undefined,
+ BinaryOp=FT_Undefined):
+ aCriterion = self.GetEmptyCriterion()
+ aCriterion.TypeOfElement = elementType
+ aCriterion.Type = self.EnumToLong(CritType)
+
+ aTreshold = Treshold
+
+ if Compare in [FT_LessThan, FT_MoreThan, FT_EqualTo]:
+ aCriterion.Compare = self.EnumToLong(Compare)
+ elif Compare == "=" or Compare == "==":
+ aCriterion.Compare = self.EnumToLong(FT_EqualTo)
+ elif Compare == "<":
+ aCriterion.Compare = self.EnumToLong(FT_LessThan)
+ elif Compare == ">":
+ aCriterion.Compare = self.EnumToLong(FT_MoreThan)
+ else:
+ aCriterion.Compare = self.EnumToLong(FT_EqualTo)
+ aTreshold = Compare
+
+ if CritType in [FT_BelongToGeom, FT_BelongToPlane, FT_BelongToGenSurface,
+ FT_BelongToCylinder, FT_LyingOnGeom]:
+ # Check treshold
+ if isinstance(aTreshold, self.geompyD.GEOM._objref_GEOM_Object):
+ aCriterion.ThresholdStr = GetName(aTreshold)
+ aCriterion.ThresholdID = salome.ObjectToID(aTreshold)
+ else:
+ print "Error: Treshold should be a shape."
+ return None
+ elif CritType == FT_RangeOfIds:
+ # Check treshold
+ if isinstance(aTreshold, str):
+ aCriterion.ThresholdStr = aTreshold
+ else:
+ print "Error: Treshold should be a string."
+ return None
+ elif CritType in [FT_FreeBorders, FT_FreeEdges, FT_BadOrientedVolume]:
+ # Here we don't need treshold
+ if aTreshold == FT_LogicalNOT:
+ aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
+ elif aTreshold in [FT_LogicalAND, FT_LogicalOR]:
+ aCriterion.BinaryOp = aTreshold
+ else:
+ # Check treshold
+ try:
+ aTreshold = float(aTreshold)
+ aCriterion.Threshold = aTreshold
+ except:
+ print "Error: Treshold should be a number."
+ return None
+
+ if Treshold == FT_LogicalNOT or UnaryOp == FT_LogicalNOT:
+ aCriterion.UnaryOp = self.EnumToLong(FT_LogicalNOT)
+
+ if Treshold in [FT_LogicalAND, FT_LogicalOR]:
+ aCriterion.BinaryOp = self.EnumToLong(Treshold)
+
+ if UnaryOp in [FT_LogicalAND, FT_LogicalOR]:
+ aCriterion.BinaryOp = self.EnumToLong(UnaryOp)
+
+ if BinaryOp in [FT_LogicalAND, FT_LogicalOR]:
+ aCriterion.BinaryOp = self.EnumToLong(BinaryOp)
+
+ return aCriterion
+
+ ## Creates filter by given parameters of criterion
+ # @param elementType is the type of elements in the group
+ # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
+ # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
+ # @param Treshold is threshold value (range of id ids as string, shape, numeric)
+ # @param UnaryOp is FT_LogicalNOT or FT_Undefined
+ # @return SMESH_Filter
+ def GetFilter(self,elementType,
+ CritType=FT_Undefined,
+ Compare=FT_EqualTo,
+ Treshold="",
+ UnaryOp=FT_Undefined):
+ aCriterion = self.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
+ aFilterMgr = self.CreateFilterManager()
+ aFilter = aFilterMgr.CreateFilter()
+ aCriteria = []
+ aCriteria.append(aCriterion)
+ aFilter.SetCriteria(aCriteria)
+ return aFilter
+
+ ## Creates numerical functor by its type
+ # @param theCrierion is FT_...; functor type
+ # @return SMESH_NumericalFunctor
+ def GetFunctor(self,theCriterion):
+ aFilterMgr = self.CreateFilterManager()
+ if theCriterion == FT_AspectRatio:
+ return aFilterMgr.CreateAspectRatio()
+ elif theCriterion == FT_AspectRatio3D:
+ return aFilterMgr.CreateAspectRatio3D()
+ elif theCriterion == FT_Warping:
+ return aFilterMgr.CreateWarping()
+ elif theCriterion == FT_MinimumAngle:
+ return aFilterMgr.CreateMinimumAngle()
+ elif theCriterion == FT_Taper:
+ return aFilterMgr.CreateTaper()
+ elif theCriterion == FT_Skew:
+ return aFilterMgr.CreateSkew()
+ elif theCriterion == FT_Area:
+ return aFilterMgr.CreateArea()
+ elif theCriterion == FT_Volume3D:
+ return aFilterMgr.CreateVolume3D()
+ elif theCriterion == FT_MultiConnection:
+ return aFilterMgr.CreateMultiConnection()
+ elif theCriterion == FT_MultiConnection2D:
+ return aFilterMgr.CreateMultiConnection2D()
+ elif theCriterion == FT_Length:
+ return aFilterMgr.CreateLength()
+ elif theCriterion == FT_Length2D:
+ return aFilterMgr.CreateLength2D()
+ else:
+ print "Error: given parameter is not numerucal functor type."
+
+import omniORB
+#Register the new proxy for SMESH_Gen
+omniORB.registerObjref(SMESH._objref_SMESH_Gen._NP_RepositoryId, smeshDC)
+
+
+## Mother class to define algorithm, recommended to don't use directly.
+#
+# More details.
+class Mesh_Algorithm:
+ # @class Mesh_Algorithm
+ # @brief Class Mesh_Algorithm
+ def __init__(self,smesh):
+ self.smesh=smesh
+ self.mesh = 0
+ self.geom = 0
+ self.subm = 0
+ self.algo = 0
+
+ ## If the algorithm is global, return 0; \n
+ # else return the submesh associated to this algorithm.
+ def GetSubMesh(self):
+ return self.subm
+
+ ## Return the wrapped mesher.
+ def GetAlgorithm(self):
+ return self.algo
+
+ ## Get list of hypothesis that can be used with this algorithm
+ def GetCompatibleHypothesis(self):
+ mylist = []
+ if self.algo:
+ mylist = self.algo.GetCompatibleHypothesis()
+ return mylist
+
+ ## Get name of algo
+ def GetName(self):
+ GetName(self.algo)
+
+ ## Set name to algo
+ def SetName(self, name):
+ SetName(self.algo, name)
+
+ ## Get id of algo
+ def GetId(self):
+ return self.algo.GetId()
+
+ ## Private method.
+ def Create(self, mesh, geom, hypo, so="libStdMeshersEngine.so"):
+ if geom is None:
+ raise RuntimeError, "Attemp to create " + hypo + " algoritm on None shape"
+ self.mesh = mesh
+ piece = mesh.geom
+ if geom==0:
+ self.geom = piece
+ name = GetName(piece)
+ else:
+ self.geom = geom
+ name = GetName(geom)
+ if name==NO_NAME:
+ name = mesh.geompyD.SubShapeName(geom, piece)
+ mesh.geompyD.addToStudyInFather(piece, geom, name)
+ self.subm = mesh.mesh.GetSubMesh(geom, hypo)
+
+ self.algo = mesh.smeshpyD.CreateHypothesis(hypo, so)
+ SetName(self.algo, name + "/" + hypo)
+ status = mesh.mesh.AddHypothesis(self.geom, self.algo)
+ TreatHypoStatus( status, hypo, name, 1 )
+
+ ## Private method
+ def Hypothesis(self, hyp, args=[], so="libStdMeshersEngine.so"):
+ hypo = self.mesh.smeshpyD.CreateHypothesis(hyp, so)
+ a = ""
+ s = "="
+ i = 0
+ n = len(args)
+ while i<n:
+ a = a + s + str(args[i])
+ s = ","
+ i = i + 1
+ name = GetName(self.geom)
+ SetName(hypo, name + "/" + hyp + a)
+ status = self.mesh.mesh.AddHypothesis(self.geom, hypo)
+ TreatHypoStatus( status, hyp, name, 0 )
+ return hypo
+
+
+# Public class: Mesh_Segment
+# --------------------------
+
+## Class to define a segment 1D algorithm for discretization
+#
+# More details.
+class Mesh_Segment(Mesh_Algorithm):
+
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ self.Create(mesh, geom, "Regular_1D")
+
+ ## Define "LocalLength" hypothesis to cut an edge in several segments with the same length
+ # @param l for the length of segments that cut an edge
+ def LocalLength(self, l):
+ hyp = self.Hypothesis("LocalLength", [l])
+ hyp.SetLength(l)
+ return hyp
+
+ ## Define "NumberOfSegments" hypothesis to cut an edge in several fixed number of segments
+ # @param n for the number of segments that cut an edge
+ # @param s for the scale factor (optional)
+ def NumberOfSegments(self, n, s=[]):
+ if s == []:
+ hyp = self.Hypothesis("NumberOfSegments", [n])
+ else:
+ hyp = self.Hypothesis("NumberOfSegments", [n,s])
+ hyp.SetDistrType( 1 )
+ hyp.SetScaleFactor(s)
+ hyp.SetNumberOfSegments(n)
+ return hyp
+
+ ## Define "Arithmetic1D" hypothesis to cut an edge in several segments with arithmetic length increasing
+ # @param start for the length of the first segment
+ # @param end for the length of the last segment
+ def Arithmetic1D(self, start, end):
+ hyp = self.Hypothesis("Arithmetic1D", [start, end])
+ hyp.SetLength(start, 1)
+ hyp.SetLength(end , 0)
+ return hyp
+
+ ## Define "StartEndLength" hypothesis to cut an edge in several segments with geometric length increasing
+ # @param start for the length of the first segment
+ # @param end for the length of the last segment
+ def StartEndLength(self, start, end):
+ hyp = self.Hypothesis("StartEndLength", [start, end])
+ hyp.SetLength(start, 1)
+ hyp.SetLength(end , 0)
+ return hyp
+
+ ## Define "Deflection1D" hypothesis
+ # @param d for the deflection
+ def Deflection1D(self, d):
+ hyp = self.Hypothesis("Deflection1D", [d])
+ hyp.SetDeflection(d)
+ return hyp
+
+ ## Define "Propagation" hypothesis that propagate all other hypothesis on all others edges that are in
+ # the opposite side in the case of quadrangular faces
+ def Propagation(self):
+ return self.Hypothesis("Propagation")
+
+ ## Define "AutomaticLength" hypothesis
+ # @param fineness for the fineness [0-1]
+ def AutomaticLength(self, fineness=0):
+ hyp = self.Hypothesis("AutomaticLength")
+ hyp.SetFineness( fineness )
+ return hyp
+
+ ## Define "SegmentLengthAroundVertex" hypothesis
+ # @param length for the segment length
+ # @param vertex for the length localization: vertex index [0,1] | verext object
+ def LengthNearVertex(self, length, vertex=0):
+ import types
+ store_geom = self.geom
+ if vertex:
+ if type(vertex) is types.IntType:
+ vertex = self.mesh.geompyD.SubShapeAllSorted(self.geom,self.mesh.geompyD.ShapeType["VERTEX"])[vertex]
+ pass
+ self.geom = vertex
+ pass
+ hyp = self.Hypothesis("SegmentAroundVertex_0D")
+ hyp = self.Hypothesis("SegmentLengthAroundVertex")
+ self.geom = store_geom
+ hyp.SetLength( length )
+ return hyp
+
+ ## Define "QuadraticMesh" hypothesis, forcing construction of quadratic edges.
