\n To <b>Add Point on Edge</b> in the <b>Main Menu</b> select
<b>Repair - > Add Point on Edge</b>.
-\n This operation splits an edge in two in accordance with the
+\n This operation splits an edge in two new edges in accordance with the
specified mode (by length or by parameter) and a value specifying the
position of the point on edge (for example val =0.5; mode =
-Length). This operation is available in <b>OCC Viewer</b> only.
+by length). This operation is available in <b>OCC Viewer</b> only.
\n The \b Result will be a \b GEOM_Object.
\n <b>TUI Command:</b> <em>geompy.DivideEdge(Shape, EdgeID, Value,
-IsByParameter), </em> where \em Shape is a shape which contains an edge to
-be divided, \em EdgeID is the ID of the edge to be divided, if it = -1,
-then Shape is an edge, \em Value is a paramter on the edge or a
-length. \em IsByParameter if it is True then Value is the edge parameter
-in the range [0:1] otherwise it is a part of the length of the edge in the range
-[0: full length of the edge]
-\n <b>Arguments:</b> Name + 1 Edge + 1 value setting the position of
+IsByParameter)</em>
+- \em Shape is a shape which contains an edge to be divided
+- \em EdgeID is the ID of the edge to be divided, if it is = -1,
+then \em Shape should be an edge itself
+- \em Value is a value of parameter on edge or length parameter,
+depending on \em IsByParameter.
+- \em IsByParameter is a boolean flag, specifying operation mode:
+ - \c True: \em Value is treated as a curve parameter [0..1]
+ - \c False: \em Value is treated as a length parameter [0..1]
+
+<b>Arguments:</b> Name + 1 Edge + 1 Value setting the position of
the point according to one of the selected modes.
+The difference between "by parameter" and "by length" modes becomes
+apparent on the edges with irregular parametrization (for example,
+b-splines which usually have irregular density by the length).
+For example, value 0.5 "by length" on such edge will produce the point
+in the middle of this edge (equidistant from both its ends); the same
+0.5 value "by parameter" will result in the point situated closer to
+one of the ends (depending on the actual parametrization).
+
\image html repair8.png
\n <b>Example:</b>
coordinates of origin by a point and axes directions by a line or a
vector.
\n <b>TUI command:</b> <em>geompy.MakeMarkerPntTwoVec(Center, VectorX,
-VectorY)</em> where Center is a point specified the coordinate system location,
-VectorX is a derection of OX axis and VectorY direction of OY axis.
+VectorY)</em> where Center is the origin of the coordinate system,
+VectorX is the direction of OX axis and VectorY is the direction of OY axis.
\n <b>Arguments:</b> Name + 1 point of origin + X axis direction, Y axis direction.
\image html neo-localcs3.png
\image html image145.png "Local Coordinate System"
-<b>TUI Script</b> provide you with useful example of creation of
-\ref tui_creation_lcs "Local Coordinate System".
-*/
\ No newline at end of file
+<b>TUI Script</b> provides you with a useful example of
+\ref tui_creation_lcs "Local Coordinate System" creation.
+*/
To create a \b PipeTShape in the <b>Main Menu</b> select <b>New Entity - >
Advanced - > PipeTShape </b>
-Specify the parameters of the PipeTShape object creation in the opened dialog
+Specify the parameters of the PipeTShape object in the opened dialog
box and press "Apply" or "Apply & Close" button.
-Result of each operation will be a GEOM_Object.
+The <b>result</b> of the operation will be a <b>GEOM_Object</b>.
<b>TUI Command:</b> <em>geompy.MakePipeTShape(R1, W1, L1, R2, W2, L2, HexMesh=True, P1=None, P2=None, P3=None)</em>
<b>Arguments:</b>
-- \b R1 - Radius of main T-shape pipe.
-- \b W1 - Thickness of main T-shape pipe.
-- \b L1 - Length of main T-shape pipe.
-- \b R2 - Radius of incident T-shape pipe.
-- \b W2 - Thickness of incident T-shape pipe.
-- \b L2 - Length of incident T-shape pipe.
-- \b HexMesh - If True, the shape is splitted in blocks (suitable for hexaedral mesh).
-- \b P1 - First junction point of main pipe (GEOM Vertex).
