X-Git-Url: http://git.salome-platform.org/gitweb/?a=blobdiff_plain;f=doc%2Fsalome%2Fgui%2FSMESH%2Finput%2Ftui_defining_hypotheses.doc;h=e98eca6b4ec10dc5f73f9c9a1b48328b6a19db08;hb=864f448dc47f6cf1425dcd955470f28c4129f514;hp=3780cd8d2726ebdda8e665a91ff1fb537d71d7fa;hpb=a1802ee5a4f5a476011a98dac3553d1b46a6b368;p=modules%2Fsmesh.git diff --git a/doc/salome/gui/SMESH/input/tui_defining_hypotheses.doc b/doc/salome/gui/SMESH/input/tui_defining_hypotheses.doc index 3780cd8d2..e98eca6b4 100644 --- a/doc/salome/gui/SMESH/input/tui_defining_hypotheses.doc +++ b/doc/salome/gui/SMESH/input/tui_defining_hypotheses.doc @@ -128,7 +128,7 @@ hexa.Compute()
\anchor tui_average_length -

Average Length

+

Local Length

\code from geompy import * @@ -231,7 +231,7 @@ tetra = smesh.Mesh(cyl, "Cylinder : tetrahedrical mesh") # assign algorithms algo1D = tetra.Segment() algo2D = tetra.Triangle() -algo3D = tetra.Tetrahedron(smesh.NETGEN) +algo3D = tetra.Tetrahedron() # assign 1D and 2D hypotheses algo1D.NumberOfSegments(7) @@ -363,8 +363,8 @@ algo1D = tetra.Segment() # create a Mefisto 2D algorithm for faces algo2D = tetra.Triangle() -# create a Netgen 3D algorithm for solids -algo3D = tetra.Tetrahedron(smesh.NETGEN) +# create a 3D algorithm for solids +algo3D = tetra.Tetrahedron() # define hypotheses algo1D.Arithmetic1D(1, 4) @@ -373,17 +373,6 @@ algo2D.LengthFromEdges() # compute the mesh tetra.Compute() -# 3. Create a tetrahedral mesh on the box with NETGEN_2D3D algorithm -tetraN = smesh.Mesh(box, "Box : tetrahedrical mesh by NETGEN_2D3D") - -# create a Netgen_2D3D algorithm for solids -algo3D = tetraN.Tetrahedron(smesh.FULL_NETGEN) - -# define hypotheses -n23_params = algo3D.Parameters() - -# compute the mesh -tetraN.Compute() \endcode
@@ -536,7 +525,8 @@ radial_Quad_algo = mesh.Quadrangle(algo=RADIAL_QUAD) # In this case it uses "Default Nb of Segments" preferences parameter to discretize edges mesh.Compute() -# The Radial Quadrange uses global or local 1d hypotheses if no its own hypotheses assigned. +# The Radial Quadrange uses global or local 1d hypotheses if it does +# not have its own hypotheses. # Define global hypotheses to discretize radial edges and a local one for circular edge global_Nb_Segments = mesh.Segment().NumberOfSegments(5) local_Nb_Segments = mesh.Segment(circle).NumberOfSegments(10) @@ -547,11 +537,174 @@ radial_Quad_algo.NumberOfLayers( 4 ) mesh.Compute() \endcode +\anchor tui_quadrangle_parameters +

Quadrangle Parameters example 1 (meshing a face with 3 edges)

+\code +from smesh import * +SetCurrentStudy(salome.myStudy) + +# Get 1/4 part from the disk face. +Box_1 = geompy.MakeBoxDXDYDZ(100, 100, 100) +Disk_1 = geompy.MakeDiskR(100, 1) +Common_1 = geompy.MakeCommon(Disk_1, Box_1) +geompy.addToStudy( Disk_1, "Disk_1" ) +geompy.addToStudy( Box_1, "Box_1" ) +geompy.addToStudy( Common_1, "Common_1" ) + +# Set the Geometry for meshing +Mesh_1 = smesh.Mesh(Common_1) + + +# Define 1D hypothesis and compute the mesh +Regular_1D = Mesh_1.Segment() +Nb_Segments_1 = Regular_1D.NumberOfSegments(10) +Nb_Segments_1.SetDistrType( 0 ) + +# Create Quadrangle parameters and define the Base Vertex. +Quadrangle_2D = Mesh_1.Quadrangle().TriangleVertex( 8 ) + +Mesh_1.Compute() +\endcode -\n Other meshing algorithms: +

Quadrangle Parameters example 2 (using different types)