+ # If the 2D mesher sees that all boundary edges are quadratic ones,
+ # it generates quadratic faces, else it generates linear faces using
+ # medium nodes as if they were vertex ones.
+ # The 3D mesher generates quadratic volumes only if all boundary faces
+ # are quadratic ones, else it fails.
+ def QuadraticMesh(self):
+ hyp = self.Hypothesis("QuadraticMesh")
+ return hyp
+
+# Public class: Mesh_CompositeSegment
+# --------------------------
+
+## Class to define a segment 1D algorithm for discretization
+#
+# More details.
+class Mesh_CompositeSegment(Mesh_Segment):
+
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ self.Create(mesh, geom, "CompositeSegment_1D")
+
+
+# Public class: Mesh_Segment_Python
+# ---------------------------------
+
+## Class to define a segment 1D algorithm for discretization with python function
+#
+# More details.
+class Mesh_Segment_Python(Mesh_Segment):
+
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ import Python1dPlugin
+ self.Create(mesh, geom, "Python_1D", "libPython1dEngine.so")
+
+ ## Define "PythonSplit1D" hypothesis based on the Erwan Adam patch, awaiting equivalent SALOME functionality
+ # @param n for the number of segments that cut an edge
+ # @param func for the python function that calculate the length of all segments
+ def PythonSplit1D(self, n, func):
+ hyp = self.Hypothesis("PythonSplit1D", [n], "libPython1dEngine.so")
+ hyp.SetNumberOfSegments(n)
+ hyp.SetPythonLog10RatioFunction(func)
+ return hyp
+
+# Public class: Mesh_Triangle
+# ---------------------------
+
+## Class to define a triangle 2D algorithm
+#
+# More details.
+class Mesh_Triangle(Mesh_Algorithm):
+
+ algoType = 0
+ params = 0
+
+ ## Private constructor.
+ def __init__(self, mesh, algoType, geom=0):
+ if algoType == MEFISTO:
+ self.Create(mesh, geom, "MEFISTO_2D")
+ elif algoType == NETGEN:
+ if noNETGENPlugin:
+ print "Warning: NETGENPlugin module has not been imported."
+ self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
+ self.algoType = algoType
+
+ ## Define "MaxElementArea" hypothesis to give the maximun area of each triangles
+ # @param area for the maximum area of each triangles
+ def MaxElementArea(self, area):
+ if self.algoType == MEFISTO:
+ hyp = self.Hypothesis("MaxElementArea", [area])
+ hyp.SetMaxElementArea(area)
+ return hyp
+ elif self.algoType == NETGEN:
+ print "Netgen 1D-2D algo doesn't support this hypothesis"
+ return None
+
+ ## Define "LengthFromEdges" hypothesis to build triangles based on the length of the edges taken from the wire
+ def LengthFromEdges(self):
+ if self.algoType == MEFISTO:
+ hyp = self.Hypothesis("LengthFromEdges")
+ return hyp
+ elif self.algoType == NETGEN:
+ print "Netgen 1D-2D algo doesn't support this hypothesis"
+ return None
+
+ ## Define "Netgen 2D Parameters" hypothesis
+ def Parameters(self):
+ if self.algoType == NETGEN:
+ self.params = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so")
+ return self.params
+ elif self.algoType == MEFISTO:
+ print "Mefisto algo doesn't support this hypothesis"
+ return None
+
+ ## Set MaxSize
+ def SetMaxSize(self, theSize):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetMaxSize(theSize)
+
+ ## Set SecondOrder flag
+ def SetSecondOrder(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetSecondOrder(theVal)
+
+ ## Set Optimize flag
+ def SetOptimize(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetOptimize(theVal)
+
+ ## Set Fineness
+ # @param theFineness is:
+ # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
+ def SetFineness(self, theFineness):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetFineness(theFineness)
+
+ ## Set GrowthRate
+ def SetGrowthRate(self, theRate):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetGrowthRate(theRate)
+
+ ## Set NbSegPerEdge
+ def SetNbSegPerEdge(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetNbSegPerEdge(theVal)
+
+ ## Set NbSegPerRadius
+ def SetNbSegPerRadius(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetNbSegPerRadius(theVal)
+
+ ## Set QuadAllowed flag
+ def SetQuadAllowed(self, toAllow):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetQuadAllowed(toAllow)
+
+
+# Public class: Mesh_Quadrangle
+# -----------------------------
+
+## Class to define a quadrangle 2D algorithm
+#
+# More details.
+class Mesh_Quadrangle(Mesh_Algorithm):
+
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ self.Create(mesh, geom, "Quadrangle_2D")
+
+ ## Define "QuadranglePreference" hypothesis, forcing construction
+ # of quadrangles if the number of nodes on opposite edges is not the same
+ # in the case where the global number of nodes on edges is even
+ def QuadranglePreference(self):
+ hyp = self.Hypothesis("QuadranglePreference")
+ return hyp
+
+# Public class: Mesh_Tetrahedron
+# ------------------------------
+
+## Class to define a tetrahedron 3D algorithm
+#
+# More details.
+class Mesh_Tetrahedron(Mesh_Algorithm):
+
+ params = 0
+ algoType = 0
+
+ ## Private constructor.
+ def __init__(self, mesh, algoType, geom=0):
+ if algoType == NETGEN:
+ self.Create(mesh, geom, "NETGEN_3D", "libNETGENEngine.so")
+ elif algoType == GHS3D:
+ import GHS3DPlugin
+ self.Create(mesh, geom, "GHS3D_3D" , "libGHS3DEngine.so")
+ elif algoType == FULL_NETGEN:
+ if noNETGENPlugin:
+ print "Warning: NETGENPlugin module has not been imported."
+ self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
+ self.algoType = algoType
+
+ ## Define "MaxElementVolume" hypothesis to give the maximun volume of each tetrahedral
+ # @param vol for the maximum volume of each tetrahedral
+ def MaxElementVolume(self, vol):
+ hyp = self.Hypothesis("MaxElementVolume", [vol])
+ hyp.SetMaxElementVolume(vol)
+ return hyp
+
+ ## Define "Netgen 3D Parameters" hypothesis
+ def Parameters(self):
+ if (self.algoType == FULL_NETGEN):
+ self.params = self.Hypothesis("NETGEN_Parameters", [], "libNETGENEngine.so")
+ return self.params
+ else:
+ print "Algo doesn't support this hypothesis"
+ return None
+
+ ## Set MaxSize
+ def SetMaxSize(self, theSize):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetMaxSize(theSize)
+
+ ## Set SecondOrder flag
+ def SetSecondOrder(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetSecondOrder(theVal)
+
+ ## Set Optimize flag
+ def SetOptimize(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetOptimize(theVal)
+
+ ## Set Fineness
+ # @param theFineness is:
+ # VeryCoarse, Coarse, Moderate, Fine, VeryFine or Custom
+ def SetFineness(self, theFineness):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetFineness(theFineness)
+
+ ## Set GrowthRate
+ def SetGrowthRate(self, theRate):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetGrowthRate(theRate)
+
+ ## Set NbSegPerEdge
+ def SetNbSegPerEdge(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetNbSegPerEdge(theVal)
+
+ ## Set NbSegPerRadius
+ def SetNbSegPerRadius(self, theVal):
+ if self.params == 0:
+ self.Parameters()
+ self.params.SetNbSegPerRadius(theVal)
+
+# Public class: Mesh_Hexahedron
+# ------------------------------
+
+## Class to define a hexahedron 3D algorithm
+#
+# More details.
+class Mesh_Hexahedron(Mesh_Algorithm):
+
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ self.Create(mesh, geom, "Hexa_3D")
+
+# Deprecated, only for compatibility!
+# Public class: Mesh_Netgen
+# ------------------------------
+
+## Class to define a NETGEN-based 2D or 3D algorithm
+# that need no discrete boundary (i.e. independent)
+#
+# This class is deprecated, only for compatibility!
+#
+# More details.
+class Mesh_Netgen(Mesh_Algorithm):
+
+ is3D = 0
+
+ ## Private constructor.
+ def __init__(self, mesh, is3D, geom=0):
+ if noNETGENPlugin:
+ print "Warning: NETGENPlugin module has not been imported."
+
+ self.is3D = is3D
+ if is3D:
+ self.Create(mesh, geom, "NETGEN_2D3D", "libNETGENEngine.so")
+ else:
+ self.Create(mesh, geom, "NETGEN_2D", "libNETGENEngine.so")
+
+ ## Define hypothesis containing parameters of the algorithm
+ def Parameters(self):
+ if self.is3D:
+ hyp = self.Hypothesis("NETGEN_Parameters", [], "libNETGENEngine.so")
+ else:
+ hyp = self.Hypothesis("NETGEN_Parameters_2D", [], "libNETGENEngine.so")
+ return hyp
+
+# Public class: Mesh_Projection1D
+# ------------------------------
+
+## Class to define a projection 1D algorithm
+#
+# More details.
+class Mesh_Projection1D(Mesh_Algorithm):
+
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ self.Create(mesh, geom, "Projection_1D")
+
+ ## Define "Source Edge" hypothesis, specifying a meshed edge to
+ # take a mesh pattern from, and optionally association of vertices
+ # between the source edge and a target one (where a hipothesis is assigned to)
+ # @param edge to take nodes distribution from
+ # @param mesh to take nodes distribution from (optional)
+ # @param srcV is vertex of \a edge to associate with \a tgtV (optional)
+ # @param tgtV is vertex of \a the edge where the algorithm is assigned,
+ # to associate with \a srcV (optional)
+ def SourceEdge(self, edge, mesh=None, srcV=None, tgtV=None):
+ hyp = self.Hypothesis("ProjectionSource1D")
+ hyp.SetSourceEdge( edge )
+ if not mesh is None and isinstance(mesh, Mesh):
+ mesh = mesh.GetMesh()
+ hyp.SetSourceMesh( mesh )
+ hyp.SetVertexAssociation( srcV, tgtV )
+ return hyp
+
+
+# Public class: Mesh_Projection2D
+# ------------------------------
+
+## Class to define a projection 2D algorithm
+#
+# More details.
