X-Git-Url: http://git.salome-platform.org/gitweb/?a=blobdiff_plain;f=src%2FMEDCoupling%2FMEDCouplingIMesh.cxx;h=6ba02d4a028c28aeb404120a8d67d4563977ee67;hb=7de62920cadf9bfcd33addf31d4a8256bffaf1ec;hp=f5821c9e68e538cd53b7bc1ef49206c4fd5ef1d4;hpb=d36300c7c483fb3a2eebc4ba89c67600447e37a9;p=tools%2Fmedcoupling.git diff --git a/src/MEDCoupling/MEDCouplingIMesh.cxx b/src/MEDCoupling/MEDCouplingIMesh.cxx index f5821c9e6..6ba02d4a0 100644 --- a/src/MEDCoupling/MEDCouplingIMesh.cxx +++ b/src/MEDCoupling/MEDCouplingIMesh.cxx @@ -1,4 +1,4 @@ -// Copyright (C) 2007-2014 CEA/DEN, EDF R&D +// Copyright (C) 2007-2016 CEA/DEN, EDF R&D // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public @@ -16,7 +16,7 @@ // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // -// Author : Anthony Geay (CEA/DEN) +// Author : Anthony Geay (EDF R&D) #include "MEDCouplingIMesh.hxx" #include "MEDCouplingCMesh.hxx" @@ -28,7 +28,7 @@ #include #include -using namespace ParaMEDMEM; +using namespace MEDCoupling; MEDCouplingIMesh::MEDCouplingIMesh():_space_dim(-1) { @@ -37,7 +37,7 @@ MEDCouplingIMesh::MEDCouplingIMesh():_space_dim(-1) _structure[0]=0; _structure[1]=0; _structure[2]=0; } -MEDCouplingIMesh::MEDCouplingIMesh(const MEDCouplingIMesh& other, bool deepCopy):MEDCouplingStructuredMesh(other,deepCopy),_space_dim(other._space_dim),_axis_unit(other._axis_unit) +MEDCouplingIMesh::MEDCouplingIMesh(const MEDCouplingIMesh& other, bool deepCpy):MEDCouplingStructuredMesh(other,deepCpy),_space_dim(other._space_dim),_axis_unit(other._axis_unit) { _origin[0]=other._origin[0]; _origin[1]=other._origin[1]; _origin[2]=other._origin[2]; _dxyz[0]=other._dxyz[0]; _dxyz[1]=other._dxyz[1]; _dxyz[2]=other._dxyz[2]; @@ -56,7 +56,7 @@ MEDCouplingIMesh *MEDCouplingIMesh::New() MEDCouplingIMesh *MEDCouplingIMesh::New(const std::string& meshName, int spaceDim, const int *nodeStrctStart, const int *nodeStrctStop, const double *originStart, const double *originStop, const double *dxyzStart, const double *dxyzStop) { - MEDCouplingAutoRefCountObjectPtr ret(new MEDCouplingIMesh); + MCAuto ret(new MEDCouplingIMesh); ret->setName(meshName); ret->setSpaceDimension(spaceDim); ret->setNodeStruct(nodeStrctStart,nodeStrctStop); @@ -65,7 +65,7 @@ MEDCouplingIMesh *MEDCouplingIMesh::New(const std::string& meshName, int spaceDi return ret.retn(); } -MEDCouplingMesh *MEDCouplingIMesh::deepCpy() const +MEDCouplingIMesh *MEDCouplingIMesh::deepCopy() const { return clone(true); } @@ -75,6 +75,11 @@ MEDCouplingIMesh *MEDCouplingIMesh::clone(bool recDeepCpy) const return new MEDCouplingIMesh(*this,recDeepCpy); } +const DataArrayDouble *MEDCouplingIMesh::getDirectAccessOfCoordsArrIfInStructure() const +{ + throw INTERP_KERNEL::Exception("MEDCouplingIMesh::getDirectAccessOfCoordsArrIfInStructure : MEDCouplingIMesh does not aggregate array of coordinates !"); +} + /*! * This method creates a copy of \a this enlarged by \a ghostLev cells on each axis. * If \a ghostLev equal to 0 this method behaves as MEDCouplingIMesh::clone. @@ -87,7 +92,7 @@ MEDCouplingIMesh *MEDCouplingIMesh::buildWithGhost(int