+\code +import geompy +import smesh +import StdMeshers + +# Make quadrangle face and explode it on edges. +Vertex_1 = geompy.MakeVertex(0, 0, 0) +Vertex_2 = geompy.MakeVertex(40, 0, 0) +Vertex_3 = geompy.MakeVertex(40, 30, 0) +Vertex_4 = geompy.MakeVertex(0, 30, 0) +Quadrangle_Face_1 = geompy.MakeQuad4Vertices(Vertex_1, Vertex_4, Vertex_3, Vertex_2) +[Edge_1,Edge_2,Edge_3,Edge_4] = geompy.SubShapeAllSorted(Quadrangle_Face_1, geompy.ShapeType["EDGE"]) +geompy.addToStudy( Vertex_1, "Vertex_1" ) +geompy.addToStudy( Vertex_2, "Vertex_2" ) +geompy.addToStudy( Vertex_3, "Vertex_3" ) +geompy.addToStudy( Vertex_4, "Vertex_4" ) +geompy.addToStudy( Quadrangle_Face_1, "Quadrangle Face_1" ) +geompy.addToStudyInFather( Quadrangle_Face_1, Edge_2, "Edge_2" ) + +# Set the Geometry for meshing +Mesh_1 = smesh.Mesh(Quadrangle_Face_1) + +# Create Quadrangle parameters and +# define the Type as Quadrangle Preference +Quadrangle_Parameters_1 = smesh.CreateHypothesis('QuadrangleParams') +Quadrangle_Parameters_1.SetQuadType( StdMeshers.QUAD_QUADRANGLE_PREF ) + +# Define other hypotheses and algorithms +Regular_1D = Mesh_1.Segment() +Nb_Segments_1 = Regular_1D.NumberOfSegments(4) +Nb_Segments_1.SetDistrType( 0 ) +status = Mesh_1.AddHypothesis(Quadrangle_Parameters_1) +Quadrangle_2D = Mesh_1.Quadrangle() + +# Define submesh on one edge to provide different number of segments +Regular_1D_1 = Mesh_1.Segment(geom=Edge_2) +Nb_Segments_2 = Regular_1D_1.NumberOfSegments(10) +Nb_Segments_2.SetDistrType( 0 ) +SubMesh_1 = Regular_1D_1.GetSubMesh() + +# Compute mesh (with Quadrangle Preference type) +isDone = Mesh_1.Compute() + +# Change type to Reduced and compute again +Quadrangle_Parameters_1.SetQuadType( StdMeshers.QUAD_REDUCED ) +isDone = Mesh_1.Compute() +\endcode + +\anchor tui_import +

"Use Existing Elements" example

+\code + +from smesh import * +SetCurrentStudy(salome.myStudy) + +# Make a patritioned box + +box = geompy.MakeBoxDXDYDZ(100,100,100) + +N = geompy.MakeVectorDXDYDZ( 1,0,0 ) +O = geompy.MakeVertex( 50,0,0 ) +plane = geompy.MakePlane( O, N, 200 ) # plane YOZ + +shape2boxes = geompy.MakeHalfPartition( box, plane ) +boxes = geompy.SubShapeAllSorted(shape2boxes, geompy.ShapeType["SOLID"]) + +geompy.addToStudy( boxes[0], "boxes[0]") +geompy.addToStudy( boxes[1], "boxes[1]") +midFace0 = geompy.SubShapeAllSorted(boxes[0], geompy.ShapeType["FACE"])[5] +geompy.addToStudyInFather( boxes[0], midFace0, "middle Face") +midFace1 = geompy.SubShapeAllSorted(boxes[1], geompy.ShapeType["FACE"])[0] +geompy.addToStudyInFather( boxes[1], midFace1, "middle Face") + +# Mesh one of boxes with quadrangles. It is a source mesh + +srcMesh = Mesh(boxes[0], "source mesh") # box coloser to CS origin +nSeg1 = srcMesh.Segment().NumberOfSegments(4) +srcMesh.Quadrangle() +srcMesh.Compute() +srcFaceGroup = srcMesh.GroupOnGeom( midFace0, "src faces", FACE ) + +# Import faces from midFace0 to the target mesh + +tgtMesh = Mesh(boxes[1], "target mesh") +importAlgo = tgtMesh.UseExisting2DElements(midFace1) +import2hyp = importAlgo.SourceFaces( [srcFaceGroup] ) +tgtMesh.Segment().NumberOfSegments(3) +tgtMesh.Quadrangle() +tgtMesh.Compute() + +# Import the whole source mesh with groups +import2hyp.SetCopySourceMesh(True,True) +tgtMesh.Compute() +\endcode + +\anchor tui_viscous_layers +

Viscous layers construction

+ +\code +from smesh import * +SetCurrentStudy(salome.myStudy) + +X = geompy.MakeVectorDXDYDZ( 1,0,0 ) +O = geompy.MakeVertex( 100,50,50 ) +plane = geompy.MakePlane( O, X, 200 ) # plane YZ + +box = geompy.MakeBoxDXDYDZ(200,100,100) + +shape = geompy.MakeHalfPartition( box, plane ) + +faces = geompy.SubShapeAllSorted(shape, geompy.ShapeType["FACE"]) +face1 = faces[1] +ignoreFaces = [ faces[0], faces[-1]] + +geompy.addToStudy( shape, "shape" ) +geompy.addToStudyInFather( shape, face1, "face1") + + +mesh = Mesh(shape, "CFD") + +mesh.Segment().NumberOfSegments( 4 ) + +mesh.Triangle() +mesh.Quadrangle(face1) +mesh.Compute() +algo3D = mesh.Tetrahedron() + +thickness = 20 +numberOfLayers = 10 +stretchFactor = 1.5 +layersHyp = algo3D.ViscousLayers(thickness,numberOfLayers,stretchFactor,ignoreFaces) + +mesh.Compute() + +mesh.MakeGroup("Tetras",VOLUME,FT_ElemGeomType,"=",Geom_TETRA) +mesh.MakeGroup("Pyras",VOLUME,FT_ElemGeomType,"=",Geom_PYRAMID) +mesh.MakeGroup("Prims",VOLUME,FT_ElemGeomType,"=",Geom_PENTA) + +\endcode - */