+class Mesh_Projection2D(Mesh_Algorithm):
+
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ self.Create(mesh, geom, "Projection_2D")
+
+ ## Define "Source Face" hypothesis, specifying a meshed face to
+ # take a mesh pattern from, and optionally association of vertices
+ # between the source face and a target one (where a hipothesis is assigned to)
+ # @param face to take mesh pattern from
+ # @param mesh to take mesh pattern from (optional)
+ # @param srcV1 is vertex of \a face to associate with \a tgtV1 (optional)
+ # @param tgtV1 is vertex of \a the face where the algorithm is assigned,
+ # to associate with \a srcV1 (optional)
+ # @param srcV2 is vertex of \a face to associate with \a tgtV1 (optional)
+ # @param tgtV2 is vertex of \a the face where the algorithm is assigned,
+ # to associate with \a srcV2 (optional)
+ #
+ # Note: association vertices must belong to one edge of a face
+ def SourceFace(self, face, mesh=None, srcV1=None, tgtV1=None, srcV2=None, tgtV2=None):
+ hyp = self.Hypothesis("ProjectionSource2D")
+ hyp.SetSourceFace( face )
+ if not mesh is None and isinstance(mesh, Mesh):
+ mesh = mesh.GetMesh()
+ hyp.SetSourceMesh( mesh )
+ hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
+ return hyp
+
+# Public class: Mesh_Projection3D
+# ------------------------------
+
+## Class to define a projection 3D algorithm
+#
+# More details.
+class Mesh_Projection3D(Mesh_Algorithm):
+
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ self.Create(mesh, geom, "Projection_3D")
+
+ ## Define "Source Shape 3D" hypothesis, specifying a meshed solid to
+ # take a mesh pattern from, and optionally association of vertices
+ # between the source solid and a target one (where a hipothesis is assigned to)
+ # @param solid to take mesh pattern from
+ # @param mesh to take mesh pattern from (optional)
+ # @param srcV1 is vertex of \a solid to associate with \a tgtV1 (optional)
+ # @param tgtV1 is vertex of \a the solid where the algorithm is assigned,
+ # to associate with \a srcV1 (optional)
+ # @param srcV2 is vertex of \a solid to associate with \a tgtV1 (optional)
+ # @param tgtV2 is vertex of \a the solid where the algorithm is assigned,
+ # to associate with \a srcV2 (optional)
+ #
+ # Note: association vertices must belong to one edge of a solid
+ def SourceShape3D(self, solid, mesh=0, srcV1=0, tgtV1=0, srcV2=0, tgtV2=0):
+ hyp = self.Hypothesis("ProjectionSource3D")
+ hyp.SetSource3DShape( solid )
+ if not mesh is None and isinstance(mesh, Mesh):
+ mesh = mesh.GetMesh()
+ hyp.SetSourceMesh( mesh )
+ hyp.SetVertexAssociation( srcV1, srcV2, tgtV1, tgtV2 )
+ return hyp
+
+
+# Public class: Mesh_Prism
+# ------------------------
+
+## Class to define a 3D extrusion algorithm
+#
+# More details.
+class Mesh_Prism3D(Mesh_Algorithm):
+
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ self.Create(mesh, geom, "Prism_3D")
+
+# Public class: Mesh_RadialPrism
+# -------------------------------
+
+## Class to define a Radial Prism 3D algorithm
+#
+# More details.
+class Mesh_RadialPrism3D(Mesh_Algorithm):
+
+ ## Private constructor.
+ def __init__(self, mesh, geom=0):
+ self.Create(mesh, geom, "RadialPrism_3D")
+ self.distribHyp = self.Hypothesis( "LayerDistribution" )
+ self.nbLayers = None
+
+ ## Return 3D hypothesis holding the 1D one
+ def Get3DHypothesis(self):
+ return self.distribHyp
+
+ ## Private method creating 1D hypothes and storing it in the LayerDistribution
+ # hypothes. Returns the created hypothes
+ def OwnHypothesis(self, hypType, args=[], so="libStdMeshersEngine.so"):
+ print "OwnHypothesis",hypType
+ if not self.nbLayers is None:
+ self.mesh.GetMesh().RemoveHypothesis( self.geom, self.nbLayers )
+ self.mesh.GetMesh().AddHypothesis( self.geom, self.distribHyp )
+ study = self.mesh.smeshpyD.GetCurrentStudy() # prevent publishing of own 1D hypothesis
+ hyp = self.mesh.smeshpyD.CreateHypothesis(hypType, so)
+ self.mesh.smeshpyD.SetCurrentStudy( study ) # anable publishing
+ self.distribHyp.SetLayerDistribution( hyp )
+ return hyp
+
+ ## Define "NumberOfLayers" hypothesis, specifying a number of layers of
+ # prisms to build between the inner and outer shells
+ def NumberOfLayers(self, n ):
+ self.mesh.GetMesh().RemoveHypothesis( self.geom, self.distribHyp )
+ self.nbLayers = self.Hypothesis("NumberOfLayers")
+ self.nbLayers.SetNumberOfLayers( n )
+ return self.nbLayers
+
+ ## Define "LocalLength" hypothesis, specifying segment length
+ # to build between the inner and outer shells
+ # @param l for the length of segments
+ def LocalLength(self, l):
+ hyp = self.OwnHypothesis("LocalLength", [l])
+ hyp.SetLength(l)
+ return hyp
+
+ ## Define "NumberOfSegments" hypothesis, specifying a number of layers of
+ # prisms to build between the inner and outer shells
+ # @param n for the number of segments
+ # @param s for the scale factor (optional)
+ def NumberOfSegments(self, n, s=[]):
+ if s == []:
+ hyp = self.OwnHypothesis("NumberOfSegments", [n])
+ else:
+ hyp = self.OwnHypothesis("NumberOfSegments", [n,s])
+ hyp.SetDistrType( 1 )
+ hyp.SetScaleFactor(s)
+ hyp.SetNumberOfSegments(n)
+ return hyp
+
+ ## Define "Arithmetic1D" hypothesis, specifying distribution of segments
+ # to build between the inner and outer shells as arithmetic length increasing
+ # @param start for the length of the first segment
+ # @param end for the length of the last segment
+ def Arithmetic1D(self, start, end):
+ hyp = self.OwnHypothesis("Arithmetic1D", [start, end])
+ hyp.SetLength(start, 1)
+ hyp.SetLength(end , 0)
+ return hyp
+
+ ## Define "StartEndLength" hypothesis, specifying distribution of segments
+ # to build between the inner and outer shells as geometric length increasing
+ # @param start for the length of the first segment
+ # @param end for the length of the last segment
+ def StartEndLength(self, start, end):
+ hyp = self.OwnHypothesis("StartEndLength", [start, end])
+ hyp.SetLength(start, 1)
+ hyp.SetLength(end , 0)
+ return hyp
+
+ ## Define "AutomaticLength" hypothesis, specifying number of segments
+ # to build between the inner and outer shells
+ # @param fineness for the fineness [0-1]
+ def AutomaticLength(self, fineness=0):
+ hyp = self.OwnHypothesis("AutomaticLength")
+ hyp.SetFineness( fineness )
+ return hyp
+
+
+# Public class: Mesh
+# ==================
+
+## Class to define a mesh
+#
+# The class contains mesh shape, SMESH_Mesh, SMESH_MeshEditor
+# More details.
+class Mesh:
+
+ geom = 0
+ mesh = 0
+ editor = 0
+
+ ## Constructor
+ #
+ # Creates mesh on the shape \a geom(or the empty mesh if geom equal to 0),
+ # sets GUI name of this mesh to \a name.
+ # @param obj Shape to be meshed or SMESH_Mesh object
+ # @param name Study name of the mesh
+ def __init__(self, smeshpyD, geompyD, obj=0, name=0):
+ self.smeshpyD=smeshpyD
+ self.geompyD=geompyD
+ if obj is None:
+ obj = 0
+ if obj != 0:
+ if isinstance(obj, geompyDC.GEOM._objref_GEOM_Object):
+ self.geom = obj
+ self.mesh = self.smeshpyD.CreateMesh(self.geom)
+ elif isinstance(obj, SMESH._objref_SMESH_Mesh):
+ self.SetMesh(obj)
+ else:
+ self.mesh = self.smeshpyD.CreateEmptyMesh()
+ if name != 0:
+ SetName(self.mesh, name)
+ elif obj != 0:
+ SetName(self.mesh, GetName(obj))
+
+ self.editor = self.mesh.GetMeshEditor()
+
+ ## Method that inits the Mesh object from SMESH_Mesh interface
+ # @param theMesh is SMESH_Mesh object
+ def SetMesh(self, theMesh):
+ self.mesh = theMesh
+ self.geom = self.mesh.GetShapeToMesh()
+
+ ## Method that returns the mesh
+ # @return SMESH_Mesh object
+ def GetMesh(self):
+ return self.mesh
+
+ ## Get mesh name
+ def GetName(self):
+ name = GetName(self.GetMesh())
+ return name
+
+ ## Set name to mesh
+ def SetName(self, name):
+ SetName(self.GetMesh(), name)
+
+ ## Get the subMesh object associated to a subShape. The subMesh object
+ # gives access to nodes and elements IDs.
+ # \n SubMesh will be used instead of SubShape in a next idl version to
+ # adress a specific subMesh...
+ def GetSubMesh(self, theSubObject, name):
+ submesh = self.mesh.GetSubMesh(theSubObject, name)
+ return submesh
+
+ ## Method that returns the shape associated to the mesh
+ # @return GEOM_Object
+ def GetShape(self):
+ return self.geom
+
+ ## Method that associates given shape to the mesh(entails the mesh recreation)
+ # @param geom shape to be meshed(GEOM_Object)
+ def SetShape(self, geom):
+ self.mesh = self.smeshpyD.CreateMesh(geom)
+
+ ## Return true if hypotheses are defined well
+ # @param theMesh is an instance of Mesh class
+ # @param theSubObject subshape of a mesh shape
+ def IsReadyToCompute(self, theSubObject):
+ return self.smeshpyD.IsReadyToCompute(self.mesh, theSubObject)
+
+ ## Return errors of hypotheses definintion
+ # error list is empty if everything is OK
+ # @param theMesh is an instance of Mesh class
+ # @param theSubObject subshape of a mesh shape
+ # @return a list of errors
+ def GetAlgoState(self, theSubObject):
+ return self.smeshpyD.GetAlgoState(self.mesh, theSubObject)
+
+ ## Return geometrical object the given element is built on.
+ # The returned geometrical object, if not nil, is either found in the
+ # study or is published by this method with the given name
+ # @param theMesh is an instance of Mesh class
+ # @param theElementID an id of the mesh element
+ # @param theGeomName user defined name of geometrical object
+ # @return GEOM::GEOM_Object instance
+ def GetGeometryByMeshElement(self, theElementID, theGeomName):
+ return self.smeshpyD.GetGeometryByMeshElement( self.mesh, theElementID, theGeomName )
+
+ ## Returns mesh dimension depending on shape one
+ def MeshDimension(self):
+ shells = self.geompyD.SubShapeAllIDs( self.geom, geompyDC.ShapeType["SHELL"] )
+ if len( shells ) > 0 :
+ return 3
+ elif self.geompyD.NumberOfFaces( self.geom ) > 0 :
+ return 2
+ elif self.geompyD.NumberOfEdges( self.geom ) > 0 :
+ return 1
+ else:
+ return 0;
+ pass
+
+ ## Creates a segment discretization 1D algorithm.