ghostLev) const { if(ghostLev<0) throw INTERP_KERNEL::Exception("MEDCouplingIMesh::buildWithGhost : the ghostLev must be >= 0 !"); - checkCoherency(); + checkConsistencyLight(); int spaceDim(getSpaceDimension()); double origin[3],dxyz[3]; int structure[3]; @@ -97,7 +102,7 @@ MEDCouplingIMesh *MEDCouplingIMesh::buildWithGhost(int ghostLev) const dxyz[i]=_dxyz[i]; structure[i]=_structure[i]+2*ghostLev; } - MEDCouplingAutoRefCountObjectPtr ret(MEDCouplingIMesh::New(getName(),spaceDim,structure,structure+spaceDim,origin,origin+spaceDim,dxyz,dxyz+spaceDim)); + MCAuto ret(MEDCouplingIMesh::New(getName(),spaceDim,structure,structure+spaceDim,origin,origin+spaceDim,dxyz,dxyz+spaceDim)); ret->copyTinyInfoFrom(this); return ret.retn(); } @@ -170,7 +175,7 @@ std::string MEDCouplingIMesh::getAxisUnit() const */ double MEDCouplingIMesh::getMeasureOfAnyCell() const { - checkCoherency(); + checkConsistencyLight(); int dim(getSpaceDimension()); double ret(1.); for(int i=0;i ret(MEDCouplingCMesh::New()); + checkConsistencyLight(); + MCAuto ret(MEDCouplingCMesh::New()); try { ret->copyTinyInfoFrom(this); } catch(INTERP_KERNEL::Exception& ) { } @@ -196,7 +201,7 @@ MEDCouplingCMesh *MEDCouplingIMesh::convertToCartesian() const std::vector infos(buildInfoOnComponents()); for(int i=0;i arr(DataArrayDouble::New()); arr->alloc(_structure[i],1); arr->setInfoOnComponent(0,infos[i]); + MCAuto arr(DataArrayDouble::New()); arr->alloc(_structure[i],1); arr->setInfoOnComponent(0,infos[i]); arr->iota(); arr->applyLin(_dxyz[i],_origin[i]); ret->setCoordsAt(i,arr); } @@ -213,7 +218,7 @@ void MEDCouplingIMesh::refineWithFactor(const std::vector& factors) { if((int)factors.size()!=_space_dim) throw INTERP_KERNEL::Exception("MEDCouplingIMesh::refineWithFactor : refinement factors must have size equal to spaceDim !"); - checkCoherency(); + checkConsistencyLight(); std::vector structure(_structure,_structure+3); std::vector dxyz(_dxyz,_dxyz+3); for(int i=0;i<_space_dim;i++) @@ -238,11 +243,11 @@ void MEDCouplingIMesh::refineWithFactor(const std::vector& factors) * * \return MEDCouplingIMesh * - A newly created object (to be managed by the caller with decrRef) containing simply one cell. * - * \throw if \a this does not pass the \c checkCoherency test. + * \throw if \a this does not pass the \c checkConsistencyLight test. */ MEDCouplingIMesh *MEDCouplingIMesh::asSingleCell() const { - checkCoherency(); + checkConsistencyLight(); int spaceDim(getSpaceDimension()),nodeSt[3]; double dxyz[3]; for(int i=0;i ret(MEDCouplingIMesh::New(getName(),getSpaceDimension(),nodeSt,nodeSt+spaceDim,_origin,_origin+spaceDim,dxyz,dxyz+spaceDim)); + MCAuto ret(MEDCouplingIMesh::New(getName(),getSpaceDimension(),nodeSt,nodeSt+spaceDim,_origin,_origin+spaceDim,dxyz,dxyz+spaceDim)); ret->copyTinyInfoFrom(this); return ret.retn(); } /*! * This static method is useful to condense field on cells of a MEDCouplingIMesh instance coming from a refinement ( MEDCouplingIMesh::refineWithFactor for example) - * to a coarse MEDCouplingIMesh instance. So this method