X-Git-Url: http://git.salome-platform.org/gitweb/?a=blobdiff_plain;f=src%2FMEDCoupling_Swig%2FMEDCouplingTypemaps.i;h=b7a4ade9de7535214b00065a0439b35723c78e16;hb=5b299d506fcc63ff652df59a13f5b082fd45dabf;hp=4aa51443f7c1dd8a0f389413318126ea0f5df5cb;hpb=bd238ae917aa20ba3fe2f7569883d619b7e4f7a9;p=tools%2Fmedcoupling.git diff --git a/src/MEDCoupling_Swig/MEDCouplingTypemaps.i b/src/MEDCoupling_Swig/MEDCouplingTypemaps.i index 4aa51443f..b7a4ade9d 100644 --- a/src/MEDCoupling_Swig/MEDCouplingTypemaps.i +++ b/src/MEDCoupling_Swig/MEDCouplingTypemaps.i @@ -1,4 +1,4 @@ -// Copyright (C) 2007-2015 CEA/DEN, EDF R&D +// Copyright (C) 2007-2016 CEA/DEN, EDF R&D // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public @@ -18,9 +18,22 @@ // // Author : Anthony Geay (CEA/DEN) +#ifndef __MEDCOUPLINGTYPEMAPS_I__ +#define __MEDCOUPLINGTYPEMAPS_I__ + #include "MEDCouplingDataArrayTypemaps.i" +#include "MEDCouplingUMesh.hxx" +#include "MEDCouplingCMesh.hxx" +#include "MEDCouplingIMesh.hxx" +#include "MEDCouplingCurveLinearMesh.hxx" +#include "MEDCouplingMappedExtrudedMesh.hxx" +#include "MEDCoupling1GTUMesh.hxx" +#include "MEDCouplingFieldDiscretization.hxx" +#include "MEDCouplingMultiFields.hxx" +#include "MEDCouplingPartDefinition.hxx" +#include "MEDCouplingCartesianAMRMesh.hxx" -static PyObject *convertMesh(MEDCoupling::MEDCouplingMesh *mesh, int owner) throw(INTERP_KERNEL::Exception) +static PyObject *convertMesh(MEDCoupling::MEDCouplingMesh *mesh, int owner) { PyObject *ret=0; if(!mesh) @@ -47,7 +60,7 @@ static PyObject *convertMesh(MEDCoupling::MEDCouplingMesh *mesh, int owner) thro return ret; } -static PyObject *convertFieldDiscretization(MEDCoupling::MEDCouplingFieldDiscretization *fd, int owner) throw(INTERP_KERNEL::Exception) +static PyObject *convertFieldDiscretization(MEDCoupling::MEDCouplingFieldDiscretization *fd, int owner) { PyObject *ret=0; if(!fd) @@ -70,37 +83,41 @@ static PyObject *convertFieldDiscretization(MEDCoupling::MEDCouplingFieldDiscret return ret; } -static PyObject* convertMultiFields(MEDCoupling::MEDCouplingMultiFields *mfs, int owner) throw(INTERP_KERNEL::Exception) +static PyObject *convertField(MEDCoupling::MEDCouplingField *f, int owner) { - PyObject *ret=0; - if(!mfs) + PyObject *ret(NULL); + if(!f) { Py_XINCREF(Py_None); return Py_None; } - if(dynamic_cast(mfs)) - ret=SWIG_NewPointerObj((void*)mfs,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldOverTime,owner); - else - ret=SWIG_NewPointerObj((void*)mfs,SWIGTYPE_p_MEDCoupling__MEDCouplingMultiFields,owner); + if(dynamic_cast(f)) + ret=SWIG_NewPointerObj(reinterpret_cast(f),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldDouble,owner); + if(dynamic_cast(f)) + ret=SWIG_NewPointerObj(reinterpret_cast(f),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldInt,owner); + if(dynamic_cast(f)) + ret=SWIG_NewPointerObj(reinterpret_cast(f),SWIGTYPE_p_MEDCoupling__MEDCouplingFieldFloat,owner); + if(!ret) + throw INTERP_KERNEL::Exception("Not recognized type