Salome HOME
Compatibility correction for multiple numpy versions (REX [#25041])
[modules/adao.git] / src / daComposant / daCore / NumericObjects.py
index e6a8fcd7c8c80b7ca643ae65469272f517871ced..8f1a22649bf08bf9047b5e3648a2f018b11f0774 100644 (file)
@@ -1,6 +1,6 @@
 # -*- coding: utf-8 -*-
 #
-# Copyright (C) 2008-2021 EDF R&D
+# Copyright (C) 2008-2022 EDF R&D
 #
 # This library is free software; you can redistribute it and/or
 # modify it under the terms of the GNU Lesser General Public
@@ -25,9 +25,8 @@ __doc__ = """
 """
 __author__ = "Jean-Philippe ARGAUD"
 
-import os, time, copy, types, sys, logging
-import math, numpy, scipy, scipy.optimize, scipy.version
-from daCore.BasicObjects import Operator
+import os, copy, types, sys, logging, numpy
+from daCore.BasicObjects import Operator, Covariance, PartialAlgorithm
 from daCore.PlatformInfo import PlatformInfo
 mpr = PlatformInfo().MachinePrecision()
 mfp = PlatformInfo().MaximumPrecision()
@@ -37,7 +36,7 @@ mfp = PlatformInfo().MaximumPrecision()
 def ExecuteFunction( triplet ):
     assert len(triplet) == 3, "Incorrect number of arguments"
     X, xArgs, funcrepr = triplet
-    __X = numpy.asmatrix(numpy.ravel( X )).T
+    __X = numpy.ravel( X ).reshape((-1,1))
     __sys_path_tmp = sys.path ; sys.path.insert(0,funcrepr["__userFunction__path"])
     __module = __import__(funcrepr["__userFunction__modl"], globals(), locals(), [])
     __fonction = getattr(__module,funcrepr["__userFunction__name"])
@@ -66,6 +65,7 @@ class FDApproximation(object):
             increment             = 0.01,
             dX                    = None,
             extraArguments        = None,
+            reducingMemoryUse     = False,
             avoidingRedundancy    = True,
             toleranceInRedundancy = 1.e-18,
             lenghtOfRedundancy    = -1,
@@ -75,6 +75,7 @@ class FDApproximation(object):
             ):
         self.__name = str(name)
         self.__extraArgs = extraArguments
+        #
         if mpEnabled:
             try:
                 import multiprocessing
@@ -88,12 +89,12 @@ class FDApproximation(object):
             self.__mpWorkers = None
         logging.debug("FDA Calculs en multiprocessing : %s (nombre de processus : %s)"%(self.__mpEnabled,self.__mpWorkers))
         #
-        if mfEnabled:
-            self.__mfEnabled = True
-        else:
-            self.__mfEnabled = False
+        self.__mfEnabled = bool(mfEnabled)
         logging.debug("FDA Calculs en multifonctions : %s"%(self.__mfEnabled,))
         #
+        self.__rmEnabled = bool(reducingMemoryUse)
+        logging.debug("FDA Calculs avec réduction mémoire : %s"%(self.__rmEnabled,))
+        #
         if avoidingRedundancy:
             self.__avoidRC = True
             self.__tolerBP = float(toleranceInRedundancy)
@@ -105,6 +106,9 @@ class FDApproximation(object):
             self.__listJPIN = [] # Jacobian Previous Calculated Increment Norms
         else:
             self.__avoidRC = False
+        logging.debug("FDA Calculs avec réduction des doublons : %s"%self.__avoidRC)
+        if self.__avoidRC:
+            logging.debug("FDA Tolérance de détermination des doublons : %.2e"%self.__tolerBP)
         #
         if self.__mpEnabled:
             if isinstance(Function,types.FunctionType):
@@ -149,10 +153,7 @@ class FDApproximation(object):
         if dX is None:
             self.__dX     = None
         else:
-            self.__dX     = numpy.asmatrix(numpy.ravel( dX )).T
-        logging.debug("FDA Reduction des doublons de calcul : %s"%self.__avoidRC)
-        if self.__avoidRC:
-            logging.debug("FDA Tolerance de determination des doublons : %.2e"%self.__tolerBP)
+            self.__dX     = numpy.ravel( dX )
 