+ # If the optional \a algo parameter is not sets, this algorithm is REGULAR.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param algo values are smesh.REGULAR or smesh.PYTHON for discretization via python function
+ # @param geom If defined, subshape to be meshed
+ def Segment(self, algo=REGULAR, geom=0):
+ ## if Segment(geom) is called by mistake
+ if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)):
+ algo, geom = geom, algo
+ pass
+ if algo == REGULAR:
+ return Mesh_Segment(self, geom)
+ elif algo == PYTHON:
+ return Mesh_Segment_Python(self, geom)
+ elif algo == COMPOSITE:
+ return Mesh_CompositeSegment(self, geom)
+ else:
+ return Mesh_Segment(self, geom)
+
+ ## Creates a triangle 2D algorithm for faces.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param algo values are: smesh.MEFISTO or smesh.NETGEN
+ # @param geom If defined, subshape to be meshed
+ def Triangle(self, algo=MEFISTO, geom=0):
+ ## if Triangle(geom) is called by mistake
+ if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)):
+ geom = algo
+ algo = MEFISTO
+
+ return Mesh_Triangle(self, algo, geom)
+
+ ## Creates a quadrangle 2D algorithm for faces.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom If defined, subshape to be meshed
+ def Quadrangle(self, geom=0):
+ return Mesh_Quadrangle(self, geom)
+
+ ## Creates a tetrahedron 3D algorithm for solids.
+ # The parameter \a algo permits to choice the algorithm: NETGEN or GHS3D
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param algo values are: smesh.NETGEN, smesh.GHS3D, smesh.FULL_NETGEN
+ # @param geom If defined, subshape to be meshed
+ def Tetrahedron(self, algo=NETGEN, geom=0):
+ ## if Tetrahedron(geom) is called by mistake
+ if ( isinstance( algo, geompyDC.GEOM._objref_GEOM_Object)):
+ algo, geom = geom, algo
+ pass
+ return Mesh_Tetrahedron(self, algo, geom)
+
+ ## Creates a hexahedron 3D algorithm for solids.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # \n Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom If defined, subshape to be meshed
+ def Hexahedron(self, geom=0):
+ return Mesh_Hexahedron(self, geom)
+
+ ## Deprecated, only for compatibility!
+ def Netgen(self, is3D, geom=0):
+ return Mesh_Netgen(self, is3D, geom)
+
+ ## Creates a projection 1D algorithm for edges.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom If defined, subshape to be meshed
+ def Projection1D(self, geom=0):
+ return Mesh_Projection1D(self, geom)
+
+ ## Creates a projection 2D algorithm for faces.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom If defined, subshape to be meshed
+ def Projection2D(self, geom=0):
+ return Mesh_Projection2D(self, geom)
+
+ ## Creates a projection 3D algorithm for solids.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom If defined, subshape to be meshed
+ def Projection3D(self, geom=0):
+ return Mesh_Projection3D(self, geom)
+
+ ## Creates a 3D extrusion (Prism 3D) or RadialPrism 3D algorithm for solids.
+ # If the optional \a geom parameter is not sets, this algorithm is global.
+ # Otherwise, this algorithm define a submesh based on \a geom subshape.
+ # @param geom If defined, subshape to be meshed
+ def Prism(self, geom=0):
+ shape = geom
+ if shape==0:
+ shape = self.geom
+ nbSolids = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SOLID"] ))
+ nbShells = len( self.geompyD.SubShapeAll( shape, geompyDC.ShapeType["SHELL"] ))
+ if nbSolids == 0 or nbSolids == nbShells:
+ return Mesh_Prism3D(self, geom)
+ return Mesh_RadialPrism3D(self, geom)
+
+ ## Compute the mesh and return the status of the computation
+ def Compute(self, geom=0):
+ if geom == 0 or not isinstance(geom, geompyDC.GEOM._objref_GEOM_Object):
+ if self.geom == 0:
+ print "Compute impossible: mesh is not constructed on geom shape."
+ return 0
+ else:
+ geom = self.geom
+ ok = False
+ try:
+ ok = self.smeshpyD.Compute(self.mesh, geom)
+ except SALOME.SALOME_Exception, ex:
+ print "Mesh computation failed, exception caught:"
+ print " ", ex.details.text
+ except:
+ import traceback
+ print "Mesh computation failed, exception caught:"
+ traceback.print_exc()
+ if not ok:
+ errors = self.smeshpyD.GetAlgoState( self.mesh, geom )
+ allReasons = ""
+ for err in errors:
+ if err.isGlobalAlgo:
+ glob = " global "
+ else:
+ glob = " local "
+ pass
+ dim = str(err.algoDim)
+ if err.name == MISSING_ALGO:
+ reason = glob + dim + "D algorithm is missing"
+ elif err.name == MISSING_HYPO:
+ name = '"' + err.algoName + '"'
+ reason = glob + dim + "D algorithm " + name + " misses " + dim + "D hypothesis"
+ elif err.name == NOT_CONFORM_MESH:
+ reason = "Global \"Not Conform mesh allowed\" hypothesis is missing"
+ elif err.name == BAD_PARAM_VALUE:
+ name = '"' + err.algoName + '"'
+ reason = "Hypothesis of" + glob + dim + "D algorithm " + name +\
+ " has a bad parameter value"
+ else:
+ reason = "For unknown reason."+\
+ " Revise Mesh.Compute() implementation in smesh.py!"
+ pass
+ if allReasons != "":
+ allReasons += "\n"
+ pass
+ allReasons += reason
+ pass
+ if allReasons != "":
+ print '"' + GetName(self.mesh) + '"',"has not been computed:"
+ print allReasons
+ else:
+ print '"' + GetName(self.mesh) + '"',"has not been computed."
+ pass
+ pass
+ if salome.sg.hasDesktop():
+ smeshgui = salome.ImportComponentGUI("SMESH")
+ smeshgui.Init(salome.myStudyId)
+ smeshgui.SetMeshIcon( salome.ObjectToID( self.mesh ), ok, (self.NbNodes()==0) )
+ salome.sg.updateObjBrowser(1)
+ pass
+ return ok
+
+ ## Compute tetrahedral mesh using AutomaticLength + MEFISTO + NETGEN
+ # The parameter \a fineness [0,-1] defines mesh fineness
+ def AutomaticTetrahedralization(self, fineness=0):
+ dim = self.MeshDimension()
+ # assign hypotheses
+ self.RemoveGlobalHypotheses()
+ self.Segment().AutomaticLength(fineness)
+ if dim > 1 :
+ self.Triangle().LengthFromEdges()
+ pass
+ if dim > 2 :
+ self.Tetrahedron(NETGEN)
+ pass
+ return self.Compute()
+
+ ## Compute hexahedral mesh using AutomaticLength + Quadrangle + Hexahedron
+ # The parameter \a fineness [0,-1] defines mesh fineness
+ def AutomaticHexahedralization(self, fineness=0):
+ dim = self.MeshDimension()
+ # assign hypotheses
+ self.RemoveGlobalHypotheses()
+ self.Segment().AutomaticLength(fineness)
+ if dim > 1 :
+ self.Quadrangle()
+ pass
+ if dim > 2 :
+ self.Hexahedron()
+ pass
+ return self.Compute()
+
+ ## Assign hypothesis
+ # @param hyp is a hypothesis to assign
+ # @param geom is subhape of mesh geometry
+ def AddHypothesis(self, hyp, geom=0 ):
+ if isinstance( hyp, Mesh_Algorithm ):
+ hyp = hyp.GetAlgorithm()
+ pass
+ if not geom:
+ geom = self.geom
+ pass
+ status = self.mesh.AddHypothesis(geom, hyp)
+ isAlgo = ( hyp._narrow( SMESH.SMESH_Algo ) is not None )
+ TreatHypoStatus( status, GetName( hyp ), GetName( geom ), isAlgo )
+ return status
+
+ ## Get the list of hypothesis added on a geom
+ # @param geom is subhape of mesh geometry
+ def GetHypothesisList(self, geom):
+ return self.mesh.GetHypothesisList( geom )
+
+ ## Removes all global hypotheses
+ def RemoveGlobalHypotheses(self):
+ current_hyps = self.mesh.GetHypothesisList( self.geom )
+ for hyp in current_hyps:
+ self.mesh.RemoveHypothesis( self.geom, hyp )
+ pass
+ pass
+
+ ## Create a mesh group based on geometric object \a grp
+ # and give a \a name, \n if this parameter is not defined
+ # the name is the same as the geometric group name \n
+ # Note: Works like GroupOnGeom().
+ # @param grp is a geometric group, a vertex, an edge, a face or a solid
+ # @param name is the name of the mesh group
+ # @return SMESH_GroupOnGeom
+ def Group(self, grp, name=""):
+ return self.GroupOnGeom(grp, name)
+
+ ## Deprecated, only for compatibility! Please, use ExportMED() method instead.
+ # Export the mesh in a file with the MED format and choice the \a version of MED format
+ # @param f is the file name
+ # @param version values are SMESH.MED_V2_1, SMESH.MED_V2_2
+ def ExportToMED(self, f, version, opt=0):
+ self.mesh.ExportToMED(f, opt, version)
+
+ ## Export the mesh in a file with the MED format
+ # @param f is the file name
+ # @param auto_groups boolean parameter for creating/not creating
+ # the groups Group_On_All_Nodes, Group_On_All_Faces, ... ;
+ # the typical use is auto_groups=false.