can be seen as a specialization in P0P0 conservative interpolation non overlaping from fine image mesh + * to a coarse MEDCouplingIMesh instance. So this method can be seen as a specialization in P0P0 conservative interpolation non overlapping from fine image mesh * to a coarse image mesh. Only tuples ( deduced from \a fineLocInCoarse ) of \a coarseDA will be modified. Other tuples of \a coarseDA will be let unchanged. * * \param [in] coarseSt The cell structure of coarse mesh. @@ -284,7 +289,7 @@ void MEDCouplingIMesh::CondenseFineToCoarse(const std::vector& coarseSt, co throw INTERP_KERNEL::Exception("MEDCouplingIMesh::CondenseFineToCoarse : the parameters 1 or 3 are NULL or not allocated !"); int meshDim((int)coarseSt.size()),nbOfTuplesInCoarseExp(MEDCouplingStructuredMesh::DeduceNumberOfGivenStructure(coarseSt)),nbOfTuplesInFineExp(MEDCouplingStructuredMesh::DeduceNumberOfGivenRangeInCompactFrmt(fineLocInCoarse)); int nbCompo(fineDA->getNumberOfComponents()); - if(coarseDA->getNumberOfComponents()!=nbCompo) + if((int)coarseDA->getNumberOfComponents()!=nbCompo) throw INTERP_KERNEL::Exception("MEDCouplingIMesh::CondenseFineToCoarse : the number of components of fine DA and coarse one mismatches !"); if(meshDim!=(int)fineLocInCoarse.size() || meshDim!=(int)facts.size()) throw INTERP_KERNEL::Exception("MEDCouplingIMesh::CondenseFineToCoarse : the size of fineLocInCoarse (4th param) and facts (5th param) must be equal to the sier of coarseSt (2nd param) !"); @@ -391,7 +396,7 @@ void MEDCouplingIMesh::CondenseFineToCoarse(const std::vector& coarseSt, co /*! * This static method is useful to condense field on cells of a MEDCouplingIMesh instance coming from a refinement ( MEDCouplingIMesh::refineWithFactor for example) - * to a coarse MEDCouplingIMesh instance. So this method can be seen as a specialization in P0P0 conservative interpolation non overlaping from fine image mesh + * to a coarse MEDCouplingIMesh instance. So this method can be seen as a specialization in P0P0 conservative interpolation non overlapping from fine image mesh * to a coarse image mesh. Only tuples ( deduced from \a fineLocInCoarse ) of \a coarseDA will be modified. Other tuples of \a coarseDA will be let unchanged. * * \param [in] coarseSt The cell structure of coarse mesh. @@ -414,7 +419,7 @@ void MEDCouplingIMesh::CondenseFineToCoarseGhost(const std::vector& coarseS std::vector coarseStG(coarseSt.size()); std::transform(coarseSt.begin(),coarseSt.end(),coarseStG.begin(),std::bind2nd(std::plus(),2*ghostSize)); int meshDim((int)coarseSt.size()),nbOfTuplesInCoarseExp(MEDCouplingStructuredMesh::DeduceNumberOfGivenStructure(coarseStG)); int nbCompo(fineDA->getNumberOfComponents()); - if(coarseDA->getNumberOfComponents()!=nbCompo) + if((int)coarseDA->getNumberOfComponents()!=nbCompo) throw INTERP_KERNEL::Exception("MEDCouplingIMesh::CondenseFineToCoarseGhost : the number of components of fine DA and coarse one mismatches !"); if(meshDim!=(int)fineLocInCoarse.size() || meshDim!