     # ---------------------------------------------------------
     def __doublon__(self, e, l, n, v=None):
@@ -164,6 +165,29 @@ class FDApproximation(object):
                 break
         return __ac, __iac
 
+    # ---------------------------------------------------------
+    def __listdotwith__(self, __LMatrix, __dotWith = None, __dotTWith = None):
+        "Produit incrémental d'une matrice liste de colonnes avec un vecteur"
+        if not isinstance(__LMatrix, (list,tuple)):
+            raise TypeError("Columnwise list matrix has not the proper type: %s"%type(__LMatrix))
+        if __dotWith is not None:
+            __Idwx = numpy.ravel( __dotWith )
+            assert len(__LMatrix) == __Idwx.size, "Incorrect size of elements"
+            __Produit = numpy.zeros(__LMatrix[0].size)
+            for i, col in enumerate(__LMatrix):
+                __Produit += float(__Idwx[i]) * col
+            return __Produit
+        elif __dotTWith is not None:
+            _Idwy = numpy.ravel( __dotTWith ).T
+            assert __LMatrix[0].size == _Idwy.size, "Incorrect size of elements"
+            __Produit = numpy.zeros(len(__LMatrix))
+            for i, col in enumerate(__LMatrix):
+                __Produit[i] = float( _Idwy @ col)
+            return __Produit
+        else:
+            __Produit = None
+        return __Produit
+
     # ---------------------------------------------------------
     def DirectOperator(self, X, **extraArgs ):
         """
@@ -176,17 +200,16 @@ class FDApproximation(object):
         if self.__mfEnabled:
             _HX = self.__userFunction( X, argsAsSerie = True )
         else:
-            _X = numpy.asmatrix(numpy.ravel( X )).T
-            _HX = numpy.ravel(self.__userFunction( _X ))
+            _HX = numpy.ravel(self.__userFunction( numpy.ravel(X) ))
         #
         return _HX
 
     # ---------------------------------------------------------
-    def TangentMatrix(self, X ):
+    def TangentMatrix(self, X, dotWith = None, dotTWith = None ):
         """
         Calcul de l'opérateur tangent comme la Jacobienne par différences finies,
         c'est-à-dire le gradient de H en X. On utilise des différences finies
-        directionnelles autour du point X. X est un numpy.matrix.
+        directionnelles autour du point X. X est un numpy.ndarray.
 