of field on downcast !"); return ret; } -static PyObject *convertPartDefinition(MEDCoupling::PartDefinition *pd, int owner) throw(INTERP_KERNEL::Exception) +static PyObject* convertMultiFields(MEDCoupling::MEDCouplingMultiFields *mfs, int owner) { PyObject *ret=0; - if(!pd) + if(!mfs) { Py_XINCREF(Py_None); return Py_None; } - if(dynamic_cast(pd)) - ret=SWIG_NewPointerObj((void*)pd,SWIGTYPE_p_MEDCoupling__DataArrayPartDefinition,owner); + if(dynamic_cast(mfs)) + ret=SWIG_NewPointerObj((void*)mfs,SWIGTYPE_p_MEDCoupling__MEDCouplingFieldOverTime,owner); else - ret=SWIG_NewPointerObj((void*)pd,SWIGTYPE_p_MEDCoupling__SlicePartDefinition,owner); + ret=SWIG_NewPointerObj((void*)mfs,SWIGTYPE_p_MEDCoupling__MEDCouplingMultiFields,owner); return ret; } -static PyObject *convertCartesianAMRMesh(MEDCoupling::MEDCouplingCartesianAMRMeshGen *mesh, int owner) throw(INTERP_KERNEL::Exception) +static PyObject *convertCartesianAMRMesh(MEDCoupling::MEDCouplingCartesianAMRMeshGen *mesh, int owner) { if(!mesh) { @@ -118,7 +135,7 @@ static PyObject *convertCartesianAMRMesh(MEDCoupling::MEDCouplingCartesianAMRMes throw INTERP_KERNEL::Exception("convertCartesianAMRMesh wrap : unrecognized type of cartesian AMR mesh !"); } -static PyObject *convertDataForGodFather(MEDCoupling::MEDCouplingDataForGodFather *data, int owner) throw(INTERP_KERNEL::Exception) +static PyObject *convertDataForGodFather(MEDCoupling::MEDCouplingDataForGodFather *data, int owner) { if(!data) { @@ -170,7 +187,7 @@ static MEDCoupling::MEDCouplingFieldDouble *MEDCoupling_MEDCouplingFieldDouble__ MEDCoupling::DataArrayDoubleTuple *aa; std::vector bb; int sw; - convertObjToPossibleCpp5(obj,sw,val,a,aa,bb); + convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb); switch(sw) { case 1: @@ -242,7 +259,7 @@ static MEDCoupling::MEDCouplingFieldDouble *MEDCoupling_MEDCouplingFieldDouble__ MEDCoupling::DataArrayDoubleTuple *aa; std::vector bb; int sw; - convertObjToPossibleCpp5(obj,sw,val,a,aa,bb); + convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb); switch(sw) { case 1: @@ -309,7 +326,7 @@ static MEDCoupling::MEDCouplingFieldDouble *MEDCoupling_MEDCouplingFieldDouble__ MEDCoupling::DataArrayDoubleTuple *aa; std::vector bb; int sw; - convertObjToPossibleCpp5(obj,sw,val,a,aa,bb); + convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb); switch(sw) { case 1: @@ -381,7 +398,7 @@ MEDCoupling::MEDCouplingFieldDouble *MEDCoupling_MEDCouplingFieldDouble___rdiv__ MEDCoupling::DataArrayDoubleTuple *aa; std::vector bb; int sw; - convertObjToPossibleCpp5(obj,sw,val,a,aa,bb); + convertDoubleStarLikePyObjToCpp_2(obj,sw,val,a,aa,bb); switch(sw) { case 1: @@ -428,30 +445,248 @@ MEDCoupling::MEDCouplingFieldDouble *MEDCoupling_MEDCouplingFieldDouble___rdiv__ } } -static PyObject *NewMethWrapCallInitOnlyIfEmptyDictInInput(PyObject *cls, PyObject *args, const char *clsName) +template +typename MEDCoupling::Traits::FieldType *fieldT_buildSubPart(const MEDCoupling::MEDCouplingFieldT *self, PyObject *li) { - if(!PyTuple_Check(args)) + int sw; + int singleVal; + std::vector multiVal; + std::pair > slic; + MEDCoupling::DataArrayInt *daIntTyypp=0; + const MEDCoupling::MEDCouplingMesh *mesh=self->getMesh(); + if(!mesh) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : field lies on a null mesh !"); + int nbc=mesh->getNumberOfCells(); + convertIntStarOrSliceLikePyObjToCpp(li,nbc,sw,singleVal,multiVal,slic,daIntTyypp); + switch(sw) { - std::ostringstream oss; oss << clsName << ".__new__ : the args in input is expected to be a tuple !"; - throw INTERP_KERNEL::Exception(oss.str().c_str()); + case 1: + { + if(singleVal>=nbc) + { + std::ostringstream oss; + oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !"; + throw INTERP_KERNEL::Exception(oss.str().c_str()); + } + if(singleVal>=0) + return self->buildSubPart(&singleVal,&singleVal+1); + else + { + if(nbc+singleVal>0) + { + int tmp=nbc+singleVal; + return self->buildSubPart(&tmp,&tmp+1); + } + else + { + std::ostringstream oss; + oss << "Requesting for cell id " << singleVal << " having only " << nbc << " cells !"; + throw INTERP_KERNEL::Exception(oss.str().c_str()); + } + } + } + case 2: + { + return self->buildSubPart(&multiVal[0],&multiVal[0]+multiVal.size()); + } + case 3: + { + return self->buildSubPartRange(slic.first,slic.second.first,slic.second.second); + } + case 4: + { + if(!daIntTyypp) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : null instance has been given in input !"); + daIntTyypp->checkAllocated(); + return self->buildSubPart(daIntTyypp->begin(),daIntTyypp->end()); + } + default: + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : unrecognized type in input ! Possibilities are : int, list or tuple of int DataArrayInt instance !"); } - PyObject *builtinsd(PyEval_GetBuiltins());//borrowed - PyObject *obj(PyDict_GetItemString(builtinsd,"object"));//borrowed - PyObject *selfMeth(PyObject_GetAttrString(obj,"__new__")); +} + +template +typename MEDCoupling::Traits::FieldType *fieldT__getitem__(const MEDCoupling::MEDCouplingFieldT *self, PyObject *li) +{ + const char msg[]="MEDCouplingFieldDouble::__getitem__ : invalid call Available API are : \n-myField[dataArrayInt]\n-myField[slice]\n-myField[pythonListOfCellIds]\n-myField[integer]\n-myField[dataArrayInt,1]\n-myField[slice,1]\n-myField[pythonListOfCellIds,1]\n-myField[integer,1]\n"; + if(PyTuple_Check(li)) + { + Py_ssize_t sz=PyTuple_Size(li); + if(sz!=2) + throw INTERP_KERNEL::Exception(msg); + PyObject *elt0=PyTuple_GetItem(li,0),*elt1=PyTuple_GetItem(li,1); + int sw; + int singleVal; + std::vector multiVal; + std::pair > slic; + MEDCoupling::DataArrayInt *daIntTyypp=0; + if(!self->getArray()) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array set on field to deduce number of components !"); + try + { convertIntStarOrSliceLikePyObjToCpp(elt1,self->getArray()->getNumberOfComponents(),sw,singleVal,multiVal,slic,daIntTyypp); } + catch(INTERP_KERNEL::Exception& e) + { std::ostringstream oss; oss << "MEDCouplingFieldDouble::__getitem__ : invalid type in 2nd parameter (compo) !" << e.what(); throw INTERP_KERNEL::Exception(oss.str().c_str()); } + typename MEDCoupling::MCAuto< typename MEDCoupling::Traits::FieldType > ret0(fieldT_buildSubPart(self,elt0)); + typename MEDCoupling::Traits::ArrayType *ret0Arr=ret0->getArray(); + if(!ret0Arr) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::__getitem__ : no array exists to apply restriction on component on it !"); + switch(sw) + { + case 1: + { + std::vector v2(1,singleVal); + MEDCoupling::MCAuto< typename MEDCoupling::Traits::ArrayType > aarr(ret0Arr->keepSelectedComponents(v2)); + ret0->setArray(aarr); + return ret0.retn(); + } + case 2: + { + MEDCoupling::MCAuto< typename MEDCoupling::Traits::ArrayType > aarr(ret0Arr->keepSelectedComponents(multiVal)); + ret0->setArray(aarr); + return ret0.retn(); + } + case 3: + { + int nbOfComp(MEDCoupling::DataArray::GetNumberOfItemGivenBESRelative(slic.first,slic.second.first,slic.second.second,"MEDCouplingFieldDouble::__getitem__ : invalid range in 2nd parameter (components) !")); + std::vector v2(nbOfComp); + for(int i=0;i::ArrayType > aarr(ret0Arr->keepSelectedComponents(v2)); + ret0->setArray(aarr); + return ret0.retn(); + } + default: + throw INTERP_KERNEL::Exception(msg); + } + } + else + return fieldT_buildSubPart(self,li); +} + +template +PyObject *field_getTinySerializationInformation(const FIELDT *self) +{ + std::vector a0; + std::vector a1; + std::vector a2; + self->getTinySerializationDbleInformation(a0); + self->getTinySerializationIntInformation(a1); + self->getTinySerializationStrInformation(a2); // - PyObject *tmp0(PyTuple_New(1)); - PyTuple_SetItem(tmp0,0,cls); Py_XINCREF(cls); - PyObject *instance(PyObject_CallObject(selfMeth,tmp0)); - Py_DECREF(tmp0); - Py_DECREF(selfMeth); - if(PyTuple_Size(args)==2 && PyDict_Check(PyTuple_GetItem(args,1)) && PyDict_Size(PyTuple_GetItem(args,1))==0 ) - {// NOT general case. only true if in unpickeling context ! call __init__. Because for all other cases, __init__ is called right after __new__ ! - PyObject *initMeth(PyObject_GetAttrString(instance,"__init__")); - PyObject *tmp3(PyTuple_New(0)); - PyObject *tmp2(PyObject_CallObject(initMeth,tmp3)); - Py_XDECREF(tmp2); - Py_DECREF(tmp3); - Py_DECREF(initMeth); + PyObject *ret(PyTuple_New(3)); + PyTuple_SetItem(ret,0,convertDblArrToPyList2(a0)); + PyTuple_SetItem(ret,1,convertIntArrToPyList2(a1)); + int sz(a2.size()); + PyObject *ret2(PyList_New(sz)); + { + for(int i=0;i +PyObject *field_serialize(const typename MEDCoupling::Traits::FieldType *self) +{ + MEDCoupling::DataArrayInt *ret0(0); + std::vector::ArrayType *> ret1; + self->serialize(ret0,ret1); + if(ret0) + ret0->incrRef(); + std::size_t sz(ret1.size()); + PyObject *ret(PyTuple_New(2)); + PyTuple_SetItem(ret,0,SWIG_NewPointerObj(SWIG_as_voidptr(ret0),SWIGTYPE_p_MEDCoupling__DataArrayInt, SWIG_POINTER_OWN | 0 )); + PyObject *ret1Py(PyList_New(sz)); + for(std::size_t