X-Git-Url: http://git.salome-platform.org/gitweb/?a=blobdiff_plain;f=src%2FSMESH_SWIG%2FSMESH_Partition1_tetra.py;h=26ad2f73ee2e473ac164c8f099d0716273e7ed28;hb=2cf6435f1492b63b9adf4e8256d88968638ed9bf;hp=1478f01b7996cd9eea4cd117c6f6dee2888a94e1;hpb=faa1c8f2bc27c5244a34fe03584826de59cb17b3;p=modules%2Fsmesh.git diff --git a/src/SMESH_SWIG/SMESH_Partition1_tetra.py b/src/SMESH_SWIG/SMESH_Partition1_tetra.py index 1478f01b7..26ad2f73e 100644 --- a/src/SMESH_SWIG/SMESH_Partition1_tetra.py +++ b/src/SMESH_SWIG/SMESH_Partition1_tetra.py @@ -1,245 +1,187 @@ -# -# Tetrahedrization of the geometry generated by the Python script GEOM_Partition1.py -# Hypothesis and algorithms for the mesh generation are global -# -#%Make geometry (like CEA script (A1)) using Partition algorithm% from OCC -# -- Rayon de la bariere - -barier_height = 7.0 -barier_radius = 5.6 / 2 # Rayon de la bariere -colis_radius = 1.0 / 2 # Rayon du colis -colis_step = 2.0 # Distance s‰parant deux colis -cc_width = 0.11 # Epaisseur du complement de colisage - -# -- - -cc_radius = colis_radius + cc_width -from math import sqrt -colis_center = sqrt(2.0)*colis_step/2 - -# -- - -import geompy -geom = geompy.geom - -boolean_common = 1 -boolean_cut = 2 -boolean_fuse = 3 -boolean_section = 4 - -# -- - -barier = geompy.MakeCylinder( - geom.MakePointStruct(0.,0.,0.), - geom.MakeDirection(geom.MakePointStruct(0.,0.,1.)), - barier_radius, - barier_height) - -# -- - -colis = geompy.MakeCylinder( - geom.MakePointStruct(0.,0.,0.), - geom.MakeDirection(geom.MakePointStruct(0.,0.,1.)), - colis_radius, - barier_height) - -cc = geompy.MakeCylinder( - geom.MakePointStruct(0.,0.,0.), - geom.MakeDirection(geom.MakePointStruct(0.,0.,1.)), - cc_radius, - barier_height) - -colis_cc = geompy.MakeCompound( - [colis._get_Name(), cc._get_Name()]) - -colis_cc = geompy.MakeTranslation( - colis_cc, colis_center, 0.0, 0.0) - -colis_cc_multi = geompy.MakeMultiRotation1D( - colis_cc, - geom.MakeDirection(geom.MakePointStruct(0.,0.,1.)), - geom.MakePointStruct(0.,0.,0.), - 4) - -# -- - -alveole = geompy.Partition( - [colis_cc_multi._get_Name(), barier._get_Name()]) - -ShapeTypeShell = 3 -ShapeTypeFace = 4 -ShapeTypeEdge = 6 - -print "Analysis of the geometry to mesh (right after the Partition) :" - -subShellList=geompy.SubShapeAll(alveole,ShapeTypeShell) -subFaceList=geompy.SubShapeAll(alveole,ShapeTypeFace) -subEdgeList=geompy.SubShapeAll(alveole,ShapeTypeEdge) - -print "number of Shells in alveole : ",len(subShellList) -print "number of Faces in alveole : ",len(subFaceList) -print "number of Edges in alveole : ",len(subEdgeList) - -subshapes = geompy.SubShapeAll( alveole, geompy.ShapeType["SHAPE"] ) - -## there are 9 subshapes - -comp1 = geompy.MakeCompound( [ subshapes[0]._get_Name(), subshapes[1]._get_Name() ] ); -comp2 = geompy.MakeCompound( [ subshapes[2]._get_Name(), subshapes[3]._get_Name() ] ); -comp3 = geompy.MakeCompound( [ subshapes[4]._get_Name(), subshapes[5]._get_Name() ] ); -comp4 = geompy.MakeCompound( [ subshapes[6]._get_Name(), subshapes[7]._get_Name() ] ); - -compIORs = [] -compIORs.append( comp1._get_Name() ); -compIORs.append( comp2._get_Name() ); -compIORs.append( comp3._get_Name() ); -compIORs.append( comp4._get_Name() ); -comp = geompy.MakeCompound( compIORs ); - -alveole = geompy.MakeCompound( [ comp._get_Name(), subshapes[8]._get_Name() ]); - -idalveole= geompy.addToStudy(alveole, "alveole") - -print "Analysis of the geometry to mesh (right after the MakeCompound) :" - -subShellList=geompy.SubShapeAll(alveole,ShapeTypeShell) -subFaceList=geompy.SubShapeAll(alveole,ShapeTypeFace) -subEdgeList=geompy.SubShapeAll(alveole,ShapeTypeEdge) - -print "number of Shells in alveole : ",len(subShellList) -print "number of Faces in alveole : ",len(subFaceList) -print "number of Edges in alveole : ",len(subEdgeList) - -status=geompy.CheckShape(alveole) -print " check status ", status - -# ---- launch SMESH - -import salome -from salome import sg - -import SMESH -import smeshpy - -smeshgui = salome.ImportComponentGUI("SMESH") -smeshgui.Init(salome.myStudyId) - -gen=smeshpy.smeshpy() - -# ---- create Hypothesis - -print "-------------------------- create Hypothesis (In this case global hypothesis are used)" - -print "-------------------------- NumberOfSegments" - -numberOfSegments = 10 - -hyp1=gen.CreateHypothesis("NumberOfSegments") -hypNbSeg=hyp1._narrow(SMESH.SMESH_NumberOfSegments) -hypNbSeg.SetNumberOfSegments(numberOfSegments) -hypNbSegID = hypNbSeg.GetId() -print hypNbSeg.GetName() -print hypNbSegID -print hypNbSeg.GetNumberOfSegments() - -idseg = smeshgui.AddNewHypothesis( salome.orb.object_to_string(hypNbSeg) ) -smeshgui.SetName(idseg, "NumberOfSegments") - -print "-------------------------- MaxElementArea" - -maxElementArea = 0.1 - -hyp2=gen.CreateHypothesis("MaxElementArea") -hypArea=hyp2._narrow(SMESH.SMESH_MaxElementArea) -hypArea.SetMaxElementArea(maxElementArea) -print hypArea.GetName() -print hypArea.GetId() -print hypArea.GetMaxElementArea() - -idarea = smeshgui.AddNewHypothesis( salome.orb.object_to_string(hypArea) ) -smeshgui.SetName(idarea, "MaxElementArea") - -print "-------------------------- MaxElementVolume" - -maxElementVolume = 0.5 - -hyp3=gen.CreateHypothesis("MaxElementVolume") -hypVolume=hyp3._narrow(SMESH.SMESH_MaxElementVolume) -hypVolume.SetMaxElementVolume(maxElementVolume) -print hypVolume.GetName() -print hypVolume.GetId() -print hypVolume.GetMaxElementVolume() - -idvolume = smeshgui.AddNewHypothesis( salome.orb.object_to_string(hypVolume) ) -smeshgui.SetName(idvolume, "MaxElementVolume") - -# ---- create Algorithms - -print "-------------------------- create Algorithms" - -print "-------------------------- Regular_1D" - -hypothesis=gen.CreateHypothesis("Regular_1D") -regular1D = hypothesis._narrow(SMESH.SMESH_Regular_1D) -regularID = smeshgui.AddNewAlgorithms( salome.orb.object_to_string(regular1D) ) -smeshgui.SetName(regularID, "Wire Discretisation") - -print "-------------------------- MEFISTO_2D" - -hypothesis=gen.CreateHypothesis("MEFISTO_2D") -mefisto2D = hypothesis._narrow(SMESH.SMESH_MEFISTO_2D) -mefistoID = smeshgui.AddNewAlgorithms( salome.orb.object_to_string(mefisto2D) ) -smeshgui.SetName(mefistoID, "MEFISTO_2D") - -print "-------------------------- NETGEN_3D" - -hypothesis=gen.CreateHypothesis("NETGEN_3D") -netgen3D = hypothesis._narrow(SMESH.SMESH_NETGEN_3D) -netgenID = smeshgui.AddNewAlgorithms( salome.orb.object_to_string(netgen3D) ) -smeshgui.SetName(netgenID, "NETGEN_3D") - -# ---- init a Mesh with the alveole - -mesh=gen.Init(idalveole) -idmesh = smeshgui.AddNewMesh( salome.orb.object_to_string(mesh) ) -smeshgui.SetName(idmesh, "MeshAlveole") -smeshgui.SetShape(idalveole, idmesh) - -# ---- add hypothesis to alveole - -print "-------------------------- add hypothesis to alveole" - -ret=mesh.AddHypothesis(alveole,regular1D) -print ret -ret=mesh.AddHypothesis(alveole,hypNbSeg) -print ret -ret=mesh.AddHypothesis(alveole,mefisto2D) -print ret -ret=mesh.AddHypothesis(alveole,hypArea) -print ret -ret=mesh.AddHypothesis(alveole,netgen3D) -print ret -ret=mesh.AddHypothesis(alveole,hypVolume) -print ret - -smeshgui.SetAlgorithms( idmesh, regularID) -smeshgui.SetHypothesis( idmesh, idseg ) -smeshgui.SetAlgorithms( idmesh, mefistoID ) -smeshgui.SetHypothesis( idmesh, idarea ) -smeshgui.SetAlgorithms( idmesh, netgenID ) -smeshgui.SetHypothesis( idmesh, idvolume ) - -sg.updateObjBrowser(1) - - -print "-------------------------- compute the mesh of alveole " -ret=gen.Compute(mesh,idalveole) -print ret -if ret != 0: - log=mesh.GetLog(0) # no erase trace - for linelog in log: - print linelog -else: - print "problem when computing the mesh" - -sg.updateObjBrowser(1) +# -*- coding: iso-8859-1 -*- +# Copyright (C) 2007-2021 CEA/DEN, EDF R&D, OPEN CASCADE +# +# Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, +# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS +# +# This library is free software; you can redistribute it and/or +# modify it under the terms of the GNU Lesser General Public +# License as published by the Free Software Foundation; either +# version 2.1 of the License, or (at your option) any later version. +# +# This library is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +# Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public +# License along with this library; if not, write to the Free Software +# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +# +# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com +# + +# Tetrahedrization of the geometry generated by the Python script GEOM_Partition1.py +# Hypothesis and algorithms for the mesh generation are global +# -- Rayon de la bariere +# +import salome +salome.salome_init() +import GEOM +from salome.geom import geomBuilder +geompy = geomBuilder.New() + +import SMESH, SALOMEDS +from salome.smesh import smeshBuilder +smesh = smeshBuilder.New() + +from math import sqrt + + +#--------------------------------------------------------------- + +barier_height = 7.0 +barier_radius = 5.6 / 2 # Rayon de la bariere +colis_radius = 1.0 / 2 # Rayon du colis +colis_step = 2.0 # Distance s�parant deux colis +cc_width = 0.11 # Epaisseur du complement de colisage + +# -- + +cc_radius = colis_radius + cc_width +colis_center = sqrt(2.0)*colis_step/2 + +# -- + +boolean_common = 1 +boolean_cut = 2 +boolean_fuse = 3 +boolean_section = 4 + +# -- + +p0 = geompy.MakeVertex(0.,0.,0.) +vz = geompy.MakeVectorDXDYDZ(0.,0.,1.) + +# -- + +barier = geompy.MakeCylinder(p0, vz, barier_radius, barier_height) + +# -- + +colis = geompy.MakeCylinder(p0, vz, colis_radius, barier_height) +cc = geompy.MakeCylinder(p0, vz, cc_radius, barier_height) + +colis_cc = geompy.MakeCompound([colis, cc]) +colis_cc = geompy.MakeTranslation(colis_cc, colis_center, 0.0, 0.0) + +colis_cc_multi = geompy.MultiRotate1D(colis_cc, vz, 4) + +# -- + +Compound1 = geompy.MakeCompound([colis_cc_multi, barier]) +SubShape_theShape = geompy.SubShapeAll(Compound1,geompy.ShapeType["SOLID"]) +alveole = geompy.MakePartition(SubShape_theShape) + +print("Analysis of the geometry to mesh (right after the