         Différences finies centrées (approximation d'ordre 2):
         1/ Pour chaque composante i de X, on ajoute et on enlève la perturbation
@@ -214,12 +237,14 @@ class FDApproximation(object):
         if X is None or len(X)==0:
             raise ValueError("Nominal point X for approximate derivatives can not be None or void (given X: %s)."%(str(X),))
         #
-        _X = numpy.asmatrix(numpy.ravel( X )).T
+        _X = numpy.ravel( X )
         #
         if self.__dX is None:
             _dX  = self.__increment * _X
         else:
-            _dX = numpy.asmatrix(numpy.ravel( self.__dX )).T
+            _dX = numpy.ravel( self.__dX )
+        assert len(_X) == len(_dX), "Inconsistent dX increment length with respect to the X one"
+        assert _X.size == _dX.size, "Inconsistent dX increment size with respect to the X one"
         #
         if (_dX == 0.).any():
             moyenne = _dX.mean()
@@ -234,11 +259,16 @@ class FDApproximation(object):
             __bidon, __alreadyCalculatedI = self.__doublon__(_dX, self.__listJPCI, self.__listJPIN, None)
             if __alreadyCalculatedP == __alreadyCalculatedI > -1:
                 __alreadyCalculated, __i = True, __alreadyCalculatedP
-                logging.debug("FDA Cas J déja calculé, récupération du doublon %i"%__i)
+                logging.debug("FDA Cas J déjà calculé, récupération du doublon %i"%__i)
         #
         if __alreadyCalculated:
             logging.debug("FDA   Calcul Jacobienne (par récupération du doublon %i)"%__i)
             _Jacobienne = self.__listJPCR[__i]
+            logging.debug("FDA Fin du calcul de la Jacobienne")
+            if dotWith is not None:
+                return numpy.dot(_Jacobienne,   numpy.ravel( dotWith ))
+            elif dotTWith is not None:
+                return numpy.dot(_Jacobienne.T, numpy.ravel( dotTWith ))
         else:
             logging.debug("FDA   Calcul Jacobienne (explicite)")
             if self.__centeredDF:
@@ -252,9 +282,9 @@ class FDApproximation(object):
                     _jobs = []
                     for i in range( len(_dX) ):
                         _dXi            = _dX[i]
-                        _X_plus_dXi     = numpy.array( _X.A1, dtype=float )
+                        _X_plus_dXi     = numpy.array( _X, dtype=float )
                         _X_plus_dXi[i]  = _X[i] + _dXi
-                        _X_moins_dXi    = numpy.array( _X.A1, dtype=float )
+                        _X_moins_dXi    = numpy.array( _X, dtype=float )
                         _X_moins_dXi[i] = _X[i] - _dXi
                         #
                         _jobs.append( (_X_plus_dXi,  self.__extraArgs, funcrepr) )
@@ -274,9 +304,9 @@ class FDApproximation(object):
                     _xserie = []
                     for i in range( len(_dX) ):
                         _dXi            = _dX[i]
-                        _X_plus_dXi     = numpy.array( _X.A1, dtype=float )
+                        _X_plus_dXi     = numpy.array( _X, dtype=float )
                         _X_plus_dXi[i]  = _X[i] + _dXi
-                        _X_moins_dXi    = numpy.array( _X.A1, dtype=float )
+                        _X_moins_dXi    = numpy.array( _X, dtype=float )
                         _X_moins_dXi[i] = _X[i] - _dXi
                         #
                         _xserie.append( _X_plus_dXi )
@@ -292,9 +322,9 @@ class FDApproximation(object):
                     _Jacobienne  = []
                     for i in range( _dX.size ):
                         _dXi            = _dX[i]
-                        _X_plus_dXi     = numpy.array( _X.A1, dtype=float )
+                        _X_plus_dXi     = numpy.array( _X, dtype=float )
                         _X_plus_dXi[i]  = _X[i] + _dXi
-                        _X_moins_dXi    = numpy.array( _X.A1, dtype=float )
+                        _X_moins_dXi    = numpy.array( _X, dtype=float )
                         _X_moins_dXi[i] = _X[i] - _dXi
                         #
                         _HX_plus_dXi    = self.DirectOperator( _X_plus_dXi )
@@ -311,9 +341,9 @@ class FDApproximation(object):
                         "__userFunction__name" : self.__userFunction__name,
                     }
                     _jobs = []
-                    _jobs.append( (_X.A1, self.__extraArgs, funcrepr) )
+                    _jobs.append( (_X, self.__extraArgs, funcrepr) )
                     for i in range( len(_dX) ):
-                        _X_plus_dXi    = numpy.array( _X.A1, dtype=float )
+                        _X_plus_dXi    = numpy.array( _X, dtype=float )
                         _X_plus_dXi[i] = _X[i] + _dX[i]
                         #
                         _jobs.append( (_X_plus_dXi, self.__extraArgs, funcrepr) )
@@ -332,9 +362,9 @@ class FDApproximation(object):
                     #
                 elif self.__mfEnabled:
                     _xserie = []
-                    _xserie.append( _X.A1 )
+                    _xserie.append( _X )
                     for i in range( len(_dX) ):
-                        _X_plus_dXi    = numpy.array( _X.A1, dtype=float )
+                        _X_plus_dXi    = numpy.array( _X, dtype=float )
                         _X_plus_dXi[i] = _X[i] + _dX[i]
                         #
                         _xserie.append( _X_plus_dXi )
@@ -352,30 +382,35 @@ class FDApproximation(object):
                     _HX = self.DirectOperator( _X )
                     for i in range( _dX.size ):
                         _dXi            = _dX[i]
-                        _X_plus_dXi     = numpy.array( _X.A1, dtype=float )
+                        _X_plus_dXi     = numpy.array( _X, dtype=float )
                         _X_plus_dXi[i]  = _X[i] + _dXi
                         #
                         _HX_plus_dXi = self.DirectOperator( _X_plus_dXi )
                         #
                         _Jacobienne.append( numpy.ravel(( _HX_plus_dXi - _HX ) / _dXi) )
-                #
             #
-            _Jacobienne = numpy.asmatrix( numpy.vstack( _Jacobienne ) ).T
-            if self.__avoidRC:
-                if self.__lenghtRJ < 0: self.__lenghtRJ = 2 * _X.size
-                while len(self.__listJPCP) > self.__lenghtRJ:
-                    self.__listJPCP.pop(0)
-                    self.__listJPCI.pop(0)
-                    self.__listJPCR.pop(0)
-                    self.__listJPPN.pop(0)
-                    self.__listJPIN.pop(0)
-                self.__listJPCP.append( copy.copy(_X) )
-                self.__listJPCI.append( copy.copy(_dX) )
-                self.__listJPCR.append( copy.copy(_Jacobienne) )
-                self.__listJPPN.append( numpy.linalg.norm(_X) )
-                self.__listJPIN.append( numpy.linalg.norm(_Jacobienne) )
-        #
-        logging.debug("FDA Fin du calcul de la Jacobienne")
+            if (dotWith is not None) or (dotTWith is not None):
+                __Produit = self.__listdotwith__(_Jacobienne, dotWith, dotTWith)
+            else:
+                __Produit = None
+            if __Produit is None or self.__avoidRC:
+                _Jacobienne = numpy.transpose( numpy.vstack( _Jacobienne ) )
+                if self.__avoidRC:
+                    if self.__lenghtRJ < 0: self.__lenghtRJ = 2 * _X.size
+                    while len(self.__listJPCP) > self.__lenghtRJ:
+                        self.__listJPCP.pop(0)
+                        self.__listJPCI.pop(0)
+                        self.__listJPCR.pop(0)
+                        self.__listJPPN.pop(0)
+                        self.__listJPIN.pop(0)
+                    self.__listJPCP.append( copy.copy(_X) )
+                    self.__listJPCI.append( copy.copy(_dX) )
+                    self.__listJPCR.append( copy.copy(_Jacobienne) )
+                    self.__listJPPN.append( numpy.linalg.norm(_X) )
+                    self.__listJPIN.append( numpy.linalg.norm(_Jacobienne) )
+            logging.debug("FDA Fin du calcul de la Jacobienne")
+            if __Produit is not None:
+                return __Produit
         #
         return _Jacobienne
 
