]> SALOME platform Git repositories - modules/adao.git/commitdiff
Salome HOME
Adding complete EKF algorithm
authorJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Fri, 29 Dec 2017 17:11:38 +0000 (18:11 +0100)
committerJean-Philippe ARGAUD <jean-philippe.argaud@edf.fr>
Fri, 29 Dec 2017 17:11:38 +0000 (18:11 +0100)
src/daComposant/daAlgorithms/EnsembleKalmanFilter.py [new file with mode: 0644]

diff --git a/src/daComposant/daAlgorithms/EnsembleKalmanFilter.py b/src/daComposant/daAlgorithms/EnsembleKalmanFilter.py
new file mode 100644 (file)
index 0000000..b8d6421
--- /dev/null
@@ -0,0 +1,216 @@
+# -*- coding: utf-8 -*-
+#
+# Copyright (C) 2008-2017 EDF R&D
+#
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
+#
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# Lesser General Public License for more details.
+#
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+#
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+
+import logging
+from daCore import BasicObjects, PlatformInfo
+import numpy, math
+mfp = PlatformInfo.PlatformInfo().MaximumPrecision()
+
+# Using "Ensemble Kalman filtering", L. HOUTEKAMER and HERSCHEL L. MITCHELL, QJRMS (2005), 131, pp. 3269–3289
+
+# ==============================================================================
+class ElementaryAlgorithm(BasicObjects.Algorithm):
+    def __init__(self):
+        BasicObjects.Algorithm.__init__(self, "ENSEMBLEKALMANFILTER")
+        self.defineRequiredParameter(
+            name     = "NumberOfMembers",
+            default  = 100,
+            typecast = int,
+            message  = "Nombre de membres dans l'ensemble",
+            minval   = -1,
+            )
+        self.defineRequiredParameter(
+            name     = "Minimizer",
+            default  = "EnKF",
+            typecast = str,
+            message  = "Schéma de mise a jour des informations d'ensemble",
+            listval  = ["EnKF", "ETKF", "DEnKF"],
+            )
+        self.defineRequiredParameter(
+            name     = "ConstrainedBy",
+            default  = "EstimateProjection",
+            typecast = str,
+            message  = "Prise en compte des contraintes",
+            listval  = ["EstimateProjection"],
+            )
+        self.defineRequiredParameter(
+            name     = "EstimationOf",
+            default  = "State",
+            typecast = str,
+            message  = "Estimation d'etat ou de parametres",
+            listval  = ["State", "Parameters"],
+            )
+        self.defineRequiredParameter(
+            name     = "StoreInternalVariables",
+            default  = False,
+            typecast = bool,
+            message  = "Stockage des variables internes ou intermédiaires du calcul",
+            )
+        self.defineRequiredParameter(
+            name     = "StoreSupplementaryCalculations",
+            default  = [],
+            typecast = tuple,
+            message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
+            listval  = ["APosterioriCorrelations", "APosterioriCovariance", "APosterioriStandardDeviations", "APosterioriVariances", "BMA", "CurrentState", "CostFunctionJ", "CostFunctionJb", "CostFunctionJo", "Innovation"]
+            )
+        self.defineRequiredParameter( # Pas de type
+            name     = "Bounds",
+            message  = "Liste des valeurs de bornes",
+            )
+        self.defineRequiredParameter(
+            name     = "SetSeed",
+            typecast = numpy.random.seed,
+            message  = "Graine fixée pour le générateur aléatoire",
+            )
+        self.requireInputArguments(
+            mandatory= ("Xb", "Y", "HO", "R", "B"),
+            optional = ("U", "EM", "CM", "Q"),
+            )
+
+    def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
+        self._pre_run(Parameters, Xb, Y, R, B, Q)
+        #
+        if self._parameters["EstimationOf"] == "Parameters":
+            self._parameters["StoreInternalVariables"] = True
+        #
+        # Opérateurs
+        # ----------
+        H = HO["Direct"].appliedControledFormTo
+        #
+        if self._parameters["EstimationOf"] == "State":
+            M = EM["Direct"].appliedControledFormTo
+        #
+        if CM is not None and "Tangent" in CM and U is not None:
+            Cm = CM["Tangent"].asMatrix(Xb)
+        else:
+            Cm = None
+        #
+        # Nombre de pas identique au nombre de pas d'observations
+        # -------------------------------------------------------
+        if hasattr(Y,"stepnumber"):
+            duration = Y.stepnumber()