=(int)facts.size()) throw INTERP_KERNEL::Exception("MEDCouplingIMesh::CondenseFineToCoarseGhost : the size of fineLocInCoarse (4th param) and facts (5th param) must be equal to the sier of coarseSt (2nd param) !"); @@ -484,8 +489,44 @@ void MEDCouplingIMesh::CondenseFineToCoarseGhost(const std::vector& coarseS } break; } + case 3: + { + int nxwg(coarseSt[0]+2*ghostSize),nxywg((coarseSt[0]+2*ghostSize)*(coarseSt[1]+2*ghostSize)); + int kk(fineLocInCoarse[0].first+ghostSize+nxwg*(fineLocInCoarse[1].first+ghostSize)+nxywg*(fineLocInCoarse[2].first+ghostSize)),fact2(facts[2]),fact1(facts[1]),fact0(facts[0]); + inPtr+=(dims[0]*fact0+2*ghostSize)*(dims[1]*fact1+2*ghostSize)*ghostSize*nbCompo; + for(int k=0;k()); + else + std::copy(inPtr,inPtr+nbCompo,loc); + } + } + inPtr+=ghostSize*nbCompo; + } + } + inPtr+=ghostSize*(dims[0]*fact0+2*ghostSize)*nbCompo; + } + kk+=nxywg; + } + break; + } default: - throw INTERP_KERNEL::Exception("MEDCouplingIMesh::CondenseFineToCoarseGhost : only dimensions 1, 2 supported !"); + throw INTERP_KERNEL::Exception("MEDCouplingIMesh::CondenseFineToCoarseGhost : only dimensions 1, 2, 3 supported !"); } } @@ -507,7 +548,7 @@ void MEDCouplingIMesh::SpreadCoarseToFine(const DataArrayDouble *coarseDA, const throw INTERP_KERNEL::Exception("MEDCouplingIMesh::SpreadCoarseToFine : the parameters 1 or 3 are NULL or not allocated !"); int meshDim((int)coarseSt.size()),nbOfTuplesInCoarseExp(MEDCouplingStructuredMesh::DeduceNumberOfGivenStructure(coarseSt)),nbOfTuplesInFineExp(MEDCouplingStructuredMesh::DeduceNumberOfGivenRangeInCompactFrmt(fineLocInCoarse)); int nbCompo(fineDA->getNumberOfComponents()); - if(coarseDA->getNumberOfComponents()!=nbCompo) + if((int)coarseDA->getNumberOfComponents()!=nbCompo) throw INTERP_KERNEL::Exception("MEDCouplingIMesh::SpreadCoarseToFine : the number of components of fine DA and coarse one mismatches !"); if(meshDim!=(int)fineLocInCoarse.size() || meshDim!=(int)facts.size()) throw INTERP_KERNEL::Exception("MEDCouplingIMesh::SpreadCoarseToFine : the size of fineLocInCoarse (4th param) and facts (5th param) must be equal to the sier of coarseSt (2nd param) !"); @@ -613,7 +654,7 @@ void MEDCouplingIMesh::SpreadCoarseToFineGhost(const DataArrayDouble *coarseDA, std::vector coarseStG(coarseSt.size()); std::transform(coarseSt.begin(),coarseSt.end(),coarseStG.begin(),std::bind2nd(std::plus(),2*ghostSize)); int meshDim((int)coarseSt.size()),nbOfTuplesInCoarseExp(MEDCouplingStructuredMesh::DeduceNumberOfGivenStructure(coarseStG)); int nbCompo(fineDA->getNumberOfComponents()); - if(coarseDA->getNumberOfComponents()!=nbCompo) + if((int)coarseDA->getNumberOfComponents()!=nbCompo) throw INTERP_KERNEL::Exception("MEDCouplingIMesh::SpreadCoarseToFineGhost : the number of components of fine DA and coarse one mismatches !"); if(meshDim!=(int)fineLocInCoarse.size() || meshDim!