-- \b P2 - Second junction point of main pipe (GEOM Vertex).
-- \b P3 - Junction point of incident pipe (GEOM Vertex).
+- \b R1 - Radius of the main T-shape pipe.
+- \b W1 - Thickness of the main T-shape pipe.
+- \b L1 - Length of the main T-shape pipe.
+- \b R2 - Radius of the incident T-shape pipe.
+- \b W2 - Thickness of the incident T-shape pipe.
+- \b L2 - Length of the incident T-shape pipe.
+- \b HexMesh - If True, the shape is splitted into blocks (suitable for hexaedral mesh).
+- \b P1 - First junction point of the main pipe (GEOM Vertex).
+- \b P2 - Second junction point of the main pipe (GEOM Vertex).
+- \b P3 - Junction point of the incident pipe (GEOM Vertex).
\image html pipetshape_dlg.png
<b>TUI Command:</b> <em>geompy.MakePipeTShapeChamfer(R1, W1, L1, R2, W2, L2, H, W, HexMesh=True, P1=None, P2=None, P3=None)</em>
-<b>Arguments are the same as normal Pipe T-Shape plus:</b>
-- \b H - Height of the chamfer along incident pipe.
+<b>The arguments are the same as of the normal Pipe T-Shape plus:</b>
+- \b H - Height of the chamfer along the incident pipe.
- \b W - Width of the chamfer along the main pipe.
Example:
<b>TUI Command:</b> <em>geompy.MakePipeTShapeFillet(R1, W1, L1, R2, W2, L2, RF, HexMesh=True, P1=None, P2=None, P3=None)</em>
-<b>Arguments are the same as normal Pipe T-Shape plus:</b>
+<b>The arguments are the same as of the normal Pipe T-Shape plus:</b>
- \b RF - Radius of the fillet.
Example:
\page deflection_page Deflection
-\n In this menu you can change the deviation coefficient of the
-shape. Smaller coefficient provides better quality of the shape in the
+\n In this menu you can change the deflection coefficient of the
+shape. The less is the coefficient the better is the quality of the shape in the
viewer.
\n <b>Arguments: </b>1 floating point value (deviation coefficient).
The <b>Type</b> property of the geometrical object specifies the
way the object has been created. It is an integer identifier that
-has predefined value depending on the function type used for the
+has a predefined value depending on the function type used for the
object creation. The type of the object can be retrieved using the
\b %GetType() function of the \b GEOM_Object interface.
</table>
Also geompy.py module provides a helper function ShapeIdToType()
-that allows converting of the geometrical object type id value
-to its string representation.
+that allows converting the geometrical object id value to its string representation.
-For example:
+For example, the output of the following code:
\code
import geompy
box = geompy.MakeBoxDXDYDZ(10,10,10)
print type
\endcode
-The above code prints "BOX" value.
+will be the "BOX" value.
<b>GetShapeType function:</b>
The ShapeType property specifies the geometrical object in terms of
-its topology nature.
+its topologic nature.
The possible values are defined in the GEOM namespace: { COMPOUND, COMPSOLID,
SOLID, SHELL, FACE, WIRE, EDGE, VERTEX, SHAPE }<br>
This type can be retrieved using the \b %GetShapeType() function
of the \b GEOM_Object interface.
-Example code:
+For example:
\code
import geompy
import GEOM
print type == GEOM.SOLID
\endcode
-This code prints "True".
+The result is "True".
*/
<li>\subpage transform_geom_obj_page "transformation of geometrical objects" using
various algorithms;</li>
<li>\subpage repairing_operations_page "optimization of geometrical objects";</li>
-<li>\subpage geometrical_obj_prop_page "Geometrical object properties".</li>
-<li>\subpage using_measurement_tools_page "provision of information about geometrical objects".</li>
-<li>\subpage using_notebook_geom_page.</li>
+<li>viewing \subpage geometrical_obj_prop_page "geometrical object properties".</li>
+<li>and other information about geometrical objects using
+ \subpage using_measurement_tools_page "measurement tools".</li>
+<li>easily setting parameters via the variables predefined in
+ \subpage using_notebook_geom_page "Salome notebook".</li>
</ul>
Almost all geometry module functionalities are accessible via
\n To produce a \b Partition in the <b>Main Menu</b> select <b>Operations - > Partition</b>
-\n This operation builds a compound by intersection of several shapes with a tool object or a plane.