+ # @param version MED format version(MED_V2_1 or MED_V2_2)
+ def ExportMED(self, f, auto_groups=0, version=MED_V2_2):
+ self.mesh.ExportToMED(f, auto_groups, version)
+
+ ## Export the mesh in a file with the DAT format
+ # @param f is the file name
+ def ExportDAT(self, f):
+ self.mesh.ExportDAT(f)
+
+ ## Export the mesh in a file with the UNV format
+ # @param f is the file name
+ def ExportUNV(self, f):
+ self.mesh.ExportUNV(f)
+
+ ## Export the mesh in a file with the STL format
+ # @param f is the file name
+ # @param ascii defined the kind of file contents
+ def ExportSTL(self, f, ascii=1):
+ self.mesh.ExportSTL(f, ascii)
+
+
+ # Operations with groups:
+ # ----------------------
+
+ ## Creates an empty mesh group
+ # @param elementType is the type of elements in the group
+ # @param name is the name of the mesh group
+ # @return SMESH_Group
+ def CreateEmptyGroup(self, elementType, name):
+ return self.mesh.CreateGroup(elementType, name)
+
+ ## Creates a mesh group based on geometric object \a grp
+ # and give a \a name, \n if this parameter is not defined
+ # the name is the same as the geometric group name
+ # @param grp is a geometric group, a vertex, an edge, a face or a solid
+ # @param name is the name of the mesh group
+ # @return SMESH_GroupOnGeom
+ def GroupOnGeom(self, grp, name="", typ=None):
+ if name == "":
+ name = grp.GetName()
+
+ if typ == None:
+ tgeo = str(grp.GetShapeType())
+ if tgeo == "VERTEX":
+ typ = NODE
+ elif tgeo == "EDGE":
+ typ = EDGE
+ elif tgeo == "FACE":
+ typ = FACE
+ elif tgeo == "SOLID":
+ typ = VOLUME
+ elif tgeo == "SHELL":
+ typ = VOLUME
+ elif tgeo == "COMPOUND":
+ if len( self.geompyD.GetObjectIDs( grp )) == 0:
+ print "Mesh.Group: empty geometric group", GetName( grp )
+ return 0
+ tgeo = self.geompyD.GetType(grp)
+ if tgeo == geompyDC.ShapeType["VERTEX"]:
+ typ = NODE
+ elif tgeo == geompyDC.ShapeType["EDGE"]:
+ typ = EDGE
+ elif tgeo == geompyDC.ShapeType["FACE"]:
+ typ = FACE
+ elif tgeo == geompyDC.ShapeType["SOLID"]:
+ typ = VOLUME
+
+ if typ == None:
+ print "Mesh.Group: bad first argument: expected a group, a vertex, an edge, a face or a solid"
+ return 0
+ else:
+ return self.mesh.CreateGroupFromGEOM(typ, name, grp)
+
+ ## Create a mesh group by the given ids of elements
+ # @param groupName is the name of the mesh group
+ # @param elementType is the type of elements in the group
+ # @param elemIDs is the list of ids
+ # @return SMESH_Group
+ def MakeGroupByIds(self, groupName, elementType, elemIDs):
+ group = self.mesh.CreateGroup(elementType, groupName)
+ group.Add(elemIDs)
+ return group
+
+ ## Create a mesh group by the given conditions
+ # @param groupName is the name of the mesh group
+ # @param elementType is the type of elements in the group
+ # @param CritType is type of criterion( FT_Taper, FT_Area, FT_RangeOfIds, FT_LyingOnGeom etc. )
+ # @param Compare belong to {FT_LessThan, FT_MoreThan, FT_EqualTo}
+ # @param Treshold is threshold value (range of id ids as string, shape, numeric)
+ # @param UnaryOp is FT_LogicalNOT or FT_Undefined
+ # @return SMESH_Group
+ def MakeGroup(self,
+ groupName,
+ elementType,
+ CritType=FT_Undefined,
+ Compare=FT_EqualTo,
+ Treshold="",
+ UnaryOp=FT_Undefined):
+ aCriterion = self.smeshpyD.GetCriterion(elementType, CritType, Compare, Treshold, UnaryOp, FT_Undefined)
+ group = self.MakeGroupByCriterion(groupName, aCriterion)
+ return group
+
+ ## Create a mesh group by the given criterion
+ # @param groupName is the name of the mesh group
+ # @param Criterion is the instance of Criterion class
+ # @return SMESH_Group
+ def MakeGroupByCriterion(self, groupName, Criterion):
+ aFilterMgr = self.smeshpyD.CreateFilterManager()
+ aFilter = aFilterMgr.CreateFilter()
+ aCriteria = []
+ aCriteria.append(Criterion)
+ aFilter.SetCriteria(aCriteria)
+ group = self.MakeGroupByFilter(groupName, aFilter)
+ return group
+
+ ## Create a mesh group by the given criteria(list of criterions)
+ # @param groupName is the name of the mesh group
+ # @param Criteria is the list of criterions
+ # @return SMESH_Group
+ def MakeGroupByCriteria(self, groupName, theCriteria):
+ aFilterMgr = self.smeshpyD.CreateFilterManager()
+ aFilter = aFilterMgr.CreateFilter()
+ aFilter.SetCriteria(theCriteria)
+ group = self.MakeGroupByFilter(groupName, aFilter)
+ return group
+
+ ## Create a mesh group by the given filter
+ # @param groupName is the name of the mesh group
+ # @param Criterion is the instance of Filter class
+ # @return SMESH_Group
+ def MakeGroupByFilter(self, groupName, theFilter):
+ anIds = theFilter.GetElementsId(self.mesh)
+ anElemType = theFilter.GetElementType()
+ group = self.MakeGroupByIds(groupName, anElemType, anIds)
+ return group
+
+ ## Pass mesh elements through the given filter and return ids
+ # @param theFilter is SMESH_Filter
+ # @return list of ids
+ def GetIdsFromFilter(self, theFilter):
+ return theFilter.GetElementsId(self.mesh)
+
+ ## Verify whether 2D mesh element has free edges(edges connected to one face only)\n
+ # Returns list of special structures(borders).
+ # @return list of SMESH.FreeEdges.Border structure: edge id and two its nodes ids.
+ def GetFreeBorders(self):
+ aFilterMgr = self.smeshpyD.CreateFilterManager()
+ aPredicate = aFilterMgr.CreateFreeEdges()
+ aPredicate.SetMesh(self.mesh)
+ aBorders = aPredicate.GetBorders()
+ return aBorders
+
+ ## Remove a group
+ def RemoveGroup(self, group):
+ self.mesh.RemoveGroup(group)
+
+ ## Remove group with its contents
+ def RemoveGroupWithContents(self, group):
+ self.mesh.RemoveGroupWithContents(group)
+
+ ## Get the list of groups existing in the mesh
+ def GetGroups(self):
+ return self.mesh.GetGroups()
+
+ ## Get the list of names of groups existing in the mesh
+ def GetGroupNames(self):
+ groups = self.GetGroups()
+ names = []
+ for group in groups:
+ names.append(group.GetName())
+ return names
+
+ ## Union of two groups
+ # New group is created. All mesh elements that are
+ # present in initial groups are added to the new one
+ def UnionGroups(self, group1, group2, name):
+ return self.mesh.UnionGroups(group1, group2, name)
+
+ ## Intersection of two groups
+ # New group is created. All mesh elements that are
+ # present in both initial groups are added to the new one.
+ def IntersectGroups(self, group1, group2, name):
+ return self.mesh.IntersectGroups(group1, group2, name)
+
+ ## Cut of two groups
+ # New group is created. All mesh elements that are present in
+ # main group but do not present in tool group are added to the new one
+ def CutGroups(self, mainGroup, toolGroup, name):
+ return self.mesh.CutGroups(mainGroup, toolGroup, name)
+
+
+ # Get some info about mesh:
+ # ------------------------
+
+ ## Get the log of nodes and elements added or removed since previous
+ # clear of the log.
+ # @param clearAfterGet log is emptied after Get (safe if concurrents access)
+ # @return list of log_block structures:
+ # commandType
+ # number
+ # coords
+ # indexes
+ def GetLog(self, clearAfterGet):
+ return self.mesh.GetLog(clearAfterGet)
+
+ ## Clear the log of nodes and elements added or removed since previous
+ # clear. Must be used immediately after GetLog if clearAfterGet is false.
+ def ClearLog(self):
+ self.mesh.ClearLog()
+
+ ## Get the internal Id
+ def GetId(self):
+ return self.mesh.GetId()
+
+ ## Get the study Id
+ def GetStudyId(self):
+ return self.mesh.GetStudyId()
+
+ ## Check group names for duplications.
+ # Consider maximum group name length stored in MED file.
+ def HasDuplicatedGroupNamesMED(self):
+ return self.mesh.GetStudyId()
+
+ ## Obtain instance of SMESH_MeshEditor
+ def GetMeshEditor(self):
+ return self.mesh.GetMeshEditor()
+
+ ## Get MED Mesh
+ def GetMEDMesh(self):
+ return self.mesh.GetMEDMesh()
+
+
+ # Get informations about mesh contents:
+ # ------------------------------------
+
+ ## Returns number of nodes in mesh
+ def NbNodes(self):
+ return self.mesh.NbNodes()
+
+ ## Returns number of elements in mesh
+ def NbElements(self):
+ return self.mesh.NbElements()
+
+ ## Returns number of edges in mesh
+ def NbEdges(self):
+ return self.mesh.NbEdges()
+
+ ## Returns number of edges with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbEdgesOfOrder(self, elementOrder):
+ return self.mesh.NbEdgesOfOrder(elementOrder)
+
+ ## Returns number of faces in mesh
+ def NbFaces(self):
+ return self.mesh.NbFaces()
+
+ ## Returns number of faces with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbFacesOfOrder(self, elementOrder):
+ return self.mesh.NbFacesOfOrder(elementOrder)
+
+ ## Returns number of triangles in mesh
+ def NbTriangles(self):
+ return self.mesh.NbTriangles()
+
+ ## Returns number of triangles with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbTrianglesOfOrder(self, elementOrder):
+ return self.mesh.NbTrianglesOfOrder(elementOrder)
+
+ ## Returns number of quadrangles in mesh
+ def NbQuadrangles(self):
+ return self.mesh.NbQuadrangles()
+
+ ## Returns number of quadrangles with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbQuadranglesOfOrder(self, elementOrder):
+ return self.mesh.NbQuadranglesOfOrder(elementOrder)
+
+ ## Returns number of polygons in mesh
+ def NbPolygons(self):
+ return self.mesh.NbPolygons()
+
+ ## Returns number of volumes in mesh
+ def NbVolumes(self):
+ return self.mesh.NbVolumes()
+
+ ## Returns number of volumes with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbVolumesOfOrder(self, elementOrder):
+ return self.mesh.NbVolumesOfOrder(elementOrder)
+
+ ## Returns number of tetrahedrons in mesh
+ def NbTetras(self):
+ return self.mesh.NbTetras()
+
+ ## Returns number of tetrahedrons with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbTetrasOfOrder(self, elementOrder):
+ return self.mesh.NbTetrasOfOrder(elementOrder)
+
+ ## Returns number of hexahedrons in mesh
+ def NbHexas(self):
+ return self.mesh.NbHexas()
+
+ ## Returns number of hexahedrons with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbHexasOfOrder(self, elementOrder):
+ return self.mesh.NbHexasOfOrder(elementOrder)
+
+ ## Returns number of pyramids in mesh
+ def NbPyramids(self):
+ return self.mesh.NbPyramids()
+
+ ## Returns number of pyramids with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbPyramidsOfOrder(self, elementOrder):
+ return self.mesh.NbPyramidsOfOrder(elementOrder)
+
+ ## Returns number of prisms in mesh
+ def NbPrisms(self):
+ return self.mesh.NbPrisms()
+
+ ## Returns number of prisms with given order in mesh
+ # @param elementOrder is order of elements:
+ # ORDER_ANY, ORDER_LINEAR or ORDER_QUADRATIC
+ def NbPrismsOfOrder(self, elementOrder):
+ return self.mesh.NbPrismsOfOrder(elementOrder)
+
+ ## Returns number of polyhedrons in mesh
+ def NbPolyhedrons(self):
+ return self.mesh.NbPolyhedrons()
+
+ ## Returns number of submeshes in mesh
+ def NbSubMesh(self):
+ return self.mesh.NbSubMesh()
+
+ ## Returns list of mesh elements ids
+ def GetElementsId(self):
+ return self.mesh.GetElementsId()
+
