X-Git-Url: http://git.salome-platform.org/gitweb/?a=blobdiff_plain;f=src%2FMEDCoupling%2FMEDCouplingFieldDouble.cxx;h=a60ff309f35fbb35f891e229c4f1a3de57fc2a45;hb=2ae2dc6fcedbf241c7637284b3c7bde12aded04a;hp=0a7f2f8f738d08e5b5c17dd8268ca7ab879825f1;hpb=1327e26c56f6f295388a4d742b08c3d4e1b894d4;p=tools%2Fmedcoupling.git diff --git a/src/MEDCoupling/MEDCouplingFieldDouble.cxx b/src/MEDCoupling/MEDCouplingFieldDouble.cxx old mode 100644 new mode 100755 index 0a7f2f8f7..a60ff309f --- a/src/MEDCoupling/MEDCouplingFieldDouble.cxx +++ b/src/MEDCoupling/MEDCouplingFieldDouble.cxx @@ -1,4 +1,4 @@ -// Copyright (C) 2007-2016 CEA/DEN, EDF R&D +// Copyright (C) 2007-2020 CEA/DEN, EDF R&D // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public @@ -16,19 +16,23 @@ // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // -// Author : Anthony Geay (CEA/DEN) +// Author : Anthony Geay (EDF R&D) #include "MEDCouplingFieldDouble.hxx" #include "MEDCouplingFieldTemplate.hxx" #include "MEDCouplingFieldT.txx" -#include "MEDCouplingFieldInt.hxx" +#include "MEDCouplingFieldInt32.hxx" +#include "MEDCouplingFieldFloat.hxx" #include "MEDCouplingUMesh.hxx" #include "MEDCouplingTimeDiscretization.hxx" #include "MEDCouplingFieldDiscretization.hxx" -#include "MCAuto.hxx" +#include "MCAuto.txx" +#include "MEDCouplingVoronoi.hxx" #include "MEDCouplingNatureOfField.hxx" +#include "MEDCouplingMemArray.txx" #include "InterpKernelAutoPtr.hxx" +#include "InterpKernelGaussCoords.hxx" #include #include @@ -37,7 +41,7 @@ using namespace MEDCoupling; -template class MEDCouplingFieldT; +template class MEDCoupling::MEDCouplingFieldT; /*! * Creates a new MEDCouplingFieldDouble, of given spatial type and time discretization. @@ -161,7 +165,7 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::deepCopy() const * \ref MEDCoupling::ONE_TIME "ONE_TIME", * \ref MEDCoupling::LINEAR_TIME "LINEAR_TIME", * \ref MEDCoupling::CONST_ON_TIME_INTERVAL "CONST_ON_TIME_INTERVAL"). - * \param [in] deepCopy - if \c true, the copy of the underlying data arrays is + * \param [in] deepCpy - if \c true, the copy of the underlying data arrays is * deep, else all data arrays of \a this field are shared by the new field. * \return MEDCouplingFieldDouble* - a new instance of MEDCouplingFieldDouble. The * caller is to delete this field using decrRef() as it is no more needed. @@ -172,13 +176,13 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::deepCopy() const * \endif * \sa clone() */ -MEDCouplingFieldDouble *MEDCouplingFieldDouble::buildNewTimeReprFromThis(TypeOfTimeDiscretization td, bool deepCopy) const +MEDCouplingFieldDouble *MEDCouplingFieldDouble::buildNewTimeReprFromThis(TypeOfTimeDiscretization td, bool deepCpy) const { - MEDCouplingTimeDiscretization *tdo=timeDiscr()->buildNewTimeReprFromThis(td,deepCopy); + MEDCouplingTimeDiscretization *tdo=timeDiscr()->buildNewTimeReprFromThis(td,deepCpy); MCAuto disc; if(_type) disc=_type->clone(); - MCAuto ret=new MEDCouplingFieldDouble(getNature(),tdo,disc.retn()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),tdo,disc.retn())); ret->setMesh(getMesh()); ret->setName(getName()); ret->setDescription(getDescription()); @@ -186,8 +190,8 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::buildNewTimeReprFromThis(TypeOfT } /*! - * This method converts a field on nodes (\a this) to a cell field (returned field). The convertion is a \b non \b conservative remapping ! - * This method is useful only for users that need a fast convertion from node to cell spatial discretization. The algorithm applied is simply to attach + * This method converts a field on nodes (\a this) to a cell field (returned field). The conversion is a \b non \b conservative remapping ! + * This method is useful only for users that need a fast conversion from node to cell spatial discretization. The algorithm applied is simply to attach * to each cell the average of values on nodes constituting this cell. * * \return MEDCouplingFieldDouble* - a new instance of MEDCouplingFieldDouble. The @@ -208,28 +212,28 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::nodeToCellDiscretization() const MCAuto nsp(new MEDCouplingFieldDiscretizationP0); ret->setDiscretization(nsp); const MEDCouplingMesh *m(getMesh());//m is non empty thanks to checkConsistencyLight call - int nbCells(m->getNumberOfCells()); + mcIdType nbCells=ToIdType(m->getNumberOfCells()); std::vector arrs(getArrays()); std::size_t sz(arrs.size()); std::vector< MCAuto > outArrsSafe(sz); std::vector outArrs(sz); for(std::size_t j=0;jgetNumberOfComponents()); + std::size_t nbCompo(arrs[j]->getNumberOfComponents()); outArrsSafe[j]=DataArrayDouble::New(); outArrsSafe[j]->alloc(nbCells,nbCompo); outArrsSafe[j]->copyStringInfoFrom(*arrs[j]); outArrs[j]=outArrsSafe[j]; double *pt(outArrsSafe[j]->getPointer()); const double *srcPt(arrs[j]->begin()); - for(int i=0;i nodeIds; + std::vector nodeIds; m->getNodeIdsOfCell(i,nodeIds); std::fill(pt,pt+nbCompo,0.); std::size_t nbNodesInCell(nodeIds.size()); for(std::size_t k=0;k()); if(nbNodesInCell!=0) - std::transform(pt,pt+nbCompo,pt,std::bind2nd(std::multiplies(),1./((double)nbNodesInCell))); + std::transform(pt,pt+nbCompo,pt,std::bind(std::multiplies(),std::placeholders::_1,1./((double)nbNodesInCell))); else { std::ostringstream oss; oss << "MEDCouplingFieldDouble::nodeToCellDiscretization : Cell id #" << i << " has been detected to have no nodes !"; @@ -242,8 +246,8 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::nodeToCellDiscretization() const } /*! - * This method converts a field on cell (\a this) to a node field (returned field). The convertion is a \b non \b conservative remapping ! - * This method is useful only for users that need a fast convertion from cell to node spatial discretization. The algorithm applied is simply to attach + * This method converts a field on cell (\a this) to a node field (returned field). The conversion is a \b non \b conservative remapping ! + * This method is useful only for users that need a fast conversion from cell to node spatial discretization. The algorithm applied is simply to attach * to each node the average of values on cell sharing this node. If \a this lies on a mesh having orphan nodes the values applied on them will be NaN (division by 0.). * * \return MEDCouplingFieldDouble* - a new instance of MEDCouplingFieldDouble. The @@ -264,9 +268,9 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::cellToNodeDiscretization() const MCAuto nsp(new MEDCouplingFieldDiscretizationP1); ret->setDiscretization(nsp); const MEDCouplingMesh *m(getMesh());//m is non empty thanks to checkConsistencyLight call - MCAuto rn(DataArrayInt::New()),rni(DataArrayInt::New()); + MCAuto rn(DataArrayIdType::New()),rni(DataArrayIdType::New()); m->getReverseNodalConnectivity(rn,rni); - MCAuto rni2(rni->deltaShiftIndex()); + MCAuto rni2(rni->deltaShiftIndex()); MCAuto rni3(rni2->convertToDblArr()); rni2=0; std::vector arrs(getArrays()); std::size_t sz(arrs.size()); @@ -365,76 +369,6 @@ bool MEDCouplingFieldDouble::areCompatibleForMeld(const MEDCouplingFieldDouble * return true; } -/*! - * Permutes values of \a this field according to a given permutation array for cells - * renumbering. The underlying mesh is deeply copied and its cells are also permuted. - * The number of cells remains the same; for that the permutation array \a old2NewBg - * should not contain equal ids. - * ** Warning, this method modifies the mesh aggreagated by \a this (by performing a deep copy ) **. - * - * \param [in] old2NewBg - the permutation array in "Old to New" mode. Its length is - * to be equal to \a this->getMesh()->getNumberOfCells(). - * \param [in] check - if \c true, \a old2NewBg is transformed to a new permutation - * array, so that its maximal cell id to correspond to (be less than) the number - * of cells in mesh. This new array is then used for the renumbering. If \a - * check == \c false, \a old2NewBg is used as is, that is less secure as validity - * of ids in \a old2NewBg is not checked. - * \throw If the mesh is not set. - * \throw If the spatial discretization of \a this field is NULL. - * \throw If \a check == \c true and \a old2NewBg contains equal ids. - * \throw If mesh nature does not allow renumbering (e.g. structured mesh). - * - * \if ENABLE_EXAMPLES - * \ref cpp_mcfielddouble_renumberCells "Here is a C++ example".
- * \ref py_mcfielddouble_renumberCells "Here is a Python example". - * \endif - */ -void MEDCouplingFieldDouble::renumberCells(const int *old2NewBg, bool check) -{ - renumberCellsWithoutMesh(old2NewBg,check); - MCAuto m=_mesh->deepCopy(); - m->renumberCells(old2NewBg,check); - setMesh(m); - updateTime(); -} - -/*! - * Permutes values of \a this field according to a given permutation array for cells - * renumbering. The underlying mesh is \b not permuted. - * The number of cells remains the same; for that the permutation array \a old2NewBg - * should not contain equal ids. - * This method performs a part of job of renumberCells(). The reasonable use of this - * method is only for multi-field instances lying on the same mesh to avoid a - * systematic duplication and renumbering of _mesh attribute. - * \warning Use this method with a lot of care! - * \param [in] old2NewBg - the permutation array in "Old to New" mode. Its length is - * to be equal to \a this->getMesh()->getNumberOfCells(). - * \param [in] check - if \c true, \a old2NewBg is transformed to a new permutation - * array, so that its maximal cell id to correspond to (be less than) the number - * of cells in mesh. This new array is then used for the renumbering. If \a - * check == \c false, \a old2NewBg is used as is, that is less secure as validity - * of ids in \a old2NewBg is not checked. - * \throw If the mesh is not set. - * \throw If the spatial discretization of \a this field is NULL. - * \throw If \a check == \c true and \a old2NewBg contains equal ids. - * \throw If mesh nature does not allow renumbering (e.g. structured mesh). - */ -void MEDCouplingFieldDouble::renumberCellsWithoutMesh(const int *old2NewBg, bool check) -{ - if(!_mesh) - throw INTERP_KERNEL::Exception("Expecting a defined mesh to be able to operate a renumbering !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) - throw INTERP_KERNEL::Exception("Expecting a spatial discretization to be able to operate a renumbering !"); - // - _type->renumberCells(old2NewBg,check); - std::vector arrays; - timeDiscr()->getArrays(arrays); - std::vector arrays2(arrays.size()); std::copy(arrays.begin(),arrays.end(),arrays2.begin()); - _type->renumberArraysForCell(_mesh,arrays2,old2NewBg,check); - // - updateTime(); -} - /*! * Permutes values of \a this field according to a given permutation array for node * renumbering. The underlying mesh is deeply copied and its nodes are also permuted. @@ -447,21 +381,21 @@ void MEDCouplingFieldDouble::renumberCellsWithoutMesh(const int *old2NewBg, bool * \throw If the spatial discretization of \a this field is NULL. * \throw If \a check == \c true and \a old2NewBg contains equal ids. * \throw If mesh nature does not allow renumbering (e.g. structured mesh). - * \throw If values at merged nodes deffer more than \a eps. + * \throw If values at merged nodes differ more than \a eps. * * \if ENABLE_EXAMPLES * \ref cpp_mcfielddouble_renumberNodes "Here is a C++ example".