@@ -388,28 +423,27 @@ class FDApproximation(object):
         ne doivent pas être données ici à la fonction utilisateur.
         """
         if self.__mfEnabled:
-            assert len(paire) == 1, "Incorrect lenght of arguments"
+            assert len(paire) == 1, "Incorrect length of arguments"
             _paire = paire[0]
             assert len(_paire) == 2, "Incorrect number of arguments"
         else:
             assert len(paire) == 2, "Incorrect number of arguments"
             _paire = paire
         X, dX = _paire
-        _Jacobienne = self.TangentMatrix( X )
         if dX is None or len(dX) == 0:
             #
             # Calcul de la forme matricielle si le second argument est None
             # -------------------------------------------------------------
+            _Jacobienne = self.TangentMatrix( X )
             if self.__mfEnabled: return [_Jacobienne,]
             else:                return _Jacobienne
         else:
             #
             # Calcul de la valeur linéarisée de H en X appliqué à dX
             # ------------------------------------------------------
-            _dX = numpy.asmatrix(numpy.ravel( dX )).T
-            _HtX = numpy.dot(_Jacobienne, _dX)
-            if self.__mfEnabled: return [_HtX.A1,]
-            else:                return _HtX.A1
+            _HtX = self.TangentMatrix( X, dotWith = dX )
+            if self.__mfEnabled: return [_HtX,]
+            else:                return _HtX
 