=(int)facts.size()) throw INTERP_KERNEL::Exception("MEDCouplingIMesh::SpreadCoarseToFineGhost : the size of fineLocInCoarse (4th param) and facts (5th param) must be equal to the sier of coarseSt (2nd param) !"); @@ -636,11 +677,11 @@ void MEDCouplingIMesh::SpreadCoarseToFineGhost(const DataArrayDouble *coarseDA, double *outPtr(fineDA->getPointer()); const double *inPtr(coarseDA->begin()); // - std::vector dims(MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(fineLocInCoarse)); switch(meshDim) { case 1: { + std::vector dims(MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(fineLocInCoarse)); int offset(fineLocInCoarse[0].first+ghostSize-1),fact0(facts[0]);//offset is always >=0 thanks to the fact that ghostSize>=1 ! for(int i=0;i=0 thanks to the fact that ghostSize>=1 ! - for(int jg=0;jg= ghostlev - for(int i=0;i dims(MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(fineLocInCoarse)); + int fact0(facts[0]),fact1(facts[1]),fact2(facts[2]); + int nxyWgCoarse((coarseSt[0]+2*ghostSize)*(coarseSt[1]+2*ghostSize)),nxyWgFine((dims[0]*fact0+2*ghostSize)*(dims[1]*fact1+2*ghostSize)); + int offset((fineLocInCoarse[2].first+ghostSize-1)*nxyWgCoarse);//offset is always >=0 thanks to the fact that ghostSize>=1 ! + for(int i=0;i coarseStG(coarseSt.size()); std::transform(coarseSt.begin(),coarseSt.end(),coarseStG.begin(),std::bind2nd(std::plus(),2*ghostSize)); int meshDim((int)coarseSt.size()),nbOfTuplesInCoarseExp(MEDCouplingStructuredMesh::DeduceNumberOfGivenStructure(coarseStG)); int nbCompo(fineDA->getNumberOfComponents()); - if(coarseDA->getNumberOfComponents()!=nbCompo) + if((int)coarseDA->getNumberOfComponents()!=nbCompo) throw INTERP_KERNEL::Exception("MEDCouplingIMesh::SpreadCoarseToFineGhostZone : the number of components of fine DA and coarse one mismatches !"); if(meshDim!=(int)fineLocInCoarse.size() || meshDim!=(int)facts.size()) throw INTERP_KERNEL::Exception("MEDCouplingIMesh::SpreadCoarseToFineGhostZone : the size of fineLocInCoarse (4th param) and facts (5th param) must be equal to the sier of coarseSt (2nd param) !"); @@ -770,48 +785,26 @@ void MEDCouplingIMesh::SpreadCoarseToFineGhostZone(const DataArrayDouble *coarse } case 2: { - int nxwg(coarseSt[0]+2*ghostSize),fact0(facts[0]),fact1(facts[1]); - int kk(fineLocInCoarse[0].first+ghostSize-1+nxwg*(fineLocInCoarse[1].first+ghostSize-1));//kk is always >=0 thanks to the fact that ghostSize>=1 ! - for(int jg=0;jg= ghostlev - outPtr+=fact0*nbCompo*dims[0]; - for(int ig=0;ig=0 thanks to the fact that ghostSize>=1 ! + for(int i=0;i MEDCouplingIMesh::getDirectChildren() const +std::vector MEDCouplingIMesh::getDirectChildrenWithNull() const { return std::vector(); } @@ -935,8 +928,8 @@ void MEDCouplingIMesh::checkDeepEquivalWith(const MEDCouplingMesh *other, int ce } /*! - * Nothing is done here (except to check that the other is a ParaMEDMEM::MEDCouplingIMesh instance too). - * The user intend that the nodes are the same, so by construction of ParaMEDMEM::MEDCouplingIMesh, \a this and \a other are the same ! + * Nothing is done here (except to check that the other is a MEDCoupling::MEDCouplingIMesh instance too). + * The user intend that the nodes are the same, so by construction of MEDCoupling::MEDCouplingIMesh, \a this and \a other are the same ! */ void MEDCouplingIMesh::checkDeepEquivalOnSameNodesWith(const