* \ref py_mcfielddouble_renumberNodes "Here is a Python example". * \endif */ -void MEDCouplingFieldDouble::renumberNodes(const int *old2NewBg, double eps) +void MEDCouplingFieldDouble::renumberNodes(const mcIdType *old2NewBg, double eps) { const MEDCouplingPointSet *meshC=dynamic_cast(_mesh); if(!meshC) throw INTERP_KERNEL::Exception("Invalid mesh to apply renumberNodes on it !"); - int nbOfNodes=meshC->getNumberOfNodes(); + mcIdType nbOfNodes=meshC->getNumberOfNodes(); MCAuto meshC2((MEDCouplingPointSet *)meshC->deepCopy()); - int newNbOfNodes=*std::max_element(old2NewBg,old2NewBg+nbOfNodes)+1; + mcIdType newNbOfNodes=*std::max_element(old2NewBg,old2NewBg+nbOfNodes)+1; renumberNodesWithoutMesh(old2NewBg,newNbOfNodes,eps); meshC2->renumberNodes(old2NewBg,newNbOfNodes); setMesh(meshC2); @@ -487,11 +421,11 @@ void MEDCouplingFieldDouble::renumberNodes(const int *old2NewBg, double eps) * the values differ more than \a eps, an exception is thrown. * \throw If the mesh is not set. * \throw If the spatial discretization of \a this field is NULL. - * \throw If values at merged nodes deffer more than \a eps. + * \throw If values at merged nodes differ more than \a eps. */ -void MEDCouplingFieldDouble::renumberNodesWithoutMesh(const int *old2NewBg, int newNbOfNodes, double eps) +void MEDCouplingFieldDouble::renumberNodesWithoutMesh(const mcIdType *old2NewBg, mcIdType newNbOfNodes, double eps) { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("Expecting a spatial discretization to be able to operate a renumbering !"); std::vector arrays; timeDiscr()->getArrays(arrays); @@ -507,175 +441,43 @@ void MEDCouplingFieldDouble::renumberNodesWithoutMesh(const int *old2NewBg, int * vmin are not included in the result array. * \param [in] vmax - an upper boundary of the range. Tuples with values more than \a * vmax are not included in the result array. - * \return DataArrayInt * - a new instance of DataArrayInt holding ids of selected + * \return DataArrayIdType * - a new instance of DataArrayIdType holding ids of selected * tuples. The caller is to delete this array using decrRef() as it is no * more needed. * \throw If the data array is not set. * \throw If \a this->getNumberOfComponents() != 1. */ -DataArrayInt *MEDCouplingFieldDouble::findIdsInRange(double vmin, double vmax) const +DataArrayIdType *MEDCouplingFieldDouble::findIdsInRange(double vmin, double vmax) const { if(getArray()==0) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::findIdsInRange : no default array set !"); return getArray()->findIdsInRange(vmin,vmax); } -/*! - * Builds a newly created field, that the caller will have the responsability to deal with (decrRef()). - * This method makes the assumption that the field is correctly defined when this method is called, no check of this will be done. - * This method returns a restriction of \a this so that only tuples with ids specified in \a part will be contained in the returned field. - * Parameter \a part specifies **cell ids whatever the spatial discretization of this** ( - * \ref MEDCoupling::ON_CELLS "ON_CELLS", - * \ref MEDCoupling::ON_NODES "ON_NODES", - * \ref MEDCoupling::ON_GAUSS_PT "ON_GAUSS_PT", - * \ref MEDCoupling::ON_GAUSS_NE "ON_GAUSS_NE", - * \ref MEDCoupling::ON_NODES_KR "ON_NODES_KR"). - * - * For example, \a this is a field on cells lying on a mesh that have 10 cells, \a part contains following cell ids [3,7,6]. - * Then the returned field will lie on mesh having 3 cells and the returned field will contain 3 tuples.
- * Tuple #0 of the result field will refer to the cell #0 of returned mesh. The cell #0 of returned mesh will be equal to the cell #3 of \a this->getMesh().
- * Tuple #1 of the result field will refer to the cell #1 of returned mesh. The cell #1 of returned mesh will be equal to the cell #7 of \a this->getMesh().
- * Tuple #2 of the result field will refer to the cell #2 of returned mesh. The cell #2 of returned mesh will be equal to the cell #6 of \a this->getMesh(). - * - * Let, for example, \a this be a field on nodes lying on a mesh that have 10 cells and 11 nodes, and \a part contains following cellIds [3,7,6]. - * Thus \a this currently contains 11 tuples. If the restriction of mesh to 3 cells leads to a mesh with 6 nodes, then the returned field - * will contain 6 tuples and \a this field will lie on this restricted mesh. - * - * \param [in] part - an array of cell ids to include to the result field. - * \return MEDCouplingFieldDouble * - a new instance of MEDCouplingFieldDouble. The caller is to delete this field using decrRef() as it is no more needed. - * - * \if ENABLE_EXAMPLES - * \ref cpp_mcfielddouble_subpart1 "Here is a C++ example".
- * \ref py_mcfielddouble_subpart1 "Here is a Python example". - * \endif - * \sa MEDCouplingFieldDouble::buildSubPartRange - */ - -MEDCouplingFieldDouble *MEDCouplingFieldDouble::buildSubPart(const DataArrayInt *part) const +template +typename Traits::FieldType *ConvertToUField(const MEDCouplingFieldDouble *self) { - if(part==0) - throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : not empty array must be passed to this method !"); - return buildSubPart(part->begin(),part->end()); -} - -/*! - * Builds a newly created field, that the caller will have the responsability to deal with. - * \n This method makes the assumption that \a this field is correctly defined when this method is called (\a this->checkConsistencyLight() returns without any exception thrown), **no check of this will be done**. - * \n This method returns a restriction of \a this so that only tuple ids specified in [ \a partBg , \a partEnd ) will be contained in the returned field. - * \n Parameter [\a partBg, \a partEnd ) specifies **cell ids whatever the spatial discretization** of \a this ( - * \ref MEDCoupling::ON_CELLS "ON_CELLS", - * \ref MEDCoupling::ON_NODES "ON_NODES", - * \ref MEDCoupling::ON_GAUSS_PT "ON_GAUSS_PT", - * \ref MEDCoupling::ON_GAUSS_NE "ON_GAUSS_NE", - * \ref MEDCoupling::ON_NODES_KR "ON_NODES_KR"). - * - * For example, \a this is a field on cells lying on a mesh that have 10 cells, \a partBg contains the following cell ids [3,7,6]. - * Then the returned field will lie on mesh having 3 cells and will contain 3 tuples. - *- Tuple #0 of the result field will refer to the cell #0 of returned mesh. The cell #0 of returned mesh will be equal to the cell #3 of \a this->getMesh(). - *- Tuple #1 of the result field will refer to the cell #1 of returned mesh. The cell #1 of returned mesh will be equal to the cell #7 of \a this->getMesh(). - *- Tuple #2 of the result field will refer to the cell #2 of returned mesh. The cell #2 of returned mesh will be equal to the cell #6 of \a this->getMesh(). - * - * Let, for example, \a this be a field on nodes lying on a mesh that have 10 cells and 11 nodes, and \a partBg contains following cellIds [3,7,6]. - * Thus \a this currently contains 11 tuples. If the restriction of mesh to 3 cells leads to a mesh with 6 nodes, then the returned field - * will contain 6 tuples and \a this field will lie on this restricted mesh. - * - * \param [in] partBg - start (included) of input range of cell ids to select [ \a partBg, \a partEnd ) - * \param [in] partEnd - end (not included) of input range of cell ids to select [ \a partBg, \a partEnd ) - * \return a newly allocated field the caller should deal with. - * - * \throw if there is presence of an invalid cell id in [ \a partBg, \a partEnd ) regarding the number of cells of \a this->getMesh(). - * - * \if ENABLE_EXAMPLES - * \ref cpp_mcfielddouble_subpart1 "Here a C++ example."