i=0;iincrRef(); + PyList_SetItem(ret1Py,i,convertArray(ret1[i],SWIG_POINTER_OWN | 0)); } - return instance; + PyTuple_SetItem(ret,1,ret1Py); + return ret; +} + +template +PyObject *field__getnewargs__(FIELDT *self) +{ + self->checkConsistencyLight(); + PyObject *ret(PyTuple_New(1)); + PyObject *ret0(PyDict_New()); + { + PyObject *a(PyInt_FromLong(0)),*b(PyInt_FromLong(self->getTypeOfField())),*c(PyInt_FromLong(self->getTimeDiscretization())); + PyObject *d(PyTuple_New(2)); PyTuple_SetItem(d,0,b); PyTuple_SetItem(d,1,c); + PyDict_SetItem(ret0,a,d); + Py_DECREF(a); Py_DECREF(d); + } + PyTuple_SetItem(ret,0,ret0); + return ret; +} + +template +PyObject *field__getstate__(const FIELDT *self, PyObject *(*tinyserial)(const FIELDT *), PyObject *(*bigserial)(const FIELDT *)) +{ + self->checkConsistencyLight(); + PyObject *ret0(tinyserial(self)); + PyObject *ret1(bigserial(self)); + const MEDCoupling::MEDCouplingMesh *mesh(self->getMesh()); + if(mesh) + mesh->incrRef(); + PyObject *ret(PyTuple_New(3)); + PyTuple_SetItem(ret,0,ret0); + PyTuple_SetItem(ret,1,ret1); + PyTuple_SetItem(ret,2,convertMesh(const_cast(mesh),SWIG_POINTER_OWN | 0 )); + return ret; } + +template +void field__setstate__(typename MEDCoupling::Traits::FieldType *self, PyObject *inp) +{ + static const char MSG[]="MEDCouplingFieldDouble.__setstate__ : expected input is a tuple of size 3 !"; + if(!PyTuple_Check(inp)) + throw INTERP_KERNEL::Exception(MSG); + int sz(PyTuple_Size(inp)); + if(sz!=3) + throw INTERP_KERNEL::Exception(MSG); + // mesh + PyObject *elt2(PyTuple_GetItem(inp,2)); + void *argp=0; + int status(SWIG_ConvertPtr(elt2,&argp,SWIGTYPE_p_MEDCoupling__MEDCouplingMesh,0|0)); + if(!SWIG_IsOK(status)) + throw INTERP_KERNEL::Exception(MSG); + self->setMesh(reinterpret_cast< const MEDCoupling::MEDCouplingMesh * >(argp)); + // + PyObject *elt0(PyTuple_GetItem(inp,0)); + PyObject *elt1(PyTuple_GetItem(inp,1)); + std::vector a0; + std::vector a1; + std::vector a2; + MEDCoupling::DataArrayInt *b0(0); + std::vector::ArrayType *>b1; + { + if(!PyTuple_Check(elt0) && PyTuple_Size(elt0)!=3) + throw INTERP_KERNEL::Exception(MSG); + PyObject *a0py(PyTuple_GetItem(elt0,0)),*a1py(PyTuple_GetItem(elt0,1)),*a2py(PyTuple_GetItem(elt0,2)); + int tmp(-1); + fillArrayWithPyListDbl3(a0py,tmp,a0); + convertPyToNewIntArr3(a1py,a1); + fillStringVector(a2py,a2); + } + { + if(!PyTuple_Check(elt1) && PyTuple_Size(elt1)!=2) + throw INTERP_KERNEL::Exception(MSG); + PyObject *b0py(PyTuple_GetItem(elt1,0)),*b1py(PyTuple_GetItem(elt1,1)); + void *argp(0); + int status(SWIG_ConvertPtr(b0py,&argp,SWIGTYPE_p_MEDCoupling__DataArrayInt,0|0)); + if(!SWIG_IsOK(status)) + throw INTERP_KERNEL::Exception(MSG); + b0=reinterpret_cast(argp); + convertFromPyObjVectorOfObj::ArrayType *>(b1py,SWIGTITraits::TI,MEDCoupling::Traits::ArrayTypeName,b1); + } + self->checkForUnserialization(a1,b0,b1); + // useless here to call resizeForUnserialization because arrays are well resized. + self->finishUnserialization(a1,a0,a2); +} + +#endif