else:
Un = None
#
+ if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
+ Xn = CovarianceInflation( Xn,
+ selfA._parameters["InflationType"],
+ selfA._parameters["InflationFactor"],
+ )
+ #
if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
EMX = M( [(Xn[:,i], Un) for i in range(__m)], argsAsSerie = True )
for i in range(__m):
#
Xn = vx.reshape((__n,-1)) + numpy.sqrt(__m-1) * EaX @ Ta @ Ua # 21:
#
+ if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
+ Xn = CovarianceInflation( Xn,
+ selfA._parameters["InflationType"],
+ selfA._parameters["InflationFactor"],
+ )
+ #
Xa = Xn.mean(axis=1, dtype=mfp).astype('float')
#--------------------------
#