MEDCouplingMesh *other, int cellCompPol, double prec, DataArrayInt *&cellCor) const @@ -945,25 +938,20 @@ void MEDCouplingIMesh::checkDeepEquivalOnSameNodesWith(const MEDCouplingMesh *ot throw INTERP_KERNEL::Exception("MEDCouplingIMesh::checkDeepEquivalOnSameNodesWith : Meshes are not the same !"); } -void MEDCouplingIMesh::checkCoherency() const +void MEDCouplingIMesh::checkConsistencyLight() const { checkSpaceDimension(); for(int i=0;i<_space_dim;i++) if(_structure[i]<1) { - std::ostringstream oss; oss << "MEDCouplingIMesh::checkCoherency : On axis " << i << "/" << _space_dim << ", number of nodes is equal to " << _structure[i] << " ! must be >=1 !"; + std::ostringstream oss; oss << "MEDCouplingIMesh::checkConsistencyLight : On axis " << i << "/" << _space_dim << ", number of nodes is equal to " << _structure[i] << " ! must be >=1 !"; throw INTERP_KERNEL::Exception(oss.str().c_str()); } } -void MEDCouplingIMesh::checkCoherency1(double eps) const -{ - checkCoherency(); -} - -void MEDCouplingIMesh::checkCoherency2(double eps) const +void MEDCouplingIMesh::checkConsistency(double eps) const { - checkCoherency1(eps); + checkConsistencyLight(); } void MEDCouplingIMesh::getNodeGridStructure(int *res) const @@ -981,7 +969,7 @@ std::vector MEDCouplingIMesh::getNodeGridStructure() const MEDCouplingStructuredMesh *MEDCouplingIMesh::buildStructuredSubPart(const std::vector< std::pair >& cellPart) const { - checkCoherency(); + checkConsistencyLight(); int dim(getSpaceDimension()); if(dim!=(int)cellPart.size()) { @@ -990,7 +978,7 @@ MEDCouplingStructuredMesh *MEDCouplingIMesh::buildStructuredSubPart(const std::v } double retOrigin[3]={0.,0.,0.}; int retStruct[3]={0,0,0}; - MEDCouplingAutoRefCountObjectPtr ret(dynamic_cast(deepCpy())); + MCAuto ret(dynamic_cast(deepCopy())); for(int i=0;isetNodeStruct(retStruct,retStruct+dim); ret->setOrigin(retOrigin,retOrigin+dim); - ret->checkCoherency(); + ret->checkConsistencyLight(); return ret.retn(); } @@ -1061,7 +1049,7 @@ std::string MEDCouplingIMesh::advancedRepr() const void MEDCouplingIMesh::getBoundingBox(double *bbox) const { - checkCoherency(); + checkConsistencyLight(); int dim(getSpaceDimension()); for(int idim=0; idim& elts) const +{ + int ret(getCellContainingPoint(pos,eps)); + elts.push_back(ret); +} + void MEDCouplingIMesh::rotate(const double *center, const double *vector, double angle) { throw INTERP_KERNEL::Exception("No rotation available on IMesh : Traduce it to unstructured mesh to apply it !"); @@ -1186,8 +1180,8 @@ MEDCouplingMesh *MEDCouplingIMesh::mergeMyselfWith(const MEDCouplingMesh *other) */ DataArrayDouble *MEDCouplingIMesh::getCoordinatesAndOwner() const { - checkCoherency(); - MEDCouplingAutoRefCountObjectPtr ret(DataArrayDouble::New()); + checkConsistencyLight(); + MCAuto ret(DataArrayDouble::New()); int spaceDim(getSpaceDimension()),nbNodes(getNumberOfNodes()); ret->alloc(nbNodes,spaceDim); double *pt(ret->getPointer()); @@ -1211,10 +1205,10 @@ DataArrayDouble *MEDCouplingIMesh::getCoordinatesAndOwner() const * components. The caller is to delete