- * \ref py_mcfielddouble_subpart1 "Here a Python example." - * \endif - * \sa MEDCoupling::MEDCouplingFieldDouble::buildSubPart(const DataArrayInt *) const, MEDCouplingFieldDouble::buildSubPartRange - */ -MEDCouplingFieldDouble *MEDCouplingFieldDouble::buildSubPart(const int *partBg, const int *partEnd) const -{ - if(!((const MEDCouplingFieldDiscretization *)_type)) - throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : Expecting a not NULL spatial discretization !"); - DataArrayInt *arrSelect; - MCAuto m=_type->buildSubMeshData(_mesh,partBg,partEnd,arrSelect); - MCAuto arrSelect2(arrSelect); - MCAuto ret=clone(false);//quick shallow copy. - const MEDCouplingFieldDiscretization *disc=getDiscretization(); - if(disc) - ret->setDiscretization(MCAuto(disc->clonePart(partBg,partEnd))); - ret->setMesh(m); - std::vector arrays; - timeDiscr()->getArrays(arrays); - std::vector arrs; - std::vector< MCAuto > arrsSafe; - const int *arrSelBg=arrSelect->begin(); - const int *arrSelEnd=arrSelect->end(); - for(std::vector::const_iterator iter=arrays.begin();iter!=arrays.end();iter++) + MCAuto tmp(MEDCouplingFieldTemplate::New(*self)); + int t1,t2; + double t0(self->getTime(t1,t2)); + MCAuto::FieldType > ret(Traits::FieldType::New(*tmp,self->getTimeDiscretization())); + ret->setTime(t0,t1,t2); + if(self->getArray()) { - DataArrayDouble *arr=0; - if(*iter) - arr=(*iter)->selectByTupleIdSafe(arrSelBg,arrSelEnd); - arrs.push_back(arr); arrsSafe.push_back(arr); + MCAuto::ArrayType> arr(self->getArray()->convertToOtherTypeOfArr()); + ret->setArray(arr); } - ret->timeDiscr()->setArrays(arrs,0); return ret.retn(); } -/*! - * This method is equivalent to MEDCouplingFieldDouble::buildSubPart, the only difference is that the input range of cell ids is - * given using a range given \a begin, \a end and \a step to optimize the part computation. - * - * \sa MEDCouplingFieldDouble::buildSubPart - */ -MEDCouplingFieldDouble *MEDCouplingFieldDouble::buildSubPartRange(int begin, int end, int step) const -{ - if(!((const MEDCouplingFieldDiscretization *)_type)) - throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::buildSubPart : Expecting a not NULL spatial discretization !"); - DataArrayInt *arrSelect; - int beginOut,endOut,stepOut; - MCAuto m=_type->buildSubMeshDataRange(_mesh,begin,end,step,beginOut,endOut,stepOut,arrSelect); - MCAuto arrSelect2(arrSelect); - MCAuto ret=clone(false);//quick shallow copy. - const MEDCouplingFieldDiscretization *disc=getDiscretization(); - if(disc) - ret->setDiscretization(MCAuto(disc->clonePartRange(begin,end,step))); - ret->setMesh(m); - std::vector arrays; - timeDiscr()->getArrays(arrays); - std::vector arrs; - std::vector< MCAuto > arrsSafe; - for(std::vector::const_iterator iter=arrays.begin();iter!=arrays.end();iter++) - { - DataArrayDouble *arr=0; - if(*iter) - { - if(arrSelect) - { - const int *arrSelBg=arrSelect->begin(); - const int *arrSelEnd=arrSelect->end(); - arr=(*iter)->selectByTupleIdSafe(arrSelBg,arrSelEnd); - } - else - arr=(*iter)->selectByTupleIdSafeSlice(beginOut,endOut,stepOut); - } - arrs.push_back(arr); arrsSafe.push_back(arr); - } - ret->timeDiscr()->setArrays(arrs,0); - return ret.retn(); +MEDCouplingFieldInt32 *MEDCouplingFieldDouble::convertToIntField() const +{ + return ConvertToUField(this); } -MEDCouplingFieldInt *MEDCouplingFieldDouble::convertToIntField() const +MEDCouplingFieldFloat *MEDCouplingFieldDouble::convertToFloatField() const { - MCAuto tmp(MEDCouplingFieldTemplate::New(*this)); - int t1,t2; - double t0(getTime(t1,t2)); - MCAuto ret(MEDCouplingFieldInt::New(*tmp,getTimeDiscretization())); - ret->setTime(t0,t1,t2); - if(getArray()) - { - MCAuto arr(getArray()->convertToIntArr()); - ret->setArray(arr); - } - return ret.retn(); + return ConvertToUField(this); } MEDCouplingFieldDouble::MEDCouplingFieldDouble(TypeOfField type, TypeOfTimeDiscretization td):MEDCouplingFieldT(type,MEDCouplingTimeDiscretization::New(td)) @@ -689,7 +491,7 @@ MEDCouplingFieldDouble::MEDCouplingFieldDouble(const MEDCouplingFieldTemplate& f { } -MEDCouplingFieldDouble::MEDCouplingFieldDouble(const MEDCouplingFieldDouble& other, bool deepCopy):MEDCouplingFieldT(other,deepCopy) +MEDCouplingFieldDouble::MEDCouplingFieldDouble(const MEDCouplingFieldDouble& other, bool deepCpy):MEDCouplingFieldT(other,deepCpy) { } @@ -738,14 +540,14 @@ double MEDCouplingFieldDouble::getMaxValue() const { std::vector arrays; timeDiscr()->getArrays(arrays); - double ret=-std::numeric_limits::max(); + double ret(-std::numeric_limits::max()); bool isExistingArr=false; for(std::vector::const_iterator iter=arrays.begin();iter!=arrays.end();iter++) { if(*iter) { isExistingArr=true; - int loc; + mcIdType loc; ret=std::max(ret,(*iter)->getMaxValue(loc)); } } @@ -757,30 +559,30 @@ double MEDCouplingFieldDouble::getMaxValue() const /*! * Returns the maximal value and all its locations within \a this scalar field. * Only the first of available data arrays is checked. - * \param [out] tupleIds - a new instance of DataArrayInt containg indices of + * \param [out] tupleIds - a new instance of DataArrayIdType containing indices of * tuples holding the maximal value. The caller is to delete it using * decrRef() as it is no more needed. * \return double - the maximal value among all values of the first array of \a this filed. * \throw If \a this->getNumberOfComponents() != 1. * \throw If there is an empty data array in \a this field. */ -double MEDCouplingFieldDouble::getMaxValue2(DataArrayInt*& tupleIds) const +double MEDCouplingFieldDouble::getMaxValue2(DataArrayIdType*& tupleIds) const { std::vector arrays; timeDiscr()->getArrays(arrays); - double ret=-std::numeric_limits::max(); + double ret(-std::numeric_limits::max()); bool isExistingArr=false; tupleIds=0; - MCAuto ret1; + MCAuto ret1; for(std::vector::const_iterator iter=arrays.begin();iter!=arrays.end();iter++) { if(*iter) { isExistingArr=true; - DataArrayInt *tmp; + DataArrayIdType *tmp; ret=std::max(ret,(*iter)->getMaxValue2(tmp)); - MCAuto tmpSafe(tmp); - if(!((const DataArrayInt *)ret1)) + MCAuto tmpSafe(tmp); + if(!((const DataArrayIdType *)ret1)) ret1=tmpSafe; } } @@ -802,14 +604,14 @@ double MEDCouplingFieldDouble::getMinValue() const { std::vector arrays; timeDiscr()->getArrays(arrays); - double ret=std::numeric_limits::max(); + double ret(std::numeric_limits::max()); bool isExistingArr=false; for(std::vector::const_iterator iter=arrays.begin();iter!=arrays.end();iter++) { if(*iter) { isExistingArr=true; - int loc; + mcIdType loc; ret=std::min(ret,(*iter)->getMinValue(loc)); } } @@ -821,30 +623,30 @@ double MEDCouplingFieldDouble::getMinValue() const /*! * Returns the minimal value and all its locations within \a this scalar field. * Only the first of available data arrays is checked. - * \param [out] tupleIds - a new instance of DataArrayInt containg indices of + * \param [out] tupleIds - a new instance of DataArrayIdType containing indices of * tuples holding the minimal value. The caller is to delete it using * decrRef() as it is no more needed. * \return double - the minimal value among all values of the first array of \a this filed. * \throw If \a this->getNumberOfComponents() != 1. * \throw If there is an empty data array in \a this field. */ -double MEDCouplingFieldDouble::getMinValue2(DataArrayInt*& tupleIds) const +double MEDCouplingFieldDouble::getMinValue2(DataArrayIdType*& tupleIds) const { std::vector arrays; timeDiscr()->getArrays(arrays); - double ret=-std::numeric_limits::max(); + double ret(-std::numeric_limits::max()); bool isExistingArr=false; tupleIds=0; - MCAuto ret1; + MCAuto ret1; for(std::vector::const_iterator iter=arrays.begin();iter!=arrays.end();iter++) { if(*iter) { isExistingArr=true; - DataArrayInt *tmp; + DataArrayIdType *tmp; ret=std::max(ret,(*iter)->getMinValue2(tmp)); - MCAuto tmpSafe(tmp); - if(!((const DataArrayInt *)ret1)) + MCAuto tmpSafe(tmp); + if(!((const DataArrayIdType *)ret1)) ret1=tmpSafe; } } @@ -881,19 +683,6 @@ double MEDCouplingFieldDouble::norm2() const return getArray()->norm2(); } -/*! - * This method returns the max norm of \a this field. - * \f[ - * \max_{0 \leq i < nbOfEntity}{abs(val[i])} - * \f] - * \throw If the data array is not set. - */ -double MEDCouplingFieldDouble::normMax() const -{ - if(getArray()==0) - throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::normMax : no default array defined !"); - return getArray()->normMax(); -} /*! * Computes the weighted average of values of each component of \a this field, the weights being the @@ -912,12 +701,12 @@ void MEDCouplingFieldDouble::getWeightedAverageValue(double *res, bool isWAbs) c if(getArray()==0) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::getWeightedAverageValue : no default array defined !"); MCAuto w=buildMeasureField(isWAbs); - double deno=w->getArray()->accumulate(0); + double deno=w->getArray()->accumulate((std::size_t)0); MCAuto arr=getArray()->deepCopy(); arr->multiplyEqual(w->getArray()); arr->accumulate(res); - int nCompo = getArray()->getNumberOfComponents(); - std::transform(res,res+nCompo,res,std::bind2nd(std::multiplies(),1./deno)); + std::size_t nCompo = getArray()->getNumberOfComponents(); + std::transform(res,res+nCompo,res,std::bind(std::multiplies(),std::placeholders::_1,1./deno)); } /*! @@ -935,8 +724,8 @@ void MEDCouplingFieldDouble::getWeightedAverageValue(double *res, bool isWAbs) c */ double MEDCouplingFieldDouble::getWeightedAverageValue(int compId, bool isWAbs) const { - int nbComps=getArray()->getNumberOfComponents(); - if(compId<0 || compId>=nbComps) + std::size_t nbComps=getArray()->getNumberOfComponents(); + if(compId<0 || compId>=ToIdType(nbComps)) { std::ostringstream oss; oss << "MEDCouplingFieldDouble::getWeightedAverageValue : Invalid compId specified : No such nb of components ! Should be in [0," << nbComps << ") !"; throw INTERP_KERNEL::Exception(oss.str()); @@ -961,10 +750,10 @@ double MEDCouplingFieldDouble::normL1(int compId) const { if(!_mesh) throw INTERP_KERNEL::Exception("No mesh underlying this field to perform normL1 !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform normL1 !"); - int nbComps=getArray()->getNumberOfComponents(); - if(compId<0 || compId>=nbComps) + std::size_t nbComps=getArray()->getNumberOfComponents(); + if(compId<0 || compId>=ToIdType(nbComps)) { std::ostringstream oss; oss << "MEDCouplingFieldDouble::normL1 : Invalid compId specified : No such nb of components ! Should be in [0," << nbComps << ") !"; throw INTERP_KERNEL::Exception(oss.str()); @@ -988,7 +777,7 @@ void MEDCouplingFieldDouble::normL1(double *res) const { if(!