     # ---------------------------------------------------------
     def AdjointOperator(self, paire, **extraArgs ):
@@ -420,48 +454,75 @@ class FDApproximation(object):
         ne doivent pas être données ici à la fonction utilisateur.
         """
         if self.__mfEnabled:
-            assert len(paire) == 1, "Incorrect lenght of arguments"
+            assert len(paire) == 1, "Incorrect length of arguments"
             _paire = paire[0]
             assert len(_paire) == 2, "Incorrect number of arguments"
         else:
             assert len(paire) == 2, "Incorrect number of arguments"
             _paire = paire
         X, Y = _paire
-        _JacobienneT = self.TangentMatrix( X ).T
         if Y is None or len(Y) == 0:
             #
             # Calcul de la forme matricielle si le second argument est None
             # -------------------------------------------------------------
+            _JacobienneT = self.TangentMatrix( X ).T
             if self.__mfEnabled: return [_JacobienneT,]
             else:                return _JacobienneT
         else:
             #
             # Calcul de la valeur de l'adjoint en X appliqué à Y
             # --------------------------------------------------
-            _Y = numpy.asmatrix(numpy.ravel( Y )).T
-            _HaY = numpy.dot(_JacobienneT, _Y)
-            if self.__mfEnabled: return [_HaY.A1,]
-            else:                return _HaY.A1
+            _HaY = self.TangentMatrix( X, dotTWith = Y )
+            if self.__mfEnabled: return [_HaY,]
+            else:                return _HaY
+
+# ==============================================================================
+def SetInitialDirection( __Direction = [], __Amplitude = 1., __Position = None ):
+    "Établit ou élabore une direction avec une amplitude"
+    #
+    if len(__Direction) == 0 and __Position is None:
+        raise ValueError("If initial direction is void, current position has to be given")
+    if abs(float(__Amplitude)) < mpr:
+        raise ValueError("Amplitude of perturbation can not be zero")
+    #
+    if len(__Direction) > 0:
+        __dX0 = numpy.asarray(__Direction)
+    else:
+        __dX0 = []
+        __X0 = numpy.ravel(numpy.asarray(__Position))
+        __mX0 = numpy.mean( __X0, dtype=mfp )
+        if abs(__mX0) < 2*mpr: __mX0 = 1. # Évite le problème de position nulle
+        for v in __X0:
+            if abs(v) > 1.e-8:
+                __dX0.append( numpy.random.normal(0.,abs(v)) )
+            else:
+                __dX0.append( numpy.random.normal(0.,__mX0) )
+    #
+    __dX0 = numpy.asarray(__dX0,float) # Évite le problème d'array de taille 1
+    __dX0 = numpy.ravel( __dX0 )       # Redresse les vecteurs
+    __dX0 = float(__Amplitude) * __dX0
+    #
+    return __dX0
 
 # ==============================================================================
-def EnsembleOfCenteredPerturbations( _bgcenter, _bgcovariance, _nbmembers ):
-    "Génération d'un ensemble de taille _nbmembers-1 d'états aléatoires centrés"
+def EnsembleOfCenteredPerturbations( __bgCenter, __bgCovariance, __nbMembers ):
+    "Génération d'un ensemble de taille __nbMembers-1 d'états aléatoires centrés"
     #
-    _bgcenter = numpy.ravel(_bgcenter)[:,None]
-    if _nbmembers < 1:
-        raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(_nbmembers),))
+    __bgCenter = numpy.ravel(__bgCenter)[:,None]
+    if __nbMembers < 1:
+        raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(__nbMembers),))
     #
-    if _bgcovariance is None:
-        BackgroundEnsemble = numpy.tile( _bgcenter, _nbmembers)
+    if __bgCovariance is None:
+        _Perturbations = numpy.tile( __bgCenter, __nbMembers)
     else:
-        _Z = numpy.random.multivariate_normal(numpy.zeros(_bgcenter.size), _bgcovariance, size=_nbmembers).T
-        BackgroundEnsemble = numpy.tile( _bgcenter, _nbmembers) + _Z
+        _Z = numpy.random.multivariate_normal(numpy.zeros(__bgCenter.size), __bgCovariance, size=__nbMembers).T
+        _Perturbations = numpy.tile( __bgCenter, __nbMembers) + _Z
     #
-    return BackgroundEnsemble
+    return _Perturbations
 