+\n This operation builds a compound by intersection of several shapes
+with a set of tool objects or with a plane.
\n The \b Result will be any \b GEOM_Object.
<br><h2>Intersection of two shapes.</h2>
+\image html partition1.png
+
+\n <b>Arguments:</b> Name + 2 lists of shapes (the shapes from the
+first list will be intersected with the shapes from the second list) +
+Resulting Type of shape.
+
\n As far as the intersection of two objects can produce any type of
geometrical objects, <b>Resulting type</b> box allows choosing the
preferrable result, i.e. a solid, a shell, a list of faces, etc.
+\n<b>Resulting type</b> has to be equal or lower than the type of the
+\em Objects. In other words, if the \em Objects don't contain any
+shape of this type, Partition fails.
+
+<b>Keep shapes of lower type</b> checkbox manages standalone shapes of
+type other than the \em Limit. If it is checked, lower dimension
+objects will be preserved, else they will be lost.
+\n For example, you do a partition of a box (Solid) and a face (Face)
+without any tool. If you choose Resulting Type "Solid", you will
+obtain a compound of two solids (let's the box will be splitted by the
+face on two parts), but if you will also check <b>Keep shapes of lower
+type</b> checkbox, you will obtain a compound of two solids and one
+face (the face will have a hole where the original face lays inside
+the box, see corresponding \ref partition_picture_3 "picture" below).
+
+\n <b>Advanced option:</b>
+ \ref restore_presentation_parameters_page "Set presentation parameters and subshapes from arguments".
+
\n <b>TUI Command:</b> <em>geompy.MakePartition(ListOfShapes,
ListOfTools, ListOfKeepInside, ListOfRemoveInside, Limit, RemoveWebs,
-ListOfMaterials),</em> where where \em ListOfShapes is a list of shapes to
-be intersected and \em ListOfTools is a list of shapes to intersect the
-shapes from ListOfShapes.
+ListOfMaterials, KeepNonlimitShapes),</em> where where \em
+ListOfShapes is a list of shapes to be intersected, \em ListOfTools is
+a list of shapes to intersect the shapes from ListOfShapes, \em Limit
+is a Type of resulting shapes and \em KeepNonlimitShapes is a flag
+that allows to preserve standalone shapes of low dimension (than
+Limit) in the result.
+
\n Since the implementation of a new version of PartitionAlgo other
parameters are ignored by the current functionality and remain there
only to support the old scripts.
-\n <b>Arguments:</b> Name + 2 lists of shapes (the shapes from the
-first list will be intersected with the shapes from the second list) +
-reconstruction limit.
-\n <b>Advanced option:</b>
- \ref restore_presentation_parameters_page "Set presentation parameters and subshapes from arguments".
-
-\image html partition1.png
-
-<b>Keep shapes of lower type</b> checkbox allows building geometrical objects.
-Only lower type objects will be preserved without the upper ones.
<br><h2>Intersection of a Shape and a Plane.</h2>
-\n <b>TUI Command:</b> <em> geompy.MakeHalfPartition(Shapes,
-Plane),</em> where \em Shapes are a list of Shapes to be intersected
-and \em Plane is a Tool shape, to intersect the \em Shapes.
+\image html partition2.png
+
\n <b>Arguments:</b> Name + a list of shapes which will be intersected
+ 1 cutting plane.
+
\n <b>Advanced option:</b>
\ref restore_presentation_parameters_page "Set presentation parameters and subshapes from arguments".
-\image html partition2.png
+\n <b>TUI Command:</b> <em> geompy.MakeHalfPartition(Shapes,
+Plane),</em> where \em Shapes are a list of Shapes to be intersected
+and \em Plane is a Tool shape, to intersect the \em Shapes.
\n <b>Example:</b>
\image html partitionsn2.png "Result of intersection"
+\anchor partition_picture_3
+\image html partitionsn3.png "Result of intersection of a box and a plane (both as \em Objects, no tools) with Resulting type \em Solid and checked \em Keep \em shapes \em of \em lower \em type"
+
Our <b>TUI Scripts</b> provide you with useful examples of the use of
\ref tui_partition "Basic Operations".
/*!