+ ## Returns list of ids of mesh elements with given type
+ # @param elementType is required type of elements
+ def GetElementsByType(self, elementType):
+ return self.mesh.GetElementsByType(elementType)
+
+ ## Returns list of mesh nodes ids
+ def GetNodesId(self):
+ return self.mesh.GetNodesId()
+
+ # Get informations about mesh elements:
+ # ------------------------------------
+
+ ## Returns type of mesh element
+ def GetElementType(self, id, iselem):
+ return self.mesh.GetElementType(id, iselem)
+
+ ## Returns list of submesh elements ids
+ # @param shapeID is geom object(subshape) IOR
+ def GetSubMeshElementsId(self, shapeID):
+ return self.mesh.GetSubMeshElementsId(shapeID)
+
+ ## Returns list of submesh nodes ids
+ # @param shapeID is geom object(subshape) IOR
+ def GetSubMeshNodesId(self, shapeID, all):
+ return self.mesh.GetSubMeshNodesId(shapeID, all)
+
+ ## Returns list of ids of submesh elements with given type
+ # @param shapeID is geom object(subshape) IOR
+ def GetSubMeshElementType(self, shapeID):
+ return self.mesh.GetSubMeshElementType(shapeID)
+
+ ## Get mesh description
+ def Dump(self):
+ return self.mesh.Dump()
+
+
+ # Get information about nodes and elements of mesh by its ids:
+ # -----------------------------------------------------------
+
+ ## Get XYZ coordinates of node as list of double
+ # \n If there is not node for given ID - returns empty list
+ def GetNodeXYZ(self, id):
+ return self.mesh.GetNodeXYZ(id)
+
+ ## For given node returns list of IDs of inverse elements
+ # \n If there is not node for given ID - returns empty list
+ def GetNodeInverseElements(self, id):
+ return self.mesh.GetNodeInverseElements(id)
+
+ ## If given element is node returns IDs of shape from position
+ # \n If there is not node for given ID - returns -1
+ def GetShapeID(self, id):
+ return self.mesh.GetShapeID(id)
+
+ ## For given element returns ID of result shape after
+ # FindShape() from SMESH_MeshEditor
+ # \n If there is not element for given ID - returns -1
+ def GetShapeIDForElem(self,id):
+ return self.mesh.GetShapeIDForElem(id)
+
+ ## Returns number of nodes for given element
+ # \n If there is not element for given ID - returns -1
+ def GetElemNbNodes(self, id):
+ return self.mesh.GetElemNbNodes(id)
+
+ ## Returns ID of node by given index for given element
+ # \n If there is not element for given ID - returns -1
+ # \n If there is not node for given index - returns -2
+ def GetElemNode(self, id, index):
+ return self.mesh.GetElemNode(id, index)
+
+ ## Returns true if given node is medium node
+ # in given quadratic element
+ def IsMediumNode(self, elementID, nodeID):
+ return self.mesh.IsMediumNode(elementID, nodeID)
+
+ ## Returns true if given node is medium node
+ # in one of quadratic elements
+ def IsMediumNodeOfAnyElem(self, nodeID, elementType):
+ return self.mesh.IsMediumNodeOfAnyElem(nodeID, elementType)
+
+ ## Returns number of edges for given element
+ def ElemNbEdges(self, id):
+ return self.mesh.ElemNbEdges(id)
+
+ ## Returns number of faces for given element
+ def ElemNbFaces(self, id):
+ return self.mesh.ElemNbFaces(id)
+
+ ## Returns true if given element is polygon
+ def IsPoly(self, id):
+ return self.mesh.IsPoly(id)
+
+ ## Returns true if given element is quadratic
+ def IsQuadratic(self, id):
+ return self.mesh.IsQuadratic(id)
+
+ ## Returns XYZ coordinates of bary center for given element
+ # as list of double
+ # \n If there is not element for given ID - returns empty list
+ def BaryCenter(self, id):
+ return self.mesh.BaryCenter(id)
+
+
+ # Mesh edition (SMESH_MeshEditor functionality):
+ # ---------------------------------------------
+
+ ## Removes elements from mesh by ids
+ # @param IDsOfElements is list of ids of elements to remove
+ def RemoveElements(self, IDsOfElements):
+ return self.editor.RemoveElements(IDsOfElements)
+
+ ## Removes nodes from mesh by ids
+ # @param IDsOfNodes is list of ids of nodes to remove
+ def RemoveNodes(self, IDsOfNodes):
+ return self.editor.RemoveNodes(IDsOfNodes)
+
+ ## Add node to mesh by coordinates
+ def AddNode(self, x, y, z):
+ return self.editor.AddNode( x, y, z)
+
+
+ ## Create edge both similar and quadratic (this is determed
+ # by number of given nodes).
+ # @param IdsOfNodes List of node IDs for creation of element.
+ # Needed order of nodes in this list corresponds to description
+ # of MED. \n This description is located by the following link:
+ # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+ def AddEdge(self, IDsOfNodes):
+ return self.editor.AddEdge(IDsOfNodes)
+
+ ## Create face both similar and quadratic (this is determed
+ # by number of given nodes).
+ # @param IdsOfNodes List of node IDs for creation of element.
+ # Needed order of nodes in this list corresponds to description
+ # of MED. \n This description is located by the following link:
+ # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+ def AddFace(self, IDsOfNodes):
+ return self.editor.AddFace(IDsOfNodes)
+
+ ## Add polygonal face to mesh by list of nodes ids
+ def AddPolygonalFace(self, IdsOfNodes):
+ return self.editor.AddPolygonalFace(IdsOfNodes)
+
+ ## Create volume both similar and quadratic (this is determed
+ # by number of given nodes).
+ # @param IdsOfNodes List of node IDs for creation of element.
+ # Needed order of nodes in this list corresponds to description
+ # of MED. \n This description is located by the following link:
+ # http://www.salome-platform.org/salome2/web_med_internet/logiciels/medV2.2.2_doc_html/html/modele_de_donnees.html#3.
+ def AddVolume(self, IDsOfNodes):
+ return self.editor.AddVolume(IDsOfNodes)
+
+ ## Create volume of many faces, giving nodes for each face.
+ # @param IdsOfNodes List of node IDs for volume creation face by face.
+ # @param Quantities List of integer values, Quantities[i]
+ # gives quantity of nodes in face number i.
+ def AddPolyhedralVolume (self, IdsOfNodes, Quantities):
+ return self.editor.AddPolyhedralVolume(IdsOfNodes, Quantities)
+
+ ## Create volume of many faces, giving IDs of existing faces.
+ # @param IdsOfFaces List of face IDs for volume creation.
+ #
+ # Note: The created volume will refer only to nodes
+ # of the given faces, not to the faces itself.
+ def AddPolyhedralVolumeByFaces (self, IdsOfFaces):
+ return self.editor.AddPolyhedralVolumeByFaces(IdsOfFaces)
+
+ ## Move node with given id
+ # @param NodeID id of the node
+ # @param x new X coordinate
+ # @param y new Y coordinate
+ # @param z new Z coordinate
+ def MoveNode(self, NodeID, x, y, z):
+ return self.editor.MoveNode(NodeID, x, y, z)
+
+ ## Find a node closest to a point
+ # @param x X coordinate of a point
+ # @param y Y coordinate of a point
+ # @param z Z coordinate of a point
+ # @return id of a node
+ def FindNodeClosestTo(self, x, y, z):
+ preview = self.mesh.GetMeshEditPreviewer()
+ return preview.MoveClosestNodeToPoint(x, y, z, -1)
+
+ ## Find a node closest to a point and move it to a point location
+ # @param x X coordinate of a point
+ # @param y Y coordinate of a point
+ # @param z Z coordinate of a point
+ # @return id of a moved node
+ def MeshToPassThroughAPoint(self, x, y, z):
+ return self.editor.MoveClosestNodeToPoint(x, y, z, -1)
+
+ ## Replace two neighbour triangles sharing Node1-Node2 link
+ # with ones built on the same 4 nodes but having other common link.
+ # @param NodeID1 first node id
+ # @param NodeID2 second node id
+ # @return false if proper faces not found
+ def InverseDiag(self, NodeID1, NodeID2):
+ return self.editor.InverseDiag(NodeID1, NodeID2)
+
+ ## Replace two neighbour triangles sharing Node1-Node2 link
+ # with a quadrangle built on the same 4 nodes.
+ # @param NodeID1 first node id
+ # @param NodeID2 second node id
+ # @return false if proper faces not found
+ def DeleteDiag(self, NodeID1, NodeID2):
+ return self.editor.DeleteDiag(NodeID1, NodeID2)
+
+ ## Reorient elements by ids
+ # @param IDsOfElements if undefined reorient all mesh elements
+ def Reorient(self, IDsOfElements=None):
+ if IDsOfElements == None:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.Reorient(IDsOfElements)
+
+ ## Reorient all elements of the object
+ # @param theObject is mesh, submesh or group
+ def ReorientObject(self, theObject):
+ return self.editor.ReorientObject(theObject)
+
+ ## Fuse neighbour triangles into quadrangles.
+ # @param IDsOfElements The triangles to be fused,
+ # @param theCriterion is FT_...; used to choose a neighbour to fuse with.
+ # @param MaxAngle is a max angle between element normals at which fusion
+ # is still performed; theMaxAngle is mesured in radians.
+ # @return TRUE in case of success, FALSE otherwise.
+ def TriToQuad(self, IDsOfElements, theCriterion, MaxAngle):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.TriToQuad(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
+
+ ## Fuse neighbour triangles of the object into quadrangles
+ # @param theObject is mesh, submesh or group
+ # @param theCriterion is FT_...; used to choose a neighbour to fuse with.
+ # @param MaxAngle is a max angle between element normals at which fusion
+ # is still performed; theMaxAngle is mesured in radians.
+ # @return TRUE in case of success, FALSE otherwise.
+ def TriToQuadObject (self, theObject, theCriterion, MaxAngle):
+ return self.editor.TriToQuadObject(theObject, self.smeshpyD.GetFunctor(theCriterion), MaxAngle)
+
+ ## Split quadrangles into triangles.
+ # @param IDsOfElements the faces to be splitted.
+ # @param theCriterion is FT_...; used to choose a diagonal for splitting.
+ # @param @return TRUE in case of success, FALSE otherwise.
+ def QuadToTri (self, IDsOfElements, theCriterion):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.QuadToTri(IDsOfElements, self.smeshpyD.GetFunctor(theCriterion))
+
+ ## Split quadrangles into triangles.
+ # @param theObject object to taking list of elements from, is mesh, submesh or group
+ # @param theCriterion is FT_...; used to choose a diagonal for splitting.
+ def QuadToTriObject (self, theObject, theCriterion):
+ return self.editor.QuadToTriObject(theObject, self.smeshpyD.GetFunctor(theCriterion))
+
+ ## Split quadrangles into triangles.
+ # @param theElems The faces to be splitted
+ # @param the13Diag is used to choose a diagonal for splitting.
+ # @return TRUE in case of success, FALSE otherwise.
+ def SplitQuad (self, IDsOfElements, Diag13):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.SplitQuad(IDsOfElements, Diag13)
+
+ ## Split quadrangles into triangles.
+ # @param theObject is object to taking list of elements from, is mesh, submesh or group
+ def SplitQuadObject (self, theObject, Diag13):
+ return self.editor.SplitQuadObject(theObject, Diag13)
+
+ ## Find better splitting of the given quadrangle.
+ # @param IDOfQuad ID of the quadrangle to be splitted.
+ # @param theCriterion is FT_...; a criterion to choose a diagonal for splitting.
+ # @return 1 if 1-3 diagonal is better, 2 if 2-4
+ # diagonal is better, 0 if error occurs.