+            __p = numpy.cumprod(Y.shape())[-1]
+        else:
+            duration = 2
+            __p = numpy.array(Y).size
+        #
+        # Précalcul des inversions de B et R
+        # ----------------------------------
+        if self._parameters["StoreInternalVariables"]:
+            BI = B.getI()
+            RI = R.getI()
+        BIdemi = B.choleskyI()
+        RIdemi = R.choleskyI()
+        #
+        # Initialisation
+        # --------------
+        __n = Xb.size
+        __m = self._parameters["NumberOfMembers"]
+        Xn = numpy.asmatrix(numpy.dot( Xb.reshape(__n,1), numpy.ones((1,__m)) ))
+        if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
+        else:                         Pn = B
+        if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
+        else:                         Rn = R
+        if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n)
+        else:                         Qn = Q
+        #
+        self.StoredVariables["Analysis"].store( Xb.A1 )
+        if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["APosterioriCovariance"].store( Pn )
+            covarianceXa = Pn
+        Xa               = Xb
+        previousJMinimum = numpy.finfo(float).max
+        #
+        # Predimensionnement
+        Xn_predicted = numpy.asmatrix(numpy.zeros((__n,__m)))
+        HX_predicted = numpy.asmatrix(numpy.zeros((__p,__m)))
+        #
+        for step in range(duration-1):
+            if hasattr(Y,"store"):
+                Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T
+            else:
+                Ynpu = numpy.asmatrix(numpy.ravel( Y )).T
+            #
+            if U is not None:
+                if hasattr(U,"store") and len(U)>1:
+                    Un = numpy.asmatrix(numpy.ravel( U[step] )).T
+                elif hasattr(U,"store") and len(U)==1:
+                    Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+                else:
+                    Un = numpy.asmatrix(numpy.ravel( U )).T
+            else:
+                Un = None
+            #
+            if self._parameters["EstimationOf"] == "State":
+                for i in range(__m):
+                    qi = numpy.asmatrix(numpy.random.multivariate_normal(numpy.zeros(__n), Qn)).T
+                    Xn_predicted[:,i] = numpy.asmatrix(numpy.ravel( M((Xn[:,i], Un)) )).T + qi
+                    HX_predicted[:,i] = numpy.asmatrix(numpy.ravel( H((Xn_predicted[:,i], Un)) )).T
+                if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+                    Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+                    Xn_predicted = Xn_predicted + Cm * Un
+            elif self._parameters["EstimationOf"] == "Parameters":
+                # --- > Par principe, M = Id, Q = 0
+                Xn_predicted = Xn
+            #
+            Xfm = numpy.asmatrix(numpy.ravel(Xn_predicted.mean(axis=1, dtype=mfp))).T
+            Hfm = numpy.asmatrix(numpy.ravel(HX_predicted.mean(axis=1, dtype=mfp))).T
+            Af  = Xn_predicted - Xfm
+            Hf  = HX_predicted - Hfm
+            #
+            PfHT, HPfHT = 0., 0.
+            for i in range(__m):
+                PfHT  += Af[:,i] * Hf[:,i].T
+                HPfHT += Hf[:,i] * Hf[:,i].T
+            PfHT  = (1./(__m-1)) * PfHT
+            HPfHT = (1./(__m-1)) * HPfHT
+            #
+            K = PfHT * ( R + HPfHT ).I
+            #
+            Yo = numpy.asmatrix(numpy.zeros((__p,__m)))
+            for i in range(__m):
+                ri = numpy.asmatrix(numpy.random.multivariate_normal(numpy.zeros(__p), Rn)).T
+                Yo[:,i] = Ynpu + ri
+            #
+            for i in range(__m):
+                Xn[:,i] = Xn_predicted[:,i] + K * (Yo[:,i] - HX_predicted[:,i])
+            #
+            Xa = Xn.mean(axis=1, dtype=mfp)
+            self.StoredVariables["Analysis"].store( Xa )
+            #
+            del Yo, PfHT, HPfHT
+            if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+                Ht = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
+                Ht = Ht.reshape(__p,__n) # ADAO & check shape
+                Pf = 0.
+                for i in range(__m):
+                    Pf += Af[:,i] * Af[:,i].T
+                Pf = (1./(__m-1)) * Pf
+                Pn = (1. - K * Ht) * Pf
+                self.StoredVariables["APosterioriCovariance"].store( Pn )
+        #
+        self._post_run(HO)
+        return 0
+
+# ==============================================================================
+if __name__ == "__main__":
+    print('\n AUTODIAGNOSTIC \n')