-\page restore_presentation_parameters_page Restore presentation parameters and a tree of subshapes
+\page restore_presentation_parameters_page Advanced Transformation Options
-\n This functionality allows the operation result to inherit colour
+<br><center><b>Set presentation parameters and subshapes from arguments</b></center>
+
+\n This option allows the operation result to inherit colour
and subshapes from its arguments.
\n To activate this functionality, check in "Set
has a default colour, but its subshapes inherit colors corresponding
to arguments and their subshapes.
-\image html restore-ss-viewer-after.png "Thev resulting shape"
+\image html restore-ss-viewer-after.png "The resulting shape"
Please, note that when the resulting shape corresponds to one
\image html restore-ss-OB.png
+\n You can also call this functionality from your python scripts.
+See our <b>TUI Scripts</b> for \ref tui_restore_prs_params "example".
+
<br><center><b>Add prefix to names of restored subshapes</b></center>
-Add prefix "from_" to names of restored sub-shapes, and prefix "from_subshapes_of_" to names of partially restored subshapes.
+This option allows adding the prefix "from_" to the names of
+restored sub-shapes, and the prefix "from_subshapes_of_" to the names of partially restored subshapes.
By default this option is On.
-\n You can also call this functionality from your python scripts.
-See our <b>TUI Scripts</b> for \ref tui_restore_prs_params "example".
-
*/
<li>\subpage isolines_page "Isos" - allows to change the number of
isolines displayed within a shape.</li>
<li>\subpage deflection_page "Deflection" - allows to change the
-deviation coefficient of a shape.</li>
+deflection coefficient of a shape.</li>
<li>\subpage point_marker_page "Point Marker" - allows to change the
representation of geometrical vertices.</li>
<li><b>Auto color</b> / <b>Disable auto color</b> - activates the auto color
* \note Each compound from ListShapes and ListTools will be exploded in order
* to avoid possible intersection between shapes from this compound.
* \param theLimit Type of resulting shapes (corresponding to TopAbs_ShapeEnum).
- # \param KeepNonlimitShapes: if this parameter == 0 - only shapes with
- # type <= Limit are kept in the result,
- # else - shapes with type > Limit are kept
- # also (if they exist)
+ * \param KeepNonlimitShapes: if this parameter == 0, then only shapes of
+ * target type (equal to Limit) are kept in the result,
+ * else standalone shapes of lower dimension
+ * are kept also (if they exist).
*
* After implementation new version of PartitionAlgo (October 2006)
* other parameters are ignored by current functionality. They are kept
ChamferGroupParams->SpinBox_DX->setValue(20);
ChamferGroupParams->SpinBox_DY->setValue(10);
FilletGroupParams->SpinBox_DX->setValue(20);
-
+
CssNormal = QString("QDoubleSpinBox {");
CssNormal.append(MainTubeGroupParams->SpinBox_DZ->styleSheet());
CssNormal.append("}");
CssNormal.append("}");
CssAcceptable = "QDoubleSpinBox, QPushButton {background-color: rgb(85, 170, 127)}";
CssRefused = "QDoubleSpinBox, QPushButton {background-color: rgb(255, 0, 0)}";
-
+
// Signal/slot connections
connect(buttonOk(), SIGNAL(clicked()), this, SLOT(ClickOnOk()));
connect(buttonApply(), SIGNAL(clicked()), this, SLOT(ClickOnApply()));
//=================================================================================
void AdvancedGUI_PipeTShapeDlg::ApplyNewDimensions() {
QPushButton* send = (QPushButton*) sender();
-
+
bool ok = false;
double newVal;
if (send == JunctionPointsSel->PushButton4) {
//=================================================================================
void AdvancedGUI_PipeTShapeDlg::ValueChangedInSpinBox(double newValue)
{
- if (myOkPoint1 && myOkPoint2 && myOkPoint3)
+ if (JunctionPointsSel->GroupBox1->isChecked() && myOkPoint1 && myOkPoint2 && myOkPoint3)
CheckCompatiblePosition(myPoint1, myPoint2, myPoint3, 0.01);
DisplayPreview();
}
JunctionPointsSel->LineEdit1->setEnabled(false);
JunctionPointsSel->PushButton2->setDown(false);
JunctionPointsSel->LineEdit2->setEnabled(false);
- }