_mesh) throw INTERP_KERNEL::Exception("No mesh underlying this field to perform normL1"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform normL1 !"); _type->normL1(_mesh,getArray(),res); } @@ -1008,10 +797,10 @@ double MEDCouplingFieldDouble::normL2(int compId) const { if(!_mesh) throw INTERP_KERNEL::Exception("No mesh underlying this field to perform normL2"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform normL2 !"); - int nbComps=getArray()->getNumberOfComponents(); - if(compId<0 || compId>=nbComps) + std::size_t nbComps=getArray()->getNumberOfComponents(); + if(compId<0 || compId>=ToIdType(nbComps)) { std::ostringstream oss; oss << "MEDCouplingFieldDouble::normL2 : Invalid compId specified : No such nb of components ! Should be in [0," << nbComps << ") !"; throw INTERP_KERNEL::Exception(oss.str()); @@ -1035,11 +824,53 @@ void MEDCouplingFieldDouble::normL2(double *res) const { if(!_mesh) throw INTERP_KERNEL::Exception("No mesh underlying this field to perform normL2"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform normL2 !"); _type->normL2(_mesh,getArray(),res); } +/*! + * Returns the \c infinite norm of values of a given component of \a this field: +* \f[ + * \max_{0 \leq i < nbOfEntity}{abs(val[i])} + * \f] + * \param [in] compId - an index of the component of interest. + * \throw If \a compId is not valid. + A valid range is ( 0 <= \a compId < \a this->getNumberOfComponents() ). + * \throw If the data array is not set. + */ +double MEDCouplingFieldDouble::normMax(int compId) const +{ + if(getArray()==0) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::normMax : no default array defined !"); + std::size_t nbComps=getArray()->getNumberOfComponents(); + if(compId<0 || compId>=ToIdType(nbComps)) + { + std::ostringstream oss; oss << "MEDCouplingFieldDouble::normMax : Invalid compId specified : No such nb of components ! Should be in [0," << nbComps << ") !"; + throw INTERP_KERNEL::Exception(oss.str()); + } + INTERP_KERNEL::AutoPtr res=new double[nbComps]; + getArray()->normMaxPerComponent(res); + return res[compId]; +} + +/*! + * Returns the \c infinite norm of values of each component of \a this field: + * \f[ + * \max_{0 \leq i < nbOfEntity}{abs(val[i])} + * \f] + * \param [out] res - pointer to an array of result values, of size at least \a + * this->getNumberOfComponents(), that is to be allocated by the caller. + * \throw If the data array is not set. + * + */ +void MEDCouplingFieldDouble::normMax(double *res) const +{ + if(getArray()==0) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::normMax : no default array defined !"); + getArray()->normMaxPerComponent(res); +} + /*! * Computes a sum of values of a given component of \a this field multiplied by * values returned by buildMeasureField(). @@ -1058,10 +889,10 @@ double MEDCouplingFieldDouble::integral(int compId, bool isWAbs) const { if(!_mesh) throw INTERP_KERNEL::Exception("No mesh underlying this field to perform integral"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform integral !"); - int nbComps=getArray()->getNumberOfComponents(); - if(compId<0 || compId>=nbComps) + std::size_t nbComps=getArray()->getNumberOfComponents(); + if(compId<0 || compId>=ToIdType(nbComps)) { std::ostringstream oss; oss << "MEDCouplingFieldDouble::integral : Invalid compId specified : No such nb of components ! Should be in [0," << nbComps << ") !"; throw INTERP_KERNEL::Exception(oss.str()); @@ -1089,7 +920,7 @@ void MEDCouplingFieldDouble::integral(bool isWAbs, double *res) const { if(!_mesh) throw INTERP_KERNEL::Exception("No mesh underlying this field to perform integral2"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform integral2 !"); _type->integral(_mesh,getArray(),isWAbs,res); } @@ -1114,12 +945,12 @@ void MEDCouplingFieldDouble::integral(bool isWAbs, double *res) const * \ref py_mcfielddouble_getValueOnPos "Here is a Python example". * \endif */ -void MEDCouplingFieldDouble::getValueOnPos(int i, int j, int k, double *res) const +void MEDCouplingFieldDouble::getValueOnPos(mcIdType i, mcIdType j, mcIdType k, double *res) const { const DataArrayDouble *arr=timeDiscr()->getArray(); if(!_mesh) throw INTERP_KERNEL::Exception("No mesh underlying this field to perform getValueOnPos"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform getValueOnPos !"); _type->getValueOnPos(arr,_mesh,i,j,k,res); } @@ -1143,7 +974,7 @@ void MEDCouplingFieldDouble::getValueOn(const double *spaceLoc, double *res) con const DataArrayDouble *arr=timeDiscr()->getArray(); if(!_mesh) throw INTERP_KERNEL::Exception("No mesh underlying this field to perform getValueOn"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform getValueOnPos !"); _type->getValueOn(arr,_mesh,spaceLoc,res); } @@ -1166,12 +997,12 @@ void MEDCouplingFieldDouble::getValueOn(const double *spaceLoc, double *res) con * \ref py_mcfielddouble_getValueOnMulti "Here is a Python example". * \endif */ -DataArrayDouble *MEDCouplingFieldDouble::getValueOnMulti(const double *spaceLoc, int nbOfPoints) const +DataArrayDouble *MEDCouplingFieldDouble::getValueOnMulti(const double *spaceLoc, mcIdType nbOfPoints) const { const DataArrayDouble *arr=timeDiscr()->getArray(); if(!_mesh) throw INTERP_KERNEL::Exception("No mesh underlying this field to perform getValueOnMulti"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform getValueOnMulti !"); return _type->getValueOnMulti(arr,_mesh,spaceLoc,nbOfPoints); } @@ -1198,12 +1029,12 @@ void MEDCouplingFieldDouble::getValueOn(const double *spaceLoc, double time, dou std::vector< const DataArrayDouble *> arrs=timeDiscr()->getArraysForTime(time); if(!_mesh) throw INTERP_KERNEL::Exception("No mesh underlying this field to perform getValueOn"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform getValueOn !"); std::vector res2; for(std::vector< const DataArrayDouble *>::const_iterator iter=arrs.begin();iter!=arrs.end();iter++) { - int sz=(int)res2.size(); + std::size_t sz=res2.size(); res2.resize(sz+(*iter)->getNumberOfComponents()); _type->getValueOn(*iter,_mesh,spaceLoc,&res2[sz]); } @@ -1244,9 +1075,9 @@ MEDCouplingFieldDouble &MEDCouplingFieldDouble::operator=(double value) { if(!_mesh) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::operator= : no mesh defined !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform operator = !"); - int nbOfTuple=_type->getNumberOfTuples(_mesh); + mcIdType nbOfTuple=_type->getNumberOfTuples(_mesh); timeDiscr()->setOrCreateUniformValueOnAllComponents(nbOfTuple,value); return *this; } @@ -1269,7 +1100,7 @@ void MEDCouplingFieldDouble::fillFromAnalytic(int nbOfComp, FunctionToEvaluate f { if(!_mesh) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::fillFromAnalytic : no mesh defined !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform fillFromAnalytic !"); MCAuto loc=_type->getLocalizationOfDiscValues(_mesh); timeDiscr()->fillFromAnalytic(loc,nbOfComp,func); @@ -1316,7 +1147,7 @@ void MEDCouplingFieldDouble::fillFromAnalytic(int nbOfComp, const std::string& f { if(!_mesh) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::fillFromAnalytic : no mesh defined !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform fillFromAnalytic !"); MCAuto loc=_type->getLocalizationOfDiscValues(_mesh); timeDiscr()->fillFromAnalytic(loc,nbOfComp,func); @@ -1365,7 +1196,7 @@ void MEDCouplingFieldDouble::fillFromAnalyticCompo(int nbOfComp, const std::stri { if(!_mesh) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::fillFromAnalyticCompo : no mesh defined !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform fillFromAnalyticCompo !"); MCAuto loc=_type->getLocalizationOfDiscValues(_mesh); timeDiscr()->fillFromAnalyticCompo(loc,nbOfComp,func); @@ -1414,7 +1245,7 @@ void MEDCouplingFieldDouble::fillFromAnalyticNamedCompo(int nbOfComp, const std: { if(!_mesh) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::fillFromAnalyticCompo : no mesh defined !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform fillFromAnalyticNamedCompo !"); MCAuto loc=_type->getLocalizationOfDiscValues(_mesh); timeDiscr()->fillFromAnalyticNamedCompo(loc,nbOfComp,varsOrder,func); @@ -1455,9 +1286,9 @@ void MEDCouplingFieldDouble::applyFunc(int nbOfComp, double val) { if(!_mesh) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::applyFunc : no mesh defined !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform applyFunc !"); - int nbOfTuple=_type->getNumberOfTuples(_mesh); + mcIdType nbOfTuple=_type->getNumberOfTuples(_mesh); timeDiscr()->setUniformValue(nbOfTuple,nbOfComp,val); } @@ -1481,7 +1312,7 @@ void MEDCouplingFieldDouble::applyFunc(int nbOfComp, double val) * - "2*x + z" produces (5.,5.,5.,5.) * - "2*x + 0*y + z" produces (9.,9.,9.,9.) * - "2*x*IVec + (x+z)*LVec" produces (2.,0.,0.,4.) - * - "2*y*IVec + z*KVec + x" produces (7.,1.,1.,4.) + * - "2*y*IVec + z*KVec + x" produces (7.,1.,8.,1.) * * \param [in] nbOfComp - the number of components for \a this field to have. * \param [in] func - the function used to compute values of \a this field. @@ -1521,7 +1352,7 @@ void MEDCouplingFieldDouble::applyFunc(int nbOfComp, const std::string& func) * - "2*x + z" produces (5.,5.,5.,5.) * - "2*x + 0*y + z" produces (9.,9.,9.,9.) * - "2*x*IVec + (x+z)*LVec" produces (2.,0.,0.,4.) - * - "2*y*IVec + z*KVec + x" produces (7.,1.,1.,4.) + * - "2*y*IVec + z*KVec + x" produces (7.,1.,8.,1.) * * \param [in] nbOfComp - the number of components for \a this field to have. * \param [in] func - the function used to compute values of \a this field. @@ -1666,12 +1497,11 @@ std::size_t MEDCouplingFieldDouble::getNumberOfComponents() const * \throw If the spatial discretization is not fully defined. * \sa MEDCouplingField::getNumberOfTuplesExpected */ -std::size_t MEDCouplingFieldDouble::getNumberOfTuples() const +mcIdType MEDCouplingFieldDouble::getNumberOfTuples() const { - //std::cerr << " ******* MEDCouplingFieldDouble::getNumberOfTuples is deprecated : use MEDCouplingField::getNumberOfTuplesExpected instead ! ******" << std::endl; if(!_mesh) throw INTERP_KERNEL::Exception("Impossible to retrieve number of tuples because no mesh specified !