 # ==============================================================================
-def EnsembleOfBackgroundPerturbations( _bgcenter, _bgcovariance, _nbmembers, _withSVD = True):
-    "Génération d'un ensemble de taille _nbmembers-1 d'états aléatoires centrés"
+def EnsembleOfBackgroundPerturbations( __bgCenter, __bgCovariance, __nbMembers, __withSVD = True):
+    "Génération d'un ensemble de taille __nbMembers-1 d'états aléatoires centrés"
     def __CenteredRandomAnomalies(Zr, N):
         """
         Génère une matrice de N anomalies aléatoires centrées sur Zr selon les
@@ -475,66 +536,75 @@ def EnsembleOfBackgroundPerturbations( _bgcenter, _bgcovariance, _nbmembers, _wi
         Zr = numpy.dot(Q,Zr)
         return Zr.T
     #
-    _bgcenter = numpy.ravel(_bgcenter).reshape((-1,1))
-    if _nbmembers < 1:
-        raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(_nbmembers),))
-    if _bgcovariance is None:
-        BackgroundEnsemble = numpy.tile( _bgcenter, _nbmembers)
+    __bgCenter = numpy.ravel(__bgCenter).reshape((-1,1))
+    if __nbMembers < 1:
+        raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(__nbMembers),))
+    if __bgCovariance is None:
+        _Perturbations = numpy.tile( __bgCenter, __nbMembers)
     else:
-        if _withSVD:
-            U, s, V = numpy.linalg.svd(_bgcovariance, full_matrices=False)
-            _nbctl = _bgcenter.size
-            if _nbmembers > _nbctl:
+        if __withSVD:
+            _U, _s, _V = numpy.linalg.svd(__bgCovariance, full_matrices=False)
+            _nbctl = __bgCenter.size
+            if __nbMembers > _nbctl:
                 _Z = numpy.concatenate((numpy.dot(
-                    numpy.diag(numpy.sqrt(s[:_nbctl])), V[:_nbctl]),
-                    numpy.random.multivariate_normal(numpy.zeros(_nbctl),_bgcovariance,_nbmembers-1-_nbctl)), axis = 0)
+                    numpy.diag(numpy.sqrt(_s[:_nbctl])), _V[:_nbctl]),
+                    numpy.random.multivariate_normal(numpy.zeros(_nbctl),__bgCovariance,__nbMembers-1-_nbctl)), axis = 0)
             else:
-                _Z = numpy.dot(numpy.diag(numpy.sqrt(s[:_nbmembers-1])), V[:_nbmembers-1])
-            _Zca = __CenteredRandomAnomalies(_Z, _nbmembers)
-            BackgroundEnsemble = _bgcenter + _Zca
-        else:
-            if max(abs(_bgcovariance.flatten())) > 0:
-                _nbctl = _bgcenter.size
-                _Z = numpy.random.multivariate_normal(numpy.zeros(_nbctl),_bgcovariance,_nbmembers-1)
-                _Zca = __CenteredRandomAnomalies(_Z, _nbmembers)
-                BackgroundEnsemble = _bgcenter + _Zca
+                _Z = numpy.dot(numpy.diag(numpy.sqrt(_s[:__nbMembers-1])), _V[:__nbMembers-1])
+            _Zca = __CenteredRandomAnomalies(_Z, __nbMembers)
+            _Perturbations = __bgCenter + _Zca
+        else:
+            if max(abs(__bgCovariance.flatten())) > 0:
+                _nbctl = __bgCenter.size
+                _Z = numpy.random.multivariate_normal(numpy.zeros(_nbctl),__bgCovariance,__nbMembers-1)
+                _Zca = __CenteredRandomAnomalies(_Z, __nbMembers)
+                _Perturbations = __bgCenter + _Zca
             else:
-                BackgroundEnsemble = numpy.tile( _bgcenter, _nbmembers)
+                _Perturbations = numpy.tile( __bgCenter, __nbMembers)
     #
-    return BackgroundEnsemble
+    return _Perturbations
+
+# ==============================================================================
+def EnsembleMean( __Ensemble ):
+    "Renvoie la moyenne empirique d'un ensemble"
+    return numpy.asarray(__Ensemble).mean(axis=1, dtype=mfp).astype('float').reshape((-1,1))
 