Partition) :") + +subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"]) +subFaceList = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"]) +subEdgeList = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"]) + +print("number of Shells in alveole : ", len(subShellList)) +print("number of Faces in alveole : ", len(subFaceList)) +print("number of Edges in alveole : ", len(subEdgeList)) + +subshapes = geompy.SubShapeAll(alveole, geompy.ShapeType["SHAPE"]) + +## there are 9 sub-shapes + +comp1 = geompy.MakeCompound( [ subshapes[0], subshapes[1] ] ) +comp2 = geompy.MakeCompound( [ subshapes[2], subshapes[3] ] ) +comp3 = geompy.MakeCompound( [ subshapes[4], subshapes[5] ] ) +comp4 = geompy.MakeCompound( [ subshapes[6], subshapes[7] ] ) + +compGOs = [] +compGOs.append( comp1 ) +compGOs.append( comp2 ) +compGOs.append( comp3 ) +compGOs.append( comp4 ) +comp = geompy.MakeCompound( compGOs ) + +alveole = geompy.MakeCompound( [ comp, subshapes[8] ]) + +idalveole = geompy.addToStudy(alveole, "alveole") + +print("Analysis of the geometry to mesh (right after the MakeCompound) :") + +subShellList = geompy.SubShapeAll(alveole, geompy.ShapeType["SHELL"]) +subFaceList = geompy.SubShapeAll(alveole, geompy.ShapeType["FACE"]) +subEdgeList = geompy.SubShapeAll(alveole, geompy.ShapeType["EDGE"]) + +print("number of Shells in alveole : ", len(subShellList)) +print("number of Faces in alveole : ", len(subFaceList)) +print("number of Edges in alveole : ", len(subEdgeList)) + +status = geompy.CheckShape(alveole) +print(" check status ", status) + + +# ---- init a Mesh with the alveole +shape_mesh = salome.IDToObject( idalveole ) + +mesh = smesh.Mesh(shape_mesh, "MeshAlveole") + +print("-------------------------- create Hypothesis (In this case global hypothesis are used)") + +print("-------------------------- NumberOfSegments") + +numberOfSegments = 10 + +regular1D = mesh.Segment() +hypNbSeg = regular1D.NumberOfSegments(numberOfSegments) +print(hypNbSeg.GetName()) +print(hypNbSeg.GetId()) +print(hypNbSeg.GetNumberOfSegments()) +smesh.SetName(hypNbSeg, "NumberOfSegments_" + str(numberOfSegments)) + +print("-------------------------- MaxElementArea") + +maxElementArea = 0.1 + +mefisto2D = mesh.Triangle() +hypArea = mefisto2D.MaxElementArea(maxElementArea) +print(hypArea.GetName()) +print(hypArea.GetId()) +print(hypArea.GetMaxElementArea()) +smesh.SetName(hypArea, "MaxElementArea_" + str(maxElementArea)) + +print("-------------------------- MaxElementVolume") + +maxElementVolume = 0.5 + +netgen3D = mesh.Tetrahedron(smeshBuilder.NETGEN) +hypVolume = netgen3D.MaxElementVolume(maxElementVolume) +print(hypVolume.GetName()) +print(hypVolume.GetId()) +print(hypVolume.GetMaxElementVolume()) +smesh.SetName(hypVolume, "MaxElementVolume_" + str(maxElementVolume)) + +print("-------------------------- compute the mesh of alveole ") +ret = mesh.Compute() + +if ret != 0: + log=mesh.GetLog(0) # no erase trace + # for linelog in log: + # print(linelog) + print("Information about the Mesh_mechanic:") + print("Number of nodes : ", mesh.NbNodes()) + print("Number of edges : ", mesh.NbEdges()) + print("Number of faces : ", mesh.NbFaces()) + print("Number of triangles : ", mesh.NbTriangles()) + print("Number of volumes : ", mesh.NbVolumes()) + print("Number of tetrahedrons: ", mesh.NbTetras()) +else: + print("problem when computing the mesh") + +salome.sg.updateObjBrowser()