this array using decrRef() as it is * no more needed. */ -DataArrayDouble *MEDCouplingIMesh::getBarycenterAndOwner() const +DataArrayDouble *MEDCouplingIMesh::computeCellCenterOfMass() const { - checkCoherency(); - MEDCouplingAutoRefCountObjectPtr ret(DataArrayDouble::New()); + checkConsistencyLight(); + MCAuto ret(DataArrayDouble::New()); int spaceDim(getSpaceDimension()),nbCells(getNumberOfCells()),tmp[3],tmp2[3]; ret->alloc(nbCells,spaceDim); double *pt(ret->getPointer()),shiftOrigin[3]; @@ -1233,12 +1227,12 @@ DataArrayDouble *MEDCouplingIMesh::getBarycenterAndOwner() const DataArrayDouble *MEDCouplingIMesh::computeIsoBarycenterOfNodesPerCell() const { - return MEDCouplingIMesh::getBarycenterAndOwner(); + return MEDCouplingIMesh::computeCellCenterOfMass(); } void MEDCouplingIMesh::renumberCells(const int *old2NewBg, bool check) { - throw INTERP_KERNEL::Exception("Functionnality of renumbering cell not available for IMesh !"); + throw INTERP_KERNEL::Exception("Functionality of renumbering cell not available for IMesh !"); } void MEDCouplingIMesh::getTinySerializationInformation(std::vector& tinyInfoD, std::vector& tinyInfo, std::vector& littleStrings) const @@ -1292,7 +1286,7 @@ void MEDCouplingIMesh::unserialization(const std::vector& tinyInfoD, con void MEDCouplingIMesh::writeVTKLL(std::ostream& ofs, const std::string& cellData, const std::string& pointData, DataArrayByte *byteData) const { - checkCoherency(); + checkConsistencyLight(); std::ostringstream extent,origin,spacing; for(int i=0;i<3;i++) { @@ -1346,6 +1340,11 @@ void MEDCouplingIMesh::reprQuickOverview(std::ostream& stream) const stream << stream1.str(); } +std::string MEDCouplingIMesh::getVTKFileExtension() const +{ + return std::string("vti"); +} + std::string MEDCouplingIMesh::getVTKDataSetType() const { return std::string("ImageData"); @@ -1407,3 +1406,96 @@ int MEDCouplingIMesh::FindIntRoot(int val, int order) return ret2; } } + +void MEDCouplingIMesh::SpreadCoarseToFineGhost2D(const double *inPtr, double *outPtr, int nbCompo, const std::vector& coarseSt, const std::vector< std::pair >& fineLocInCoarse, const std::vector& facts, int ghostSize) +{ + double *outPtrWork(outPtr); + std::vector dims(MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(fineLocInCoarse)); + int nxwg(coarseSt[0]+2*ghostSize),fact0(facts[0]),fact1(facts[1]); + int kk(fineLocInCoarse[0].first+ghostSize-1+nxwg*(fineLocInCoarse[1].first+ghostSize-1));//kk is always >=0 thanks to the fact that ghostSize>=1 ! + for(int jg=0;jg= ghostlev + for(int i=0;i& coarseSt, const std::vector< std::pair >& fineLocInCoarse, const std::vector& facts, int ghostSize) +{ + double *outPtr2(outPtr); + std::vector dims(MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(fineLocInCoarse)); + int nxwg(coarseSt[0]+2*ghostSize),fact0(facts[0]),fact1(facts[1]); + int kk(fineLocInCoarse[0].first+ghostSize-1+nxwg*(fineLocInCoarse[1].first+ghostSize-1));//kk is always >=0 thanks to the fact that ghostSize>=1 ! + for(int jg=0;jg= ghostlev + outPtr2+=fact0*nbCompo*dims[0]; + for(int ig=0;ig