+ }
// enable line edit
myEditCurrentArgument->setEnabled(true);
JunctionPointsSel->LineEdit4->setText("");
JunctionPointsSel->LineEdit5->setText("");
-
+
disconnect(myGeomGUI->getApp()->selectionMgr(), 0, this, 0);
// globalSelection(GEOM_POINT);
globalSelection(); // close local contexts, if any
CORBA::Double theL1 = MainTubeGroupParams->SpinBox_DZ->value();
CORBA::Double theL2 = IncidentTubeGroupParams->SpinBox_DZ->value();
-
+
JunctionPointsSel->LineEdit4->setText("");
JunctionPointsSel->LineEdit5->setText("");
-
+
MainTubeGroupParams->SpinBox_DZ->setToolTip("");
IncidentTubeGroupParams->SpinBox_DZ->setToolTip("");
double d12 = P1.Distance(P2);
double d13 = P1.Distance(P3);
double d23 = P2.Distance(P3);
-
+
if (Abs(d12) <= Precision::Confusion()) {
// SetErrorCode("Junctions points P1 and P2 are identical");
return false;
}
bool AdvancedGUI_PipeTShapeDlg::execute(ObjectList& objects) {
-
+
if (JunctionPointsSel->GroupBox1->isChecked() && myOkPoint1 && myOkPoint2 && myOkPoint3)
CheckCompatiblePosition(myPoint1, myPoint2, myPoint3, 0.01);
#include <gp_Pln.hxx>
+#include <Basics_Utils.hxx>
+
//=================================================================================
// class : EntityGUI_SketcherDlg()
// purpose : Constructs a EntityGUI_SketcherDlg which is a child of 'parent', with the
//Test if the current point is the same as the last one
TopoDS_Shape myShape1, myShape2;
+ // Set "C" numeric locale
+ Kernel_Utils::Localizer loc;
+
//Last Shape
QString Command1 = myCommand.join( "" );
Sketcher_Profile aProfile1( Command1.toAscii() );
int aPrecision = resMgr->integerValue( "Geometry", quantity, 6 );
spinBox->setPrecision( aPrecision );
- spinBox->setDecimals( aPrecision ); // it's necessary to set decimals before the range setting,
- // by default Qt rounds boundaries to 2 decimals at setRange
+ spinBox->setDecimals( qAbs( aPrecision ) ); // it's necessary to set decimals before the range setting,
+ // by default Qt rounds boundaries to 2 decimals at setRange
spinBox->setRange( min, max );
spinBox->setSingleStep( step );
// Add a hint for the user saying how to tune precision
- QString userPropName = QObject::tr( QString( "PREF_%1" ).arg( quantity ).toLatin1().constData() );
+ QString userPropName = QObject::tr( QString( "GEOM_PREF_%1" ).arg( quantity ).toLatin1().constData() );
spinBox->setProperty( "validity_tune_hint",
- QVariant( QObject::tr( "PRECISION_HINT" ).arg( userPropName ) ) );
+ QVariant( QObject::tr( "GEOM_PRECISION_HINT" ).arg( userPropName ) ) );
}
//=================================================================================
#include "utilities.h"
+#include <Basics_Utils.hxx>
+
#include <TDF_Tool.hxx>
#include <TDF_Data.hxx>
#include <TDF_Reference.hxx>
bool isPublished,
bool& aValidScript)
{
+ // Set "C" numeric locale to save numbers correctly
+ Kernel_Utils::Localizer loc;
+
TCollection_AsciiString aScript;
Handle(TDocStd_Document) aDoc = GetDocument(theDocID);
// Set property for precision value for spinboxes
for ( ii = 0; ii < nbQuantities; ii++ ){
- setPreferenceProperty( prec[ii], "min", -10 );
- setPreferenceProperty( prec[ii], "max", 10 );
+ setPreferenceProperty( prec[ii], "min", -14 );
+ setPreferenceProperty( prec[ii], "max", 14 );
setPreferenceProperty( prec[ii], "precision", 2 );
}
//}
//Alternative case to check shape result Mantis 0020604: EDF 1172
- TopoDS_Iterator It (aShape, Standard_True, Standard_True);
+/* TopoDS_Iterator It (aShape, Standard_True, Standard_True);
int nbSubshapes=0;
for (; It.More(); It.Next())
nbSubshapes++;
if (!nbSubshapes)
- Standard_ConstructionError::Raise("Boolean operation aborted : result object is empty compound");
+ Standard_ConstructionError::Raise("Boolean operation aborted : result object is empty compound");*/
//end of 0020604: EDF 1172
+ //! the changes temporary commented because of customer needs (see the same mantis bug)
aFunction->SetValue(aShape);
#
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
-
# GEOM GEOM_SWIG : binding of C++ omplementaion with Python
# File : geompy.py
# Author : Paul RASCLE, EDF
# Module : GEOM
-#
+
"""