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform getNumberOfTuples !"); return _type->getNumberOfTuples(_mesh); } @@ -1683,7 +1513,7 @@ std::size_t MEDCouplingFieldDouble::getNumberOfTuples() const * data array. * \throw If the data array is not set. */ -std::size_t MEDCouplingFieldDouble::getNumberOfValues() const +mcIdType MEDCouplingFieldDouble::getNumberOfValues() const { if(getArray()==0) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::getNumberOfValues : No array specified !"); @@ -1731,9 +1561,9 @@ std::vector MEDCouplingFieldDouble::getDirectChildrenWi * \ref MEDCoupling::ON_GAUSS_PT "ON_GAUSS_PT" or * \ref MEDCoupling::ON_GAUSS_NE "ON_GAUSS_NE". */ -double MEDCouplingFieldDouble::getIJK(int cellId, int nodeIdInCell, int compoId) const +double MEDCouplingFieldDouble::getIJK(mcIdType cellId, int nodeIdInCell, int compoId) const { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform getIJK !"); return _type->getIJK(_mesh,getArray(),cellId,nodeIdInCell,compoId); } @@ -1768,126 +1598,6 @@ double MEDCouplingFieldDouble::getIJK(int cellId, int nodeIdInCell, int compoId) */ //void MEDCouplingFieldDouble::setArrays(const std::vector& arrs) -void MEDCouplingFieldDouble::getTinySerializationStrInformation(std::vector& tinyInfo) const -{ - tinyInfo.clear(); - timeDiscr()->getTinySerializationStrInformation(tinyInfo); - tinyInfo.push_back(_name); - tinyInfo.push_back(_desc); - tinyInfo.push_back(getTimeUnit()); -} - -/*! - * This method retrieves some critical values to resize and prepare remote instance. - * The first two elements returned in tinyInfo correspond to the parameters to give in constructor. - * @param tinyInfo out parameter resized correctly after the call. The length of this vector is tiny. - */ -void MEDCouplingFieldDouble::getTinySerializationIntInformation(std::vector& tinyInfo) const -{ - if(!((const MEDCouplingFieldDiscretization *)_type)) - throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform getTinySerializationIntInformation !"); - tinyInfo.clear(); - tinyInfo.push_back((int)_type->getEnum()); - tinyInfo.push_back((int)timeDiscr()->getEnum()); - tinyInfo.push_back((int)_nature); - timeDiscr()->getTinySerializationIntInformation(tinyInfo); - std::vector tinyInfo2; - _type->getTinySerializationIntInformation(tinyInfo2); - tinyInfo.insert(tinyInfo.end(),tinyInfo2.begin(),tinyInfo2.end()); - tinyInfo.push_back((int)tinyInfo2.size()); -} - -/*! - * This method retrieves some critical values to resize and prepare remote instance. - * @param tinyInfo out parameter resized correctly after the call. The length of this vector is tiny. - */ -void MEDCouplingFieldDouble::getTinySerializationDbleInformation(std::vector& tinyInfo) const -{ - if(!((const MEDCouplingFieldDiscretization *)_type)) - throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform getTinySerializationDbleInformation !"); - tinyInfo.clear(); - timeDiscr()->getTinySerializationDbleInformation(tinyInfo); - std::vector tinyInfo2; - _type->getTinySerializationDbleInformation(tinyInfo2); - tinyInfo.insert(tinyInfo.end(),tinyInfo2.begin(),tinyInfo2.end()); - tinyInfo.push_back((int)tinyInfo2.size());//very bad, lack of time to improve it -} - -/*! - * This method has to be called to the new instance filled by CORBA, MPI, File... - * @param tinyInfoI is the value retrieves from distant result of getTinySerializationIntInformation on source instance to be copied. - * @param dataInt out parameter. If not null the pointer is already owned by \a this after the call of this method. In this case no decrRef must be applied. - * @param arrays out parameter is a vector resized to the right size. The pointers in the vector is already owned by \a this after the call of this method. - * No decrRef must be applied to every instances in returned vector. - * \sa checkForUnserialization - */ -void MEDCouplingFieldDouble::resizeForUnserialization(const std::vector& tinyInfoI, DataArrayInt *&dataInt, std::vector& arrays) -{ - if(!((const MEDCouplingFieldDiscretization *)_type)) - throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform resizeForUnserialization !"); - dataInt=0; - std::vector tinyInfoITmp(tinyInfoI); - int sz=tinyInfoITmp.back(); - tinyInfoITmp.pop_back(); - std::vector tinyInfoITmp2(tinyInfoITmp.begin(),tinyInfoITmp.end()-sz); - std::vector tinyInfoI2(tinyInfoITmp2.begin()+3,tinyInfoITmp2.end()); - timeDiscr()->resizeForUnserialization(tinyInfoI2,arrays); - std::vector tinyInfoITmp3(tinyInfoITmp.end()-sz,tinyInfoITmp.end()); - _type->resizeForUnserialization(tinyInfoITmp3,dataInt); -} - -/*! - * This method is extremely close to resizeForUnserialization except that here the arrays in \a dataInt and in \a arrays are attached in \a this - * after having checked that size is correct. This method is used in python pickeling context to avoid copy of data. - * \sa resizeForUnserialization - */ -void MEDCouplingFieldDouble::checkForUnserialization(const std::vector& tinyInfoI, const DataArrayInt *dataInt, const std::vector& arrays) -{ - if(!((const MEDCouplingFieldDiscretization *)_type)) - throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform resizeForUnserialization !"); - std::vector tinyInfoITmp(tinyInfoI); - int sz=tinyInfoITmp.back(); - tinyInfoITmp.pop_back(); - std::vector tinyInfoITmp2(tinyInfoITmp.begin(),tinyInfoITmp.end()-sz); - std::vector tinyInfoI2(tinyInfoITmp2.begin()+3,tinyInfoITmp2.end()); - timeDiscr()->checkForUnserialization(tinyInfoI2,arrays); - std::vector tinyInfoITmp3(tinyInfoITmp.end()-sz,tinyInfoITmp.end()); - _type->checkForUnserialization(tinyInfoITmp3,dataInt); -} - -void MEDCouplingFieldDouble::finishUnserialization(const std::vector& tinyInfoI, const std::vector& tinyInfoD, const std::vector& tinyInfoS) -{ - if(!((const MEDCouplingFieldDiscretization *)_type)) - throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform finishUnserialization !"); - std::vector tinyInfoI2(tinyInfoI.begin()+3,tinyInfoI.end()); - // - std::vector tmp(tinyInfoD); - int sz=(int)tinyInfoD.back();//very bad, lack of time to improve it - tmp.pop_back(); - std::vector tmp1(tmp.begin(),tmp.end()-sz); - std::vector tmp2(tmp.end()-sz,tmp.end()); - // - timeDiscr()->finishUnserialization(tinyInfoI2,tmp1,tinyInfoS); - _nature=(NatureOfField)tinyInfoI[2]; - _type->finishUnserialization(tmp2); - int nbOfElemS=(int)tinyInfoS.size(); - _name=tinyInfoS[nbOfElemS-3]; - _desc=tinyInfoS[nbOfElemS-2]; - setTimeUnit(tinyInfoS[nbOfElemS-1]); -} - -/*! - * Contrary to MEDCouplingPointSet class the returned arrays are \b not the responsabilities of the caller. - * The values returned must be consulted only in readonly mode. - */ -void MEDCouplingFieldDouble::serialize(DataArrayInt *&dataInt, std::vector& arrays) const -{ - if(!((const MEDCouplingFieldDiscretization *)_type)) - throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform serialize !"); - timeDiscr()->getArrays(arrays); - _type->getSerializationIntArray(dataInt); -} - /*! * Tries to set an \a other mesh as the support of \a this field. An attempt fails, if * a current and the \a other meshes are different with use of specified equality @@ -1906,7 +1616,7 @@ void MEDCouplingFieldDouble::serialize(DataArrayInt *&dataInt, std::vector @@ -1917,9 +1627,9 @@ void MEDCouplingFieldDouble::changeUnderlyingMesh(const MEDCouplingMesh *other, { if(_mesh==0 || other==0) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::changeUnderlyingMesh : is expected to operate on not null meshes !"); - DataArrayInt *cellCor=0,*nodeCor=0; + DataArrayIdType *cellCor=0,*nodeCor=0; other->checkGeoEquivalWith(_mesh,levOfCheck,precOnMesh,cellCor,nodeCor); - MCAuto cellCor2(cellCor),nodeCor2(nodeCor); + MCAuto cellCor2(cellCor),nodeCor2(nodeCor); if(cellCor) renumberCellsWithoutMesh(cellCor->getConstPointer(),false); if(nodeCor) @@ -1954,7 +1664,7 @@ void MEDCouplingFieldDouble::changeUnderlyingMesh(const MEDCouplingMesh *other, * \throw If any of the meshes is not set or is not well defined. * \throw If the two meshes do not match. * \throw If the two fields are not coherent for merge. - * \throw If field values at merged nodes (if any) deffer more than \a eps. + * \throw If field values at merged nodes (if any) differ more than \a eps. * * \if ENABLE_EXAMPLES * \ref cpp_mcfielddouble_substractInPlaceDM "Here is a C++ example".
@@ -1987,19 +1697,19 @@ void MEDCouplingFieldDouble::substractInPlaceDM(const MEDCouplingFieldDouble *f, * \throw If the mesh is not well defined. * \throw If the spatial discretization of \a this field is NULL. * \throw If the data array is not set. - * \throw If field values at merged nodes (if any) deffer more than \a epsOnVals. + * \throw If field values at merged nodes (if any) differ more than \a epsOnVals. */ bool MEDCouplingFieldDouble::mergeNodes(double eps, double epsOnVals) { const MEDCouplingPointSet *meshC=dynamic_cast(_mesh); if(!meshC) throw INTERP_KERNEL::Exception("Invalid support mesh to apply mergeNodes on it : must be a MEDCouplingPointSet one !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform mergeNodes !"); MCAuto meshC2((MEDCouplingPointSet *)meshC->deepCopy()); bool ret; - int ret2; - MCAuto arr=meshC2->mergeNodes(eps,ret,ret2); + mcIdType ret2; + MCAuto arr=meshC2->mergeNodes(eps,ret,ret2); if(!ret)//no nodes have been merged. return ret; std::vector arrays; @@ -2026,19 +1736,19 @@ bool MEDCouplingFieldDouble::mergeNodes(double eps, double epsOnVals) * \throw If the mesh is not well defined. * \throw If the spatial discretization of \a this field is NULL. * \throw If the data array is not set. - * \throw If field values at merged nodes (if any) deffer more than \a epsOnVals. + * \throw If field values at merged nodes (if any) differ more than \a epsOnVals. */ bool MEDCouplingFieldDouble::mergeNodesCenter(double eps, double epsOnVals) { const MEDCouplingPointSet *meshC=dynamic_cast(_mesh); if(!meshC) throw INTERP_KERNEL::Exception("Invalid support mesh to apply mergeNodes on it : must be a MEDCouplingPointSet one !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform mergeNodesCenter !"); MCAuto meshC2((MEDCouplingPointSet *)meshC->deepCopy()); bool ret; - int ret2; - MCAuto arr=meshC2->mergeNodesCenter(eps,ret,ret2); + mcIdType ret2; + MCAuto arr=meshC2->mergeNodesCenter(eps,ret,ret2); if(!ret)//no nodes have been merged. return ret; std::vector arrays; @@ -2063,18 +1773,18 @@ bool MEDCouplingFieldDouble::mergeNodesCenter(double eps, double epsOnVals) * \throw If the mesh is not well defined. * \throw If the spatial discretization of \a this field is NULL. * \throw If the data array is not set. - * \throw If field values at merged nodes (if any) deffer more than \a epsOnVals. + * \throw If field values at merged nodes (if any) differ more than \a epsOnVals. */ bool MEDCouplingFieldDouble::zipCoords(double epsOnVals) { const MEDCouplingPointSet *meshC=dynamic_cast(_mesh); if(!meshC) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::zipCoords : Invalid support mesh to apply zipCoords on it : must be a MEDCouplingPointSet one !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform zipCoords !"); MCAuto meshC2((MEDCouplingPointSet *)meshC->deepCopy()); - int oldNbOfNodes=meshC2->getNumberOfNodes(); - MCAuto arr=meshC2->zipCoordsTraducer(); + mcIdType oldNbOfNodes=meshC2->getNumberOfNodes(); + MCAuto arr=meshC2->zipCoordsTraducer(); if(meshC2->getNumberOfNodes()!