+ def BestSplit (self, IDOfQuad, theCriterion):
+ return self.editor.BestSplit(IDOfQuad, self.smeshpyD.GetFunctor(theCriterion))
+
+ ## Split quafrangle faces near triangular facets of volumes
+ #
+ def SplitQuadsNearTriangularFacets(self):
+ faces_array = self.GetElementsByType(SMESH.FACE)
+ for face_id in faces_array:
+ if self.GetElemNbNodes(face_id) == 4: # quadrangle
+ quad_nodes = self.mesh.GetElemNodes(face_id)
+ node1_elems = self.GetNodeInverseElements(quad_nodes[1 -1])
+ isVolumeFound = False
+ for node1_elem in node1_elems:
+ if not isVolumeFound:
+ if self.GetElementType(node1_elem, True) == SMESH.VOLUME:
+ nb_nodes = self.GetElemNbNodes(node1_elem)
+ if 3 < nb_nodes and nb_nodes < 7: # tetra or penta, or prism
+ volume_elem = node1_elem
+ volume_nodes = self.mesh.GetElemNodes(volume_elem)
+ if volume_nodes.count(quad_nodes[2 -1]) > 0: # 1,2
+ if volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,2,4
+ isVolumeFound = True
+ if volume_nodes.count(quad_nodes[3 -1]) == 0: # 1,2,4 & !3
+ self.SplitQuad([face_id], False) # diagonal 2-4
+ elif volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,2,3 & !4
+ isVolumeFound = True
+ self.SplitQuad([face_id], True) # diagonal 1-3
+ elif volume_nodes.count(quad_nodes[4 -1]) > 0: # 1,4 & !2
+ if volume_nodes.count(quad_nodes[3 -1]) > 0: # 1,4,3 & !2
+ isVolumeFound = True
+ self.SplitQuad([face_id], True) # diagonal 1-3
+
+ ## @brief Split hexahedrons into tetrahedrons.
+ #
+ # Use pattern mapping functionality for splitting.
+ # @param theObject object to take list of hexahedrons from; is mesh, submesh or group.
+ # @param theNode000,theNode001 is in range [0,7]; give an orientation of the
+ # pattern relatively each hexahedron: the (0,0,0) key-point of pattern
+ # will be mapped into <theNode000>-th node of each volume, the (0,0,1)
+ # key-point will be mapped into <theNode001>-th node of each volume.
+ # The (0,0,0) key-point of used pattern corresponds to not split corner.
+ # @param @return TRUE in case of success, FALSE otherwise.
+ def SplitHexaToTetras (self, theObject, theNode000, theNode001):
+ # Pattern: 5.---------.6
+ # /|#* /|
+ # / | #* / |
+ # / | # * / |
+ # / | # /* |
+ # (0,0,1) 4.---------.7 * |
+ # |#* |1 | # *|
+ # | # *.----|---#.2
+ # | #/ * | /
+ # | /# * | /
+ # | / # * | /
+ # |/ #*|/
+ # (0,0,0) 0.---------.3
+ pattern_tetra = "!!! Nb of points: \n 8 \n\
+ !!! Points: \n\
+ 0 0 0 !- 0 \n\
+ 0 1 0 !- 1 \n\
+ 1 1 0 !- 2 \n\
+ 1 0 0 !- 3 \n\
+ 0 0 1 !- 4 \n\
+ 0 1 1 !- 5 \n\
+ 1 1 1 !- 6 \n\
+ 1 0 1 !- 7 \n\
+ !!! Indices of points of 6 tetras: \n\
+ 0 3 4 1 \n\
+ 7 4 3 1 \n\
+ 4 7 5 1 \n\
+ 6 2 5 7 \n\
+ 1 5 2 7 \n\
+ 2 3 1 7 \n"
+
+ pattern = self.smeshpyD.GetPattern()
+ isDone = pattern.LoadFromFile(pattern_tetra)
+ if not isDone:
+ print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
+ return isDone
+
+ pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
+ isDone = pattern.MakeMesh(self.mesh, False, False)
+ if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
+
+ # split quafrangle faces near triangular facets of volumes
+ self.SplitQuadsNearTriangularFacets()
+
+ return isDone
+
+ ## @brief Split hexahedrons into prisms.
+ #
+ # Use pattern mapping functionality for splitting.
+ # @param theObject object to take list of hexahedrons from; is mesh, submesh or group.
+ # @param theNode000,theNode001 is in range [0,7]; give an orientation of the
+ # pattern relatively each hexahedron: the (0,0,0) key-point of pattern
+ # will be mapped into <theNode000>-th node of each volume, the (0,0,1)
+ # key-point will be mapped into <theNode001>-th node of each volume.
+ # The edge (0,0,0)-(0,0,1) of used pattern connects two not split corners.
+ # @param @return TRUE in case of success, FALSE otherwise.
+ def SplitHexaToPrisms (self, theObject, theNode000, theNode001):
+ # Pattern: 5.---------.6
+ # /|# /|
+ # / | # / |
+ # / | # / |
+ # / | # / |
+ # (0,0,1) 4.---------.7 |
+ # | | | |
+ # | 1.----|----.2
+ # | / * | /
+ # | / * | /
+ # | / * | /
+ # |/ *|/
+ # (0,0,0) 0.---------.3
+ pattern_prism = "!!! Nb of points: \n 8 \n\
+ !!! Points: \n\
+ 0 0 0 !- 0 \n\
+ 0 1 0 !- 1 \n\
+ 1 1 0 !- 2 \n\
+ 1 0 0 !- 3 \n\
+ 0 0 1 !- 4 \n\
+ 0 1 1 !- 5 \n\
+ 1 1 1 !- 6 \n\
+ 1 0 1 !- 7 \n\
+ !!! Indices of points of 2 prisms: \n\
+ 0 1 3 4 5 7 \n\
+ 2 3 1 6 7 5 \n"
+
+ pattern = self.smeshpyD.GetPattern()
+ isDone = pattern.LoadFromFile(pattern_prism)
+ if not isDone:
+ print 'Pattern.LoadFromFile :', pattern.GetErrorCode()
+ return isDone
+
+ pattern.ApplyToHexahedrons(self.mesh, theObject.GetIDs(), theNode000, theNode001)
+ isDone = pattern.MakeMesh(self.mesh, False, False)
+ if not isDone: print 'Pattern.MakeMesh :', pattern.GetErrorCode()
+
+ # split quafrangle faces near triangular facets of volumes
+ self.SplitQuadsNearTriangularFacets()
+
+ return isDone
+
+ ## Smooth elements
+ # @param IDsOfElements list if ids of elements to smooth
+ # @param IDsOfFixedNodes list of ids of fixed nodes.
+ # Note that nodes built on edges and boundary nodes are always fixed.
+ # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxAspectRatio varies in range [1.0, inf]
+ # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ def Smooth(self, IDsOfElements, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.Smooth(IDsOfElements, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method)
+
+ ## Smooth elements belong to given object
+ # @param theObject object to smooth
+ # @param IDsOfFixedNodes list of ids of fixed nodes.
+ # Note that nodes built on edges and boundary nodes are always fixed.
+ # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxAspectRatio varies in range [1.0, inf]
+ # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ def SmoothObject(self, theObject, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxxAspectRatio, Method):
+ return self.editor.SmoothObject(theObject, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxxAspectRatio, Method)
+
+ ## Parametric smooth the given elements
+ # @param IDsOfElements list if ids of elements to smooth
+ # @param IDsOfFixedNodes list of ids of fixed nodes.
+ # Note that nodes built on edges and boundary nodes are always fixed.
+ # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxAspectRatio varies in range [1.0, inf]
+ # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ def SmoothParametric(self,IDsOfElements, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ return self.editor.SmoothParametric(IDsOfElements, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method)
+
+ ## Parametric smooth elements belong to given object
+ # @param theObject object to smooth
+ # @param IDsOfFixedNodes list of ids of fixed nodes.
+ # Note that nodes built on edges and boundary nodes are always fixed.
+ # @param MaxNbOfIterations maximum number of iterations
+ # @param MaxAspectRatio varies in range [1.0, inf]
+ # @param Method is Laplacian(LAPLACIAN_SMOOTH) or Centroidal(CENTROIDAL_SMOOTH)
+ def SmoothParametricObject(self, theObject, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method):
+ return self.editor.SmoothParametricObject(theObject, IDsOfFixedNodes,
+ MaxNbOfIterations, MaxAspectRatio, Method)
+
+ ## Converts all mesh to quadratic one, deletes old elements, replacing
+ # them with quadratic ones with the same id.
+ def ConvertToQuadratic(self, theForce3d):
+ self.editor.ConvertToQuadratic(theForce3d)
+
+ ## Converts all mesh from quadratic to ordinary ones,
+ # deletes old quadratic elements, \n replacing
+ # them with ordinary mesh elements with the same id.
+ def ConvertFromQuadratic(self):
+ return self.editor.ConvertFromQuadratic()
+
+ ## Renumber mesh nodes
+ def RenumberNodes(self):
+ self.editor.RenumberNodes()
+
+ ## Renumber mesh elements
+ def RenumberElements(self):
+ self.editor.RenumberElements()
+
+ ## Generate new elements by rotation of the elements around the axis
+ # @param IDsOfElements list of ids of elements to sweep
+ # @param Axix axis of rotation, AxisStruct or line(geom object)
+ # @param AngleInRadians angle of Rotation
+ # @param NbOfSteps number of steps
+ # @param Tolerance tolerance
+ def RotationSweep(self, IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Axix, geompyDC.GEOM._objref_GEOM_Object)):
+ Axix = self.smeshpyD.GetAxisStruct(Axix)
+ self.editor.RotationSweep(IDsOfElements, Axix, AngleInRadians, NbOfSteps, Tolerance)
+
+ ## Generate new elements by rotation of the elements of object around the axis
+ # @param theObject object wich elements should be sweeped
+ # @param Axix axis of rotation, AxisStruct or line(geom object)
+ # @param AngleInRadians angle of Rotation
+ # @param NbOfSteps number of steps
+ # @param Tolerance tolerance
+ def RotationSweepObject(self, theObject, Axix, AngleInRadians, NbOfSteps, Tolerance):
+ if ( isinstance( Axix, geompyDC.GEOM._objref_GEOM_Object)):
+ Axix = self.smeshpyD.GetAxisStruct(Axix)
+ self.editor.RotationSweepObject(theObject, Axix, AngleInRadians, NbOfSteps, Tolerance)
+
+ ## Generate new elements by extrusion of the elements with given ids
+ # @param IDsOfElements list of elements ids for extrusion
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ def ExtrusionSweep(self, IDsOfElements, StepVector, NbOfSteps):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
+ StepVector = self.smeshpyD.GetDirStruct(StepVector)
+ self.editor.ExtrusionSweep(IDsOfElements, StepVector, NbOfSteps)
+
+ ## Generate new elements by extrusion of the elements with given ids
+ # @param IDsOfElements is ids of elements
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ # @param ExtrFlags set flags for performing extrusion
+ # @param SewTolerance uses for comparing locations of nodes if flag
+ # EXTRUSION_FLAG_SEW is set
+ def AdvancedExtrusion(self, IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance):
+ if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
+ StepVector = self.smeshpyD.GetDirStruct(StepVector)
+ self.editor.AdvancedExtrusion(IDsOfElements, StepVector, NbOfSteps, ExtrFlags, SewTolerance)
+
+ ## Generate new elements by extrusion of the elements belong to object
+ # @param theObject object wich elements should be processed
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ def ExtrusionSweepObject(self, theObject, StepVector, NbOfSteps):
+ if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
+ StepVector = self.smeshpyD.GetDirStruct(StepVector)
+ self.editor.ExtrusionSweepObject(theObject, StepVector, NbOfSteps)
+
+ ## Generate new elements by extrusion of the elements belong to object
+ # @param theObject object wich elements should be processed
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ def ExtrusionSweepObject1D(self, theObject, StepVector, NbOfSteps):
+ if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
+ StepVector = self.smeshpyD.GetDirStruct(StepVector)
+ self.editor.ExtrusionSweepObject1D(theObject, StepVector, NbOfSteps)
+
+ ## Generate new elements by extrusion of the elements belong to object
+ # @param theObject object wich elements should be processed
+ # @param StepVector vector, defining the direction and value of extrusion
+ # @param NbOfSteps the number of steps
+ def ExtrusionSweepObject2D(self, theObject, StepVector, NbOfSteps):
+ if ( isinstance( StepVector, geompyDC.GEOM._objref_GEOM_Object)):
+ StepVector = self.smeshpyD.GetDirStruct(StepVector)
+ self.editor.ExtrusionSweepObject2D(theObject, StepVector, NbOfSteps)
+
+ ## Generate new elements by extrusion of the given elements
+ # A path of extrusion must be a meshed edge.