\namespace geompy
\brief Module geompy
# @param theFace The face for which tangent plane should be built.
# @param theParameterV vertical value of the center point (0.0 - 1.0).
# @param theParameterU horisontal value of the center point (0.0 - 1.0).
- # @param theTrimSize the size of plane.
+ # @param theTrimSize the size of plane.
# @return New GEOM_Object, containing the created tangent.
#
# @ref swig_MakeTangentPlaneOnFace "Example"
- def MakeTangentPlaneOnFace(self, theFace, theParameterU, theParameterV, theTrimSize):
- anObj = self.BasicOp.MakeTangentPlaneOnFace(theFace, theParameterU, theParameterV, theTrimSize)
- RaiseIfFailed("MakeTangentPlaneOnFace", self.BasicOp)
+ def MakeTangentPlaneOnFace(self, theFace, theParameterU, theParameterV, theTrimSize):
+ anObj = self.BasicOp.MakeTangentPlaneOnFace(theFace, theParameterU, theParameterV, theTrimSize)
+ RaiseIfFailed("MakeTangentPlaneOnFace", self.BasicOp)
return anObj
## Create a vector with the given components.
RaiseIfFailed("MakeMarker", self.BasicOp)
anObj.SetParameters(Parameters)
return anObj
-
+
## Create a local coordinate system from shape.
# @param theShape The initial shape to detect the coordinate system.
# @return New GEOM_Object, containing the created coordinate system.
# @param theYVec Vector of Y direction
# @return New GEOM_Object, containing the created coordinate system.
#
- # @ref tui_creation_lcs "Example"
+ # @ref tui_creation_lcs "Example"
def MakeMarkerPntTwoVec(self, theOrigin, theXVec, theYVec):
anObj = self.BasicOp.MakeMarkerPntTwoVec(theOrigin, theXVec, theYVec)
RaiseIfFailed("MakeMarkerPntTwoVec", self.BasicOp)
anObj = self.CurvesOp.MakeArcCenter(thePnt1, thePnt2, thePnt3, theSense)
RaiseIfFailed("MakeArcCenter", self.CurvesOp)
return anObj
-
+
## Create an arc of ellipse, of center and two points.
# @param theCenter Center of the arc.
# @param thePnt1 defines major radius of the arc by distance from Pnt1 to Pnt2.
RaiseIfFailed("MakeSketcherOnPlane", self.CurvesOp)
return anObj
- ## Create a sketcher wire, following the numerical description,
+ ## Create a sketcher wire, following the numerical description,
# passed through <VAR>theCoordinates</VAR> argument. \n
- # @param theCoordinates double values, defining points to create a wire,
+ # @param theCoordinates double values, defining points to create a wire,
# passing from it.
# @return New GEOM_Object, containing the created wire.
#
# with edges, parallel to this coordinate axes.
# @param theH height of Face.
# @param theW width of Face.
- # @param theOrientation orientation belong axis OXY OYZ OZX
+ # @param theOrientation orientation belong axis OXY OYZ OZX
# @return New GEOM_Object, containing the created face.
#
# @ref tui_creation_face "Example"
## Create a face from another plane and two sizes,
# vertical size and horisontal size.
# @param theObj Normale vector to the creating face or
- # the face object.
+ # the face object.
# @param theH Height (vertical size).
# @param theW Width (horisontal size).
# @return New GEOM_Object, containing the created face.
## Create a disk with specified dimensions along OX-OY coordinate axes.
# @param theR Radius of Face.
- # @param theOrientation set the orientation belong axis OXY or OYZ or OZX
+ # @param theOrientation set the orientation belong axis OXY or OYZ or OZX
# @return New GEOM_Object, containing the created disk.
#
# @ref tui_creation_face "Example"
## Create a shape by extrusion of the profile shape along
# the path shape. The path shape can be a wire or an edge.
- # the several profiles can be specified in the several locations of path.