=oldNbOfNodes) { std::vector arrays; @@ -2104,25 +1814,25 @@ bool MEDCouplingFieldDouble::zipCoords(double epsOnVals) * \throw If the mesh is not well defined. * \throw If the spatial discretization of \a this field is NULL. * \throw If the data array is not set. - * \throw If field values at merged cells (if any) deffer more than \a epsOnVals. + * \throw If field values at merged cells (if any) differ more than \a epsOnVals. */ bool MEDCouplingFieldDouble::zipConnectivity(int compType, double epsOnVals) { const MEDCouplingUMesh *meshC=dynamic_cast(_mesh); if(!meshC) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::zipConnectivity : Invalid support mesh to apply zipCoords on it : must be a MEDCouplingPointSet one !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform zipConnectivity !"); MCAuto meshC2((MEDCouplingUMesh *)meshC->deepCopy()); - int oldNbOfCells=meshC2->getNumberOfCells(); - MCAuto arr=meshC2->zipConnectivityTraducer(compType); + mcIdType oldNbOfCells(meshC2->getNumberOfCells()); + MCAuto arr=meshC2->zipConnectivityTraducer(compType); if(meshC2->getNumberOfCells()!=oldNbOfCells) { std::vector arrays; timeDiscr()->getArrays(arrays); for(std::vector::const_iterator iter=arrays.begin();iter!=arrays.end();iter++) if(*iter) - _type->renumberValuesOnCells(epsOnVals,meshC,arr->getConstPointer(),meshC2->getNumberOfCells(),*iter); + _type->renumberValuesOnCells(epsOnVals,meshC,arr->getConstPointer(),ToIdType(meshC2->getNumberOfCells()),*iter); setMesh(meshC2); return true; } @@ -2143,13 +1853,13 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::extractSlice3D(const double *ori if(getTypeOfField()!=ON_CELLS) throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::extractSlice3D : only implemented for fields on cells !"); const MCAuto umesh(mesh->buildUnstructured()); - MCAuto ret=clone(false); + MCAuto ret(clone(false)); ret->setMesh(umesh); - DataArrayInt *cellIds=0; + DataArrayIdType *cellIds=0; MCAuto mesh2=umesh->buildSlice3D(origin,vec,eps,cellIds); - MCAuto cellIds2=cellIds; + MCAuto cellIds2=cellIds; ret->setMesh(mesh2); - MCAuto tupleIds=computeTupleIdsToSelectFromCellIds(cellIds->begin(),cellIds->end()); + MCAuto tupleIds=computeTupleIdsToSelectFromCellIds(cellIds->begin(),cellIds->end()); std::vector arrays; timeDiscr()->getArrays(arrays); int i=0; @@ -2186,23 +1896,173 @@ bool MEDCouplingFieldDouble::simplexize(int policy) { if(!_mesh) throw INTERP_KERNEL::Exception("No underlying mesh on this field to perform simplexize !"); - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform simplexize !"); - int oldNbOfCells=_mesh->getNumberOfCells(); + std::size_t oldNbOfCells=_mesh->getNumberOfCells(); MCAuto meshC2(_mesh->deepCopy()); - MCAuto arr=meshC2->simplexize(policy); - int newNbOfCells=meshC2->getNumberOfCells(); + MCAuto arr=meshC2->simplexize(policy); + std::size_t newNbOfCells=meshC2->getNumberOfCells(); if(oldNbOfCells==newNbOfCells) return false; std::vector arrays; timeDiscr()->getArrays(arrays); for(std::vector::const_iterator iter=arrays.begin();iter!=arrays.end();iter++) if(*iter) - _type->renumberValuesOnCellsR(_mesh,arr->getConstPointer(),arr->getNbOfElems(),*iter); + _type->renumberValuesOnCellsR(_mesh,arr->getConstPointer(),ToIdType(arr->getNbOfElems()),*iter); setMesh(meshC2); return true; } +/*! + * This method makes the hypothesis that \a this is a Gauss field. This method returns a newly created field on cells with same number of tuples than \a this. + * Each Gauss points in \a this is replaced by a polygon or polyhedron cell with associated region following Voronoi algorithm. + */ +MCAuto MEDCouplingFieldDouble::voronoize(double eps) const +{ + checkConsistencyLight(); + const MEDCouplingMesh *mesh(getMesh()); + INTERP_KERNEL::AutoCppPtr vor; + std::size_t meshDim(mesh->getMeshDimension()),spaceDim(mesh->getSpaceDimension()); + if(meshDim==1 && (spaceDim==1 || spaceDim==2 || spaceDim==3)) + vor=new Voronizer1D; + else if(meshDim==2 && (spaceDim==2 || spaceDim==3)) + vor=new Voronizer2D; + else if(meshDim==3 && spaceDim==3) + vor=new Voronizer3D; + else + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::voronoize : only 2D, 3D surf, and 3D are supported for the moment !"); + return voronoizeGen(vor,eps); +} + +/*! + * \sa MEDCouplingUMesh::convertQuadraticCellsToLinear + */ +MCAuto MEDCouplingFieldDouble::convertQuadraticCellsToLinear() const +{ + checkConsistencyLight(); + switch(getTypeOfField()) + { + case ON_NODES: + { + const MEDCouplingMesh *mesh(getMesh()); + if(!mesh) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::convertQuadraticCellsToLinear : null mesh !"); + MCAuto umesh(mesh->buildUnstructured()); + umesh=umesh->clone(false); + umesh->convertQuadraticCellsToLinear(); + MCAuto o2n(umesh->zipCoordsTraducer()); + MCAuto n2o(o2n->invertArrayO2N2N2O(umesh->getNumberOfNodes())); + MCAuto arr(getArray()->selectByTupleIdSafe(n2o->begin(),n2o->end())); + MCAuto ret(MEDCouplingFieldDouble::New(ON_NODES)); + ret->setArray(arr); + ret->setMesh(umesh); + ret->copyAllTinyAttrFrom(this); + return ret; + } + case ON_CELLS: + { + const MEDCouplingMesh *mesh(getMesh()); + if(!mesh) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::convertQuadraticCellsToLinear : null mesh !"); + MCAuto umesh(mesh->buildUnstructured()); + umesh=umesh->clone(false); + umesh->convertQuadraticCellsToLinear(); + umesh->zipCoords(); + MCAuto ret(MEDCouplingFieldDouble::New(ON_CELLS)); + ret->setArray(const_cast(getArray())); + ret->setMesh(umesh); + ret->copyAllTinyAttrFrom(this); + return ret; + } + case ON_GAUSS_PT: + { + const MEDCouplingMesh *mesh(getMesh()); + if(!mesh) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::convertQuadraticCellsToLinear : null mesh !"); + MCAuto umesh(mesh->buildUnstructured()); + std::set gt(umesh->getAllGeoTypes()); + MCAuto ret(MEDCouplingFieldDouble::New(ON_GAUSS_PT)); + // + const MEDCouplingFieldDiscretization *disc(getDiscretization()); + const MEDCouplingFieldDiscretizationGauss *disc2(dynamic_cast(disc)); + if(!disc2) + throw INTERP_KERNEL::Exception("convertQuadraticCellsToLinear : Not a ON_GAUSS_PT field"); + std::set gt2(umesh->getAllGeoTypes()); + std::vector< MCAuto > cellIdsV; + std::vector< MCAuto > meshesV; + std::vector< MEDCouplingGaussLocalization > glV; + bool isZipReq(false); + for(std::set::const_iterator it=gt.begin();it!=gt.end();it++) + { + const INTERP_KERNEL::CellModel& cm(INTERP_KERNEL::CellModel::GetCellModel(*it)); + MCAuto cellIds(umesh->giveCellsWithType(*it)); + cellIdsV.push_back(cellIds); + MCAuto part(umesh->buildPartOfMySelf(cellIds->begin(),cellIds->end())); + mcIdType id(disc2->getGaussLocalizationIdOfOneType(*it)); + const MEDCouplingGaussLocalization& gl(disc2->getGaussLocalization(id)); + if(!cm.isQuadratic()) + { + glV.push_back(gl); + } + else + { + isZipReq=true; + part->convertQuadraticCellsToLinear(); + INTERP_KERNEL::GaussInfo gi(*it,gl.getGaussCoords(),gl.getNumberOfGaussPt(),gl.getRefCoords(),gl.getNumberOfPtsInRefCell()); + INTERP_KERNEL::GaussInfo gi2(gi.convertToLinear()); + MEDCouplingGaussLocalization gl2(gi2.getGeoType(),gi2.getRefCoords(),gi2.getGaussCoords(),gl.getWeights()); + glV.push_back(gl2); + } + meshesV.push_back(part); + } + // + { + std::vector< const MEDCouplingUMesh * > meshesPtr(VecAutoToVecOfCstPt(meshesV)); + umesh=MEDCouplingUMesh::MergeUMeshesOnSameCoords(meshesPtr); + std::vector< const DataArrayIdType * > zeCellIds(VecAutoToVecOfCstPt(cellIdsV)); + MCAuto zeIds(DataArrayIdType::Aggregate(zeCellIds)); + umesh->renumberCells(zeIds->begin()); + umesh->setName(mesh->getName()); + } + // + if(isZipReq) + umesh->zipCoords(); + ret->setArray(const_cast(getArray())); + ret->setMesh(umesh); + for(std::vector< MEDCouplingGaussLocalization >::const_iterator it=glV.begin();it!=glV.end();it++) + ret->setGaussLocalizationOnType((*it).getType(),(*it).getRefCoords(),(*it).getGaussCoords(),(*it).getWeights()); + ret->copyAllTinyAttrFrom(this); + ret->checkConsistencyLight(); + return ret; + } + default: + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::convertQuadraticCellsToLinear : Only available for fields on nodes and on cells !"); + } +} + +/*! + * This is expected to be a 3 components vector field on nodes (if not an exception will be thrown). \a this is also expected to lie on a MEDCouplingPointSet mesh. + * Finally \a this is also expected to be consistent. + * In these conditions this method returns a newly created field (to be dealed by the caller). + * The returned field will also 3 compo vector field be on nodes lying on the same mesh than \a this. + * + * For each 3 compo tuple \a tup in \a this the returned tuple is the result of the transformation of \a tup in the new referential. This referential is defined by \a Ur, \a Uteta, \a Uz. + * \a Ur is the vector between \a center point and the associated node with \a tuple. \a Uz is \a vect normalized. And Uteta is the cross product of \a Uz with \a Ur. + * + * \sa DataArrayDouble::fromCartToCylGiven + */ +MEDCouplingFieldDouble *MEDCouplingFieldDouble::computeVectorFieldCyl(const double center[3], const double vect[3]) const +{ + checkConsistencyLight(); + const DataArrayDouble *coo(getMesh()->getDirectAccessOfCoordsArrIfInStructure()); + MEDCouplingTimeDiscretization *td(timeDiscr()->computeVectorFieldCyl(coo,center,vect)); + td->copyTinyAttrFrom(*timeDiscr()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),td,_type->clone())); + ret->setMesh(getMesh()); + ret->setName(getName()); + return ret.retn(); +} + /*! * Creates a new MEDCouplingFieldDouble filled with the doubly contracted product of * every tensor of \a this 6-componental field. @@ -2216,11 +2076,11 @@ bool MEDCouplingFieldDouble::simplexize(int policy) */ MEDCouplingFieldDouble *MEDCouplingFieldDouble::doublyContractedProduct() const { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform doublyContractedProduct !"); - MEDCouplingTimeDiscretization *td=timeDiscr()->doublyContractedProduct(); + MEDCouplingTimeDiscretization *td(timeDiscr()->doublyContractedProduct()); td->copyTinyAttrFrom(*timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(getNature(),td,_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),td,_type->clone())); ret->setName("DoublyContractedProduct"); ret->setMesh(getMesh()); return ret.retn(); @@ -2239,11 +2099,11 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::doublyContractedProduct() const */ MEDCouplingFieldDouble *MEDCouplingFieldDouble::determinant() const { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform determinant !"); - MEDCouplingTimeDiscretization *td=timeDiscr()->determinant(); + MEDCouplingTimeDiscretization *td(timeDiscr()->determinant()); td->copyTinyAttrFrom(*timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(getNature(),td,_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),td,_type->clone())); ret->setName("Determinant"); ret->setMesh(getMesh()); return ret.retn(); @@ -2263,11 +2123,11 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::determinant() const */ MEDCouplingFieldDouble *MEDCouplingFieldDouble::eigenValues() const { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform eigenValues !"); - MEDCouplingTimeDiscretization *td=timeDiscr()->eigenValues(); + MEDCouplingTimeDiscretization *td(timeDiscr()->eigenValues()); td->copyTinyAttrFrom(*timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(getNature(),td,_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),td,_type->clone())); ret->setName("EigenValues"); ret->setMesh(getMesh()); return ret.retn(); @@ -2286,11 +2146,11 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::eigenValues() const */ MEDCouplingFieldDouble *MEDCouplingFieldDouble::eigenVectors() const { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform eigenVectors !"); - MEDCouplingTimeDiscretization *td=timeDiscr()->eigenVectors(); + MEDCouplingTimeDiscretization *td(timeDiscr()->eigenVectors()); td->copyTinyAttrFrom(*timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(getNature(),td,_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),td,_type->clone())); ret->setName("EigenVectors"); ret->setMesh(getMesh()); return ret.retn(); @@ -2311,11 +2171,11 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::eigenVectors() const */ MEDCouplingFieldDouble *MEDCouplingFieldDouble::inverse() const { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform inverse !"); - MEDCouplingTimeDiscretization *td=timeDiscr()->inverse(); + MEDCouplingTimeDiscretization *td(timeDiscr()->inverse()); td->copyTinyAttrFrom(*timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(getNature(),td,_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),td,_type->clone())); ret->setName("Inversion"); ret->setMesh(getMesh()); return ret.retn(); @@ -2336,11 +2196,11 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::inverse() const */ MEDCouplingFieldDouble *MEDCouplingFieldDouble::trace() const { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform trace !"); - MEDCouplingTimeDiscretization *td=timeDiscr()->trace(); + MEDCouplingTimeDiscretization *td(timeDiscr()->trace()); td->copyTinyAttrFrom(*timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(getNature(),td,_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),td,_type->clone())); ret->setName("Trace"); ret->setMesh(getMesh()); return ret.retn(); @@ -2360,11 +2220,11 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::trace() const */ MEDCouplingFieldDouble *MEDCouplingFieldDouble::deviator() const { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform deviator !"); - MEDCouplingTimeDiscretization *td=timeDiscr()->deviator(); + MEDCouplingTimeDiscretization *td(timeDiscr()->deviator()); td->copyTinyAttrFrom(*timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(getNature(),td,_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),td,_type->clone())); ret->setName("Deviator"); ret->setMesh(getMesh()); return ret.retn(); @@ -2382,11 +2242,11 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::deviator() const */ MEDCouplingFieldDouble *MEDCouplingFieldDouble::magnitude() const { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform magnitude !"); - MEDCouplingTimeDiscretization *td=timeDiscr()->magnitude(); + MEDCouplingTimeDiscretization *td(timeDiscr()->magnitude()); td->copyTinyAttrFrom(*timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(getNature(),td,_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),td,_type->clone())); ret->setName("Magnitude"); ret->setMesh(getMesh()); return ret.retn(); @@ -2402,11 +2262,11 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::magnitude() const */ MEDCouplingFieldDouble *MEDCouplingFieldDouble::maxPerTuple() const { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform maxPerTuple !"); - MEDCouplingTimeDiscretization *td=timeDiscr()->maxPerTuple(); + MEDCouplingTimeDiscretization *td(timeDiscr()->maxPerTuple()); td->copyTinyAttrFrom(*timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(getNature(),td,_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),td,_type->clone())); std::ostringstream oss; oss << "Max_" << getName(); ret->setName(oss.str()); @@ -2424,7 +2284,7 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::maxPerTuple() const * \param [in] dftValue - value assigned to new values added to \a this field. * \throw If \a this is not allocated. */ -void MEDCouplingFieldDouble::changeNbOfComponents(int newNbOfComp, double dftValue) +void MEDCouplingFieldDouble::changeNbOfComponents(std::size_t newNbOfComp, double dftValue) { timeDiscr()->changeNbOfComponents(newNbOfComp,dftValue); } @@ -2441,19 +2301,18 @@ void MEDCouplingFieldDouble::changeNbOfComponents(int newNbOfComp, double dftVal * \throw If a component index (\a i) is not valid: * \a i < 0 || \a i >= \a this->getNumberOfComponents(). */ -MEDCouplingFieldDouble *MEDCouplingFieldDouble::keepSelectedComponents(const std::vector& compoIds) const +MEDCouplingFieldDouble *MEDCouplingFieldDouble::keepSelectedComponents(const std::vector& compoIds) const { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform keepSelectedComponents !"); - MEDCouplingTimeDiscretization *td=timeDiscr()->keepSelectedComponents(compoIds); + MEDCouplingTimeDiscretization *td(timeDiscr()->keepSelectedComponents(compoIds)); td->copyTinyAttrFrom(*timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(getNature(),td,_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),td,_type->clone())); ret->setName(getName()); ret->setMesh(getMesh()); return ret.retn(); } - /*! * Copy all components in a specified order from another field. * The number of tuples in \a this and the other field can be different. @@ -2465,7 +2324,7 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::keepSelectedComponents(const std * \throw If \a compoIds.size() != \a a->getNumberOfComponents(). * \throw If \a compoIds[i] < 0 or \a compoIds[i] > \a this->getNumberOfComponents(). */ -void MEDCouplingFieldDouble::setSelectedComponents(const MEDCouplingFieldDouble *f, const std::vector& compoIds) +void MEDCouplingFieldDouble::setSelectedComponents(const MEDCouplingFieldDouble *f, const std::vector& compoIds) { timeDiscr()->setSelectedComponents(f->timeDiscr(),compoIds); } @@ -2501,24 +2360,9 @@ void MEDCouplingFieldDouble::sortPerTuple(bool asc) */ MEDCouplingFieldDouble *MEDCouplingFieldDouble::MergeFields(const MEDCouplingFieldDouble *f1, const MEDCouplingFieldDouble *f2) { - if(!f1->areCompatibleForMerge(f2)) - throw INTERP_KERNEL::Exception("Fields are not compatible. Unable to apply MergeFields on them ! Check support mesh, field nature, and spatial and time discretisation."); - const MEDCouplingMesh *m1(f1->getMesh()),*m2(f2->getMesh()); - if(!f1->timeDiscr()) - throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::MergeFields : no time discr of f1 !"); - if(!f1->_type) - throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::MergeFields : no spatial discr of f1 !"); - MEDCouplingTimeDiscretization *td=f1->timeDiscr()->aggregate(f2->timeDiscr()); - td->copyTinyAttrFrom(*f1->timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(f1->getNature(),td,f1->_type->clone()); - ret->setName(f1->getName()); - ret->setDescription(f1->getDescription()); - if(m1) - { - MCAuto m=m1->mergeMyselfWith(m2); - ret->setMesh(m); - } - return ret.retn(); + std::vector a(2); + a[0]=f1; a[1]=f2; + return MergeFields(a); } /*! @@ -2542,34 +2386,41 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::MergeFields(const MEDCouplingFie */ MEDCouplingFieldDouble *MEDCouplingFieldDouble::MergeFields(const std::vector& a) { - if(a.size()<1) - throw INTERP_KERNEL::Exception("FieldDouble::MergeFields : size of array must be >= 1 !"); + if(a.empty()) + throw INTERP_KERNEL::Exception("FieldDouble::MergeFields : input array is empty !"); std::vector< MCAuto > ms(a.size()); std::vector< const MEDCouplingUMesh *> ms2(a.size()); std::vector< const MEDCouplingTimeDiscretization *> tds(a.size()); - std::vector::const_iterator it=a.begin(); - const MEDCouplingFieldDouble *ref=(*it++); + std::vector< const MEDCouplingFieldDouble *>::const_iterator it=a.begin(); + std::vector fds(a.size()); + const MEDCouplingFieldDouble *ref((*it++)); if(!ref) - throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::MergeFields : presence of NULL instance in first place of input vector !"); + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::MergeFields : presence of nullptr instance in first place of input vector !"); + if(!ref->getDiscretization()) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::MergeFields : nullptr spatial discretization !"); for(;it!=a.end();it++) if(!ref->areCompatibleForMerge(*it)) throw INTERP_KERNEL::Exception("Fields are not compatible. Unable to apply MergeFields on them! Check support mesh, field nature, and spatial and time discretisation."); - for(int i=0;i<(int)a.size();i++) + for(std::size_t i=0;igetMesh()) { ms[i]=a[i]->getMesh()->buildUnstructured(); ms2[i]=ms[i]; } else { ms[i]=0; ms2[i]=0; } tds[i]=a[i]->timeDiscr(); + fds[i]=a[i]->getDiscretization(); } - MEDCouplingTimeDiscretization *td=tds[0]->aggregate(tds); + MEDCouplingTimeDiscretization *td(tds[0]->aggregate(tds)); + MCAuto fda(fds[0]->aggregate(fds)); td->copyTinyAttrFrom(*(a[0]->timeDiscr())); - MCAuto ret=new MEDCouplingFieldDouble(a[0]->getNature(),td,a[0]->_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(a[0]->getNature(),td,fda.retn())); ret->setName(a[0]->getName()); ret->setDescription(a[0]->getDescription()); if(ms2[0]) { - MCAuto m=MEDCouplingUMesh::MergeUMeshes(ms2); + MCAuto m(MEDCouplingUMesh::MergeUMeshes(ms2)); m->copyTinyInfoFrom(ms2[0]); ret->setMesh(m); } @@ -2593,11 +2444,13 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::MergeFields(const std::vectorareCompatibleForMeld(f2)) throw INTERP_KERNEL::Exception("Fields are not compatible. Unable to apply MeldFields on them ! Check support mesh, field nature, and spatial and time discretisation."); - MEDCouplingTimeDiscretization *td=f1->timeDiscr()->meld(f2->timeDiscr()); + MEDCouplingTimeDiscretization *td(f1->timeDiscr()->meld(f2->timeDiscr())); td->copyTinyAttrFrom(*f1->timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(f1->getNature(),td,f1->_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(f1->getNature(),td,f1->_type->clone())); ret->setMesh(f1->getMesh()); return ret.retn(); } @@ -2622,9 +2475,9 