+ # @param IDsOfElements is ids of elements
+ # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
+ # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
+ # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
+ # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
+ # @param Angles list of angles
+ # @param HasRefPoint allows to use base point
+ # @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
+ # User can specify any point as the Base Point and the shape will be rotated with respect to this point.
+ # @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps
+ def ExtrusionAlongPath(self, IDsOfElements, PathMesh, PathShape, NodeStart,
+ HasAngles, Angles, HasRefPoint, RefPoint, LinearVariation=False):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
+ RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
+ pass
+ return self.editor.ExtrusionAlongPath(IDsOfElements, PathMesh.GetMesh(), PathShape, NodeStart,
+ HasAngles, Angles, HasRefPoint, RefPoint)
+
+ ## Generate new elements by extrusion of the elements belong to object
+ # A path of extrusion must be a meshed edge.
+ # @param IDsOfElements is ids of elements
+ # @param PathMesh mesh containing a 1D sub-mesh on the edge, along which proceeds the extrusion
+ # @param PathShape is shape(edge); as the mesh can be complex, the edge is used to define the sub-mesh for the path
+ # @param NodeStart the first or the last node on the edge. It is used to define the direction of extrusion
+ # @param HasAngles allows the shape to be rotated around the path to get the resulting mesh in a helical fashion
+ # @param Angles list of angles
+ # @param HasRefPoint allows to use base point
+ # @param RefPoint point around which the shape is rotated(the mass center of the shape by default).
+ # User can specify any point as the Base Point and the shape will be rotated with respect to this point.
+ # @param LinearVariation makes compute rotation angles as linear variation of given Angles along path steps
+ def ExtrusionAlongPathObject(self, theObject, PathMesh, PathShape, NodeStart,
+ HasAngles, Angles, HasRefPoint, RefPoint, LinearVariation=False):
+ if ( isinstance( RefPoint, geompyDC.GEOM._objref_GEOM_Object)):
+ RefPoint = self.smeshpyD.GetPointStruct(RefPoint)
+ return self.editor.ExtrusionAlongPathObject(theObject, PathMesh.GetMesh(), PathShape, NodeStart,
+ HasAngles, Angles, HasRefPoint, RefPoint, LinearVariation)
+
+ ## Symmetrical copy of mesh elements
+ # @param IDsOfElements list of elements ids
+ # @param Mirror is AxisStruct or geom object(point, line, plane)
+ # @param theMirrorType is POINT, AXIS or PLANE
+ # If the Mirror is geom object this parameter is unnecessary
+ # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
+ def Mirror(self, IDsOfElements, Mirror, theMirrorType, Copy=0):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
+ Mirror = self.smeshpyD.GetAxisStruct(Mirror)
+ self.editor.Mirror(IDsOfElements, Mirror, theMirrorType, Copy)
+
+ ## Symmetrical copy of object
+ # @param theObject mesh, submesh or group
+ # @param Mirror is AxisStruct or geom object(point, line, plane)
+ # @param theMirrorType is POINT, AXIS or PLANE
+ # If the Mirror is geom object this parameter is unnecessary
+ # @param Copy allows to copy element(Copy is 1) or to replace with its mirroring(Copy is 0)
+ def MirrorObject (self, theObject, Mirror, theMirrorType, Copy=0):
+ if ( isinstance( Mirror, geompyDC.GEOM._objref_GEOM_Object)):
+ Mirror = self.smeshpyD.GetAxisStruct(Mirror)
+ self.editor.MirrorObject(theObject, Mirror, theMirrorType, Copy)
+
+ ## Translates the elements
+ # @param IDsOfElements list of elements ids
+ # @param Vector direction of translation(DirStruct or vector)
+ # @param Copy allows to copy the translated elements
+ def Translate(self, IDsOfElements, Vector, Copy):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
+ Vector = self.smeshpyD.GetDirStruct(Vector)
+ self.editor.Translate(IDsOfElements, Vector, Copy)
+
+ ## Translates the object
+ # @param theObject object to translate(mesh, submesh, or group)
+ # @param Vector direction of translation(DirStruct or geom vector)
+ # @param Copy allows to copy the translated elements
+ def TranslateObject(self, theObject, Vector, Copy):
+ if ( isinstance( Vector, geompyDC.GEOM._objref_GEOM_Object)):
+ Vector = self.smeshpyD.GetDirStruct(Vector)
+ self.editor.TranslateObject(theObject, Vector, Copy)
+
+ ## Rotates the elements
+ # @param IDsOfElements list of elements ids
+ # @param Axis axis of rotation(AxisStruct or geom line)
+ # @param AngleInRadians angle of rotation(in radians)
+ # @param Copy allows to copy the rotated elements
+ def Rotate (self, IDsOfElements, Axis, AngleInRadians, Copy):
+ if IDsOfElements == []:
+ IDsOfElements = self.GetElementsId()
+ if ( isinstance( Axis, geompyDC.GEOM._objref_GEOM_Object)):
+ Axis = self.smeshpyD.GetAxisStruct(Axis)
+ self.editor.Rotate(IDsOfElements, Axis, AngleInRadians, Copy)
+
+ ## Rotates the object
+ # @param theObject object to rotate(mesh, submesh, or group)
+ # @param Axis axis of rotation(AxisStruct or geom line)
+ # @param AngleInRadians angle of rotation(in radians)
+ # @param Copy allows to copy the rotated elements
+ def RotateObject (self, theObject, Axis, AngleInRadians, Copy):
+ self.editor.RotateObject(theObject, Axis, AngleInRadians, Copy)
+
+ ## Find group of nodes close to each other within Tolerance.
+ # @param Tolerance tolerance value
+ # @param list of group of nodes
+ def FindCoincidentNodes (self, Tolerance):
+ return self.editor.FindCoincidentNodes(Tolerance)
+
+ ## Find group of nodes close to each other within Tolerance.
+ # @param Tolerance tolerance value
+ # @param SubMeshOrGroup SubMesh or Group
+ # @param list of group of nodes
+ def FindCoincidentNodesOnPart (self, SubMeshOrGroup, Tolerance):
+ return self.editor.FindCoincidentNodesOnPart(SubMeshOrGroup, Tolerance)
+
+ ## Merge nodes
+ # @param list of group of nodes
+ def MergeNodes (self, GroupsOfNodes):
+ self.editor.MergeNodes(GroupsOfNodes)
+
+ ## Find elements built on the same nodes.
+ # @param MeshOrSubMeshOrGroup Mesh or SubMesh, or Group of elements for searching
+ # @return a list of groups of equal elements
+ def FindEqualElements (self, MeshOrSubMeshOrGroup):
+ return self.editor.FindEqualElements(MeshOrSubMeshOrGroup)
+
+ ## Merge elements in each given group.
+ # @param GroupsOfElementsID groups of elements for merging
+ def MergeElements(self, GroupsOfElementsID):
+ self.editor.MergeElements(GroupsOfElementsID)
+
+ ## Remove all but one of elements built on the same nodes.
+ def MergeEqualElements(self):
+ self.editor.MergeEqualElements()
+
+ ## Sew free borders
+ def SewFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
+ FirstNodeID2, SecondNodeID2, LastNodeID2,
+ CreatePolygons, CreatePolyedrs):
+ return self.editor.SewFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
+ FirstNodeID2, SecondNodeID2, LastNodeID2,
+ CreatePolygons, CreatePolyedrs)
+
+ ## Sew conform free borders
+ def SewConformFreeBorders (self, FirstNodeID1, SecondNodeID1, LastNodeID1,
+ FirstNodeID2, SecondNodeID2):
+ return self.editor.SewConformFreeBorders(FirstNodeID1, SecondNodeID1, LastNodeID1,
+ FirstNodeID2, SecondNodeID2)
+
+ ## Sew border to side
+ def SewBorderToSide (self, FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
+ FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs):
+ return self.editor.SewBorderToSide(FirstNodeIDOnFreeBorder, SecondNodeIDOnFreeBorder, LastNodeIDOnFreeBorder,
+ FirstNodeIDOnSide, LastNodeIDOnSide, CreatePolygons, CreatePolyedrs)
+
+ ## Sew two sides of a mesh. Nodes belonging to Side1 are
+ # merged with nodes of elements of Side2.
+ # Number of elements in theSide1 and in theSide2 must be
+ # equal and they should have similar node connectivity.
+ # The nodes to merge should belong to sides borders and
+ # the first node should be linked to the second.
+ def SewSideElements (self, IDsOfSide1Elements, IDsOfSide2Elements,
+ NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
+ NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge):
+ return self.editor.SewSideElements(IDsOfSide1Elements, IDsOfSide2Elements,
+ NodeID1OfSide1ToMerge, NodeID1OfSide2ToMerge,
+ NodeID2OfSide1ToMerge, NodeID2OfSide2ToMerge)
+
+ ## Set new nodes for given element.
+ # @param ide the element id
+ # @param newIDs nodes ids
+ # @return If number of nodes is not corresponded to type of element - returns false
+ def ChangeElemNodes(self, ide, newIDs):
+ return self.editor.ChangeElemNodes(ide, newIDs)
+
+ ## If during last operation of MeshEditor some nodes were
+ # created this method returns list of it's IDs, \n
+ # if new nodes not created - returns empty list
+ def GetLastCreatedNodes(self):
+ return self.editor.GetLastCreatedNodes()
+
+ ## If during last operation of MeshEditor some elements were
+ # created this method returns list of it's IDs, \n
+ # if new elements not creared - returns empty list
+ def GetLastCreatedElems(self):
+ return self.editor.GetLastCreatedElems()