+ # the several profiles can be specified in the several locations of path.
# @param theSeqBases - list of Bases shape to be extruded.
# @param theLocations - list of locations on the path corresponding
# specified list of the Bases shapes. Number of locations
## Create a shape by extrusion of the profile shape along
# the path shape. The path shape can be a wire or a edge.
- # the several profiles can be specified in the several locations of path.
+ # the several profiles can be specified in the several locations of path.
# @param theSeqBases - list of Bases shape to be extruded. Base shape must be
# shell or face. If number of faces in neighbour sections
# aren't coincided result solid between such sections will
# @return New GEOM_Object, containing processed shape.
#
# @ref tui_shape_processing "Example"
- def ProcessShape(self,theShape, theOperators, theParameters, theValues):
+ def ProcessShape(self, theShape, theOperators, theParameters, theValues):
# Example: see GEOM_TestHealing.py
theValues,Parameters = ParseList(theValues)
anObj = self.HealOp.ProcessShape(theShape, theOperators, theParameters, theValues)
+ # To avoid script failure in case of good argument shape
+ if self.HealOp.GetErrorCode() == "ShHealOper_NotError_msg":
+ return theShape
RaiseIfFailed("ProcessShape", self.HealOp)
for string in (theOperators + theParameters):
Parameters = ":" + Parameters
# in order to avoid possible intersection between shapes from
# this compound.
# @param Limit Type of resulting shapes (corresponding to TopAbs_ShapeEnum).
- # @param KeepNonlimitShapes: if this parameter == 0 - only shapes with
- # type <= Limit are kept in the result,
- # else - shapes with type > Limit are kept
- # also (if they exist)
+ # @param KeepNonlimitShapes: if this parameter == 0, then only shapes of
+ # target type (equal to Limit) are kept in the result,
+ # else standalone shapes of lower dimension
+ # are kept also (if they exist).
#
# After implementation new version of PartitionAlgo (October 2006)
# other parameters are ignored by current functionality. They are kept
## Modify the Location of the given object by Path,
# @param theObject The object to be displaced.
# @param thePath Wire or Edge along that the object will be translated.
- # @param theDistance progress of Path (0 = start location, 1 = end of path location).
- # @param theCopy is to create a copy objects if true.
- # @param theReverse - 0 for usual direction, 1 to reverse path direction.
+ # @param theDistance progress of Path (0 = start location, 1 = end of path location).
+ # @param theCopy is to create a copy objects if true.
+ # @param theReverse - 0 for usual direction, 1 to reverse path direction.
# @return New GEOM_Object, containing the displaced shape.
#
# @ref tui_modify_location "Example"
# end of l3_groups
## @}
- ## @addtogroup l4_advanced
+ ## @addtogroup l4_advanced
## @{
## Create a T-shape object with specified caracteristics for the main
# @ref tui_creation_pipetshape "Example"
def MakePipeTShape(self, theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh=True, theP1=None, theP2=None, theP3=None):
theR1, theW1, theL1, theR2, theW2, theL2, Parameters = ParseParameters(theR1, theW1, theL1, theR2, theW2, theL2)
- if (theP1 and theP2 and theP3):
- anObj = self.AdvOp.MakePipeTShapeWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh, theP1, theP2, theP3)
- else:
- anObj = self.AdvOp.MakePipeTShape(theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh)
- RaiseIfFailed("MakePipeTShape", self.AdvOp)
+ if (theP1 and theP2 and theP3):
+ anObj = self.AdvOp.MakePipeTShapeWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh, theP1, theP2, theP3)
+ else:
+ anObj = self.AdvOp.MakePipeTShape(theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh)
+ RaiseIfFailed("MakePipeTShape", self.AdvOp)
if Parameters: anObj[0].SetParameters(Parameters)
return anObj
# @ref tui_creation_pipetshape "Example"
def MakePipeTShapeChamfer(self, theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh=True, theP1=None, theP2=None, theP3=None):
theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, Parameters = ParseParameters(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW)
- if (theP1 and theP2 and theP3):
- anObj = self.AdvOp.MakePipeTShapeChamferWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh, theP1, theP2, theP3)
- else:
- anObj = self.AdvOp.MakePipeTShapeChamfer(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh)
+ if (theP1 and theP2 and theP3):
+ anObj = self.AdvOp.MakePipeTShapeChamferWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh, theP1, theP2, theP3)
+ else:
+ anObj = self.AdvOp.MakePipeTShapeChamfer(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh)
RaiseIfFailed("MakePipeTShapeChamfer", self.AdvOp)
if Parameters: anObj[0].SetParameters(Parameters)
return anObj
## Create a T-shape object with fillet and with specified caracteristics for the main
# and the incident pipes (radius, width, half-length). The fillet is
- # created on the junction of the pipes.