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::DotFields(const MEDCouplingField throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::DotFields : input field is NULL !"); if(!f1->areStrictlyCompatibleForMulDiv(f2)) throw INTERP_KERNEL::Exception("Fields are not compatible. Unable to apply DotFields on them! Check support mesh, and spatial and time discretisation."); - MEDCouplingTimeDiscretization *td=f1->timeDiscr()->dot(f2->timeDiscr()); + MEDCouplingTimeDiscretization *td(f1->timeDiscr()->dot(f2->timeDiscr())); td->copyTinyAttrFrom(*f1->timeDiscr()); - MEDCouplingFieldDouble *ret=new MEDCouplingFieldDouble(NoNature,td,f1->_type->clone()); + MEDCouplingFieldDouble *ret(new MEDCouplingFieldDouble(NoNature,td,f1->_type->clone())); ret->setMesh(f1->getMesh()); return ret; } @@ -2653,9 +2506,9 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::CrossProductFields(const MEDCoup throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::CrossProductFields : input field is NULL !"); if(!f1->areStrictlyCompatibleForMulDiv(f2)) throw INTERP_KERNEL::Exception("Fields are not compatible. Unable to apply CrossProductFields on them! Check support mesh, and spatial and time discretisation."); - MEDCouplingTimeDiscretization *td=f1->timeDiscr()->crossProduct(f2->timeDiscr()); + MEDCouplingTimeDiscretization *td(f1->timeDiscr()->crossProduct(f2->timeDiscr())); td->copyTinyAttrFrom(*f1->timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(NoNature,td,f1->_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(NoNature,td,f1->_type->clone())); ret->setMesh(f1->getMesh()); return ret.retn(); } @@ -2683,9 +2536,9 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::MaxFields(const MEDCouplingField throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::MaxFields : input field is NULL !"); if(!f1->areStrictlyCompatible(f2)) throw INTERP_KERNEL::Exception("Fields are not compatible. Unable to apply MaxFields on them! Check support mesh, field nature, and spatial and time discretisation."); - MEDCouplingTimeDiscretization *td=f1->timeDiscr()->max(f2->timeDiscr()); + MEDCouplingTimeDiscretization *td(f1->timeDiscr()->max(f2->timeDiscr())); td->copyTinyAttrFrom(*f1->timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(f1->getNature(),td,f1->_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(f1->getNature(),td,f1->_type->clone())); ret->setMesh(f1->getMesh()); return ret.retn(); } @@ -2713,9 +2566,9 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::MinFields(const MEDCouplingField throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::MinFields : input field is NULL !"); if(!f1->areStrictlyCompatible(f2)) throw INTERP_KERNEL::Exception("Fields are not compatible. Unable to apply MinFields on them! Check support mesh, field nature, and spatial and time discretisation."); - MEDCouplingTimeDiscretization *td=f1->timeDiscr()->min(f2->timeDiscr()); + MEDCouplingTimeDiscretization *td(f1->timeDiscr()->min(f2->timeDiscr())); td->copyTinyAttrFrom(*f1->timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(f1->getNature(),td,f1->_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(f1->getNature(),td,f1->_type->clone())); ret->setMesh(f1->getMesh()); return ret.retn(); } @@ -2731,11 +2584,11 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::MinFields(const MEDCouplingField */ MEDCouplingFieldDouble *MEDCouplingFieldDouble::negate() const { - if(!((const MEDCouplingFieldDiscretization *)_type)) + if(_type.isNull()) throw INTERP_KERNEL::Exception("No spatial discretization underlying this field to perform negate !"); - MEDCouplingTimeDiscretization *td=timeDiscr()->negate(); + MEDCouplingTimeDiscretization *td(timeDiscr()->negate()); td->copyTinyAttrFrom(*timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(getNature(),td,_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(getNature(),td,_type->clone())); ret->setMesh(getMesh()); return ret.retn(); } @@ -2759,9 +2612,9 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::AddFields(const MEDCouplingField throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::AddFields : input field is NULL !"); if(!f1->areStrictlyCompatible(f2)) throw INTERP_KERNEL::Exception("Fields are not compatible. Unable to apply AddFields on them! Check support mesh, field nature, and spatial and time discretisation."); - MEDCouplingTimeDiscretization *td=f1->timeDiscr()->add(f2->timeDiscr()); + MEDCouplingTimeDiscretization *td(f1->timeDiscr()->add(f2->timeDiscr())); td->copyTinyAttrFrom(*f1->timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(f1->getNature(),td,f1->_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(f1->getNature(),td,f1->_type->clone())); ret->setMesh(f1->getMesh()); return ret.retn(); } @@ -2803,9 +2656,9 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::SubstractFields(const MEDCouplin throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::SubstractFields : input field is NULL !"); if(!f1->areStrictlyCompatible(f2)) throw INTERP_KERNEL::Exception("Fields are not compatible. Unable to apply SubstractFields on them! Check support mesh, field nature, and spatial and time discretisation."); - MEDCouplingTimeDiscretization *td=f1->timeDiscr()->substract(f2->timeDiscr()); + MEDCouplingTimeDiscretization *td(f1->timeDiscr()->substract(f2->timeDiscr())); td->copyTinyAttrFrom(*f1->timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(f1->getNature(),td,f1->_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(f1->getNature(),td,f1->_type->clone())); ret->setMesh(f1->getMesh()); return ret.retn(); } @@ -2854,9 +2707,9 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::MultiplyFields(const MEDCoupling throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::MultiplyFields : input field is NULL !"); if(!f1->areCompatibleForMul(f2)) throw INTERP_KERNEL::Exception("Fields are not compatible. Unable to apply MultiplyFields on them! Check support mesh, and spatial and time discretisation."); - MEDCouplingTimeDiscretization *td=f1->timeDiscr()->multiply(f2->timeDiscr()); + MEDCouplingTimeDiscretization *td(f1->timeDiscr()->multiply(f2->timeDiscr())); td->copyTinyAttrFrom(*f1->timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(NoNature,td,f1->_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(NoNature,td,f1->_type->clone())); ret->setMesh(f1->getMesh()); return ret.retn(); } @@ -2915,9 +2768,9 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::DivideFields(const MEDCouplingFi throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::DivideFields : input field is NULL !"); if(!f1->areCompatibleForDiv(f2)) throw INTERP_KERNEL::Exception("Fields are not compatible. Unable to apply DivideFields on them! Check support mesh, and spatial and time discretisation."); - MEDCouplingTimeDiscretization *td=f1->timeDiscr()->divide(f2->timeDiscr()); + MEDCouplingTimeDiscretization *td(f1->timeDiscr()->divide(f2->timeDiscr())); td->copyTinyAttrFrom(*f1->timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(NoNature,td,f1->_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(NoNature,td,f1->_type->clone())); ret->setMesh(f1->getMesh()); return ret.retn(); } @@ -2959,9 +2812,9 @@ MEDCouplingFieldDouble *MEDCouplingFieldDouble::PowFields(const MEDCouplingField throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::PowFields : input field is NULL !"); if(!f1->areCompatibleForMul(f2)) throw INTERP_KERNEL::Exception("Fields are not compatible. Unable to apply PowFields on them! Check support mesh, and spatial and time discretisation."); - MEDCouplingTimeDiscretization *td=f1->timeDiscr()->pow(f2->timeDiscr()); + MEDCouplingTimeDiscretization *td(f1->timeDiscr()->pow(f2->timeDiscr())); td->copyTinyAttrFrom(*f1->timeDiscr()); - MCAuto ret=new MEDCouplingFieldDouble(NoNature,td,f1->_type->clone()); + MCAuto ret(new MEDCouplingFieldDouble(NoNature,td,f1->_type->clone())); ret->setMesh(f1->getMesh()); return ret.retn(); } @@ -3044,6 +2897,78 @@ std::string MEDCouplingFieldDouble::WriteVTK(const std::string& fileName, const return ret; } +MCAuto MEDCouplingFieldDouble::voronoizeGen(const Voronizer *vor, double eps) const +{ + checkConsistencyLight(); + if(!vor) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::voronoizeGen : null pointer !"); + MCAuto fieldToWO; + const MEDCouplingMesh *inpMeshBase(getMesh()); + MCAuto inpMesh(inpMeshBase->buildUnstructured()); + std::string meshName(inpMesh->getName()); + if(!inpMesh->isPresenceOfQuadratic()) + fieldToWO=clone(false); + else + { + fieldToWO=convertQuadraticCellsToLinear(); + inpMeshBase=fieldToWO->getMesh(); + inpMesh=inpMeshBase->buildUnstructured(); + } + mcIdType nbCells(inpMesh->getNumberOfCells()); + const MEDCouplingFieldDiscretization *disc(fieldToWO->getDiscretization()); + const MEDCouplingFieldDiscretizationGauss *disc2(dynamic_cast(disc)); + if(!disc2) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::voronoize2D : Not a ON_GAUSS_PT field"); + mcIdType nbLocs(disc2->getNbOfGaussLocalization()); + std::vector< MCAuto > cells(nbCells); + for(mcIdType i=0;igetGaussLocalization(i)); + if(gl.getDimension()!=vor->getDimension()) + throw INTERP_KERNEL::Exception("MEDCouplingFieldDouble::voronoize2D : not a 2D one !"); + MCAuto mesh(gl.buildRefCell()); + const std::vector& coo(gl.getGaussCoords()); + MCAuto coo2(DataArrayDouble::NewFromStdVector(coo)); + coo2->rearrange(vor->getDimension()); + // + MCAuto coo3(MEDCouplingUMesh::Build0DMeshFromCoords(coo2)); + // + MCAuto vorCellsForCurDisc(vor->doIt(mesh,coo2,eps)); + std::vector ids; + MCAuto ptsInReal; + disc2->getCellIdsHavingGaussLocalization(i,ids); + { + MCAuto subMesh(inpMesh->buildPartOfMySelf(&ids[0],&ids[0]+ids.size())); + ptsInReal=gl.localizePtsInRefCooForEachCell(vorCellsForCurDisc->getCoords(),subMesh); + } + mcIdType nbPtsPerCell(vorCellsForCurDisc->getNumberOfNodes()); + for(mcIdType j=0;j elt(vorCellsForCurDisc->clone(false)); + MCAuto coo4(ptsInReal->selectByTupleIdSafeSlice(j*nbPtsPerCell,(j+1)*nbPtsPerCell,1)); + elt->setCoords(coo4); + cells[ids[j]]=elt; + } + } + std::vector< const MEDCouplingUMesh * > cellsPtr(VecAutoToVecOfCstPt(cells)); + MCAuto outMesh(MEDCouplingUMesh::MergeUMeshes(cellsPtr)); + outMesh->setName(meshName); + MCAuto onCells(MEDCouplingFieldDouble::New(ON_CELLS)); + onCells->setMesh(outMesh); + { + MCAuto arr(fieldToWO->getArray()->deepCopy()); + onCells->setArray(arr); + } + onCells->setTimeUnit(getTimeUnit()); + { + int b,c; + double a(getTime(b,c)); + onCells->setTime(a,b,c); + } + onCells->setName(getName()); + return onCells; +} + MEDCouplingTimeDiscretization *MEDCouplingFieldDouble::timeDiscr() { MEDCouplingTimeDiscretizationTemplate *ret(_time_discr);