+ # created on the junction of the pipes.
# The extremities of the main pipe are located on junctions points P1 and P2.
# The extremity of the incident pipe is located on junction point P3.
# If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
# @param theW2 Width of incident pipe (R2+W2 < R1+W1)
# @param theL2 Half-length of incident pipe
# @param theRF Radius of curvature of fillet.
- # @param theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
+ # @param theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
# @param theP1 1st junction point of main pipe
# @param theP2 2nd junction point of main pipe
# @param theP3 Junction point of incident pipe
# @ref tui_creation_pipetshape "Example"
def MakePipeTShapeFillet(self, theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh=True, theP1=None, theP2=None, theP3=None):
theR1, theW1, theL1, theR2, theW2, theL2, theRF, Parameters = ParseParameters(theR1, theW1, theL1, theR2, theW2, theL2, theRF)
- if (theP1 and theP2 and theP3):
- anObj = self.AdvOp.MakePipeTShapeFilletWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh, theP1, theP2, theP3)
- else:
- anObj = self.AdvOp.MakePipeTShapeFillet(theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh)
+ if (theP1 and theP2 and theP3):
+ anObj = self.AdvOp.MakePipeTShapeFilletWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh, theP1, theP2, theP3)
+ else:
+ anObj = self.AdvOp.MakePipeTShapeFillet(theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh)
RaiseIfFailed("MakePipeTShapeFillet", self.AdvOp)
if Parameters: anObj[0].SetParameters(Parameters)
return anObj
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
-
// GEOM GEOMGUI : GUI for Geometry component
// File : RepairGUI_SuppressFacesDlg.cxx
// Author : Lucien PIGNOLONI, Open CASCADE S.A.S.
-//
+
#include "RepairGUI_SuppressFacesDlg.h"
#include <DlgRef.h>
myObject = GEOM::GEOM_Object::_nil();
myFacesInd = new GEOM::short_array();
myFacesInd->length(0);
-
+
mainFrame()->GroupBoxPublish->show();
// signals and slots connections
}
if (aMap.IsEmpty() && aSelList.Extent() > 0) { // try to detect selected published sub-shape
+ TColStd_MapOfInteger anIds;
+
SalomeApp_Study* appStudy = dynamic_cast<SalomeApp_Study*>(myGeomGUI->getApp()->activeStudy());
if (!appStudy) return;
_PTR(Study) aStudy = appStudy->studyDS();
int anIndex = aMainMap.FindIndex(aSubShape);
if (anIndex >= 0) {
aMap.Add(anIndex);
+ anIds.Add(anIndex);
}
}
}
}
}
+ if (!aMap.IsEmpty()) {
+ // highlight local faces, correspondent to OB selection
+ disconnect(myGeomGUI->getApp()->selectionMgr(), 0, this, 0);
+
+ aSelMgr->clearSelected();
+
+ Standard_Boolean isOk;
+ char* objIOR = GEOMBase::GetIORFromObject(myObject);
+ Handle(GEOM_AISShape) aSh = GEOMBase::ConvertIORinGEOMAISShape(objIOR, isOk, true);
+ free(objIOR);
+ if (!isOk || aSh.IsNull())
+ return;
+
+ aSelMgr->AddOrRemoveIndex(aSh->getIO(), anIds, false);
+
+ connect(myGeomGUI->getApp()->selectionMgr(), SIGNAL(currentSelectionChanged()),
+ this, SLOT(SelectionIntoArgument()));
+ }
}
const int n = aMap.Extent();