 # ==============================================================================
-def EnsembleOfAnomalies( Ensemble, OptMean = None, Normalisation = 1.):
-    "Renvoie les anomalies centrées à partir d'un ensemble TailleEtat*NbMembres"
-    if OptMean is None:
-        __Em = numpy.asarray(Ensemble).mean(axis=1, dtype=mfp).astype('float').reshape((-1,1))
+def EnsembleOfAnomalies( __Ensemble, __OptMean = None, __Normalisation = 1.):
+    "Renvoie les anomalies centrées à partir d'un ensemble"
+    if __OptMean is None:
+        __Em = EnsembleMean( __Ensemble )
     else:
-        __Em = numpy.ravel(OptMean).reshape((-1,1))
+        __Em = numpy.ravel( __OptMean ).reshape((-1,1))
     #
-    return Normalisation * (numpy.asarray(Ensemble) - __Em)
+    return __Normalisation * (numpy.asarray( __Ensemble ) - __Em)
 
 # ==============================================================================
-def EnsembleErrorCovariance( Ensemble, __quick = False ):
+def EnsembleErrorCovariance( __Ensemble, __Quick = False ):
     "Renvoie l'estimation empirique de la covariance d'ensemble"
-    if __quick:
+    if __Quick:
         # Covariance rapide mais rarement définie positive
-        __Covariance = numpy.cov(Ensemble)
+        __Covariance = numpy.cov( __Ensemble )
     else:
         # Résultat souvent identique à numpy.cov, mais plus robuste
-        __n, __m = numpy.asarray(Ensemble).shape
-        __Anomalies = EnsembleOfAnomalies( Ensemble )
+        __n, __m = numpy.asarray( __Ensemble ).shape
+        __Anomalies = EnsembleOfAnomalies( __Ensemble )
         # Estimation empirique
-        __Covariance = (__Anomalies @ __Anomalies.T) / (__m-1)
+        __Covariance = ( __Anomalies @ __Anomalies.T ) / (__m-1)
         # Assure la symétrie
-        __Covariance = (__Covariance + __Covariance.T) * 0.5
+        __Covariance = ( __Covariance + __Covariance.T ) * 0.5
         # Assure la positivité
-        __epsilon    = mpr*numpy.trace(__Covariance)
+        __epsilon    = mpr*numpy.trace( __Covariance )
         __Covariance = __Covariance + __epsilon * numpy.identity(__n)
     #
     return __Covariance
 
 # ==============================================================================
-def EnsemblePerturbationWithGivenCovariance( __Ensemble, __Covariance, __Seed=None ):
+def EnsemblePerturbationWithGivenCovariance(
+        __Ensemble,
+        __Covariance,
+        __Seed = None,
+        ):
     "Ajout d'une perturbation à chaque membre d'un ensemble selon une covariance prescrite"
     if hasattr(__Covariance,"assparsematrix"):
         if (abs(__Ensemble).mean() > mpr) and (abs(__Covariance.assparsematrix())/abs(__Ensemble).mean() < mpr).all():
@@ -581,94 +651,145 @@ def EnsemblePerturbationWithGivenCovariance( __Ensemble, __Covariance, __Seed=No
 
 # ==============================================================================
 def CovarianceInflation(
-        InputCovOrEns,
-        InflationType   = None,
-        InflationFactor = None,
-        BackgroundCov   = None,
+        __InputCovOrEns,
+        __InflationType   = None,
+        __InflationFactor = None,
+        __BackgroundCov   = None,
         ):
     """
     Inflation applicable soit sur Pb ou Pa, soit sur les ensembles EXb ou EXa
 
     Synthèse : Hunt 2007, section 2.3.5
     """
-    if InflationFactor is None:
-        return InputCovOrEns
+    if __InflationFactor is None:
+        return __InputCovOrEns
     else:
-        InflationFactor = float(InflationFactor)
+        __InflationFactor = float(__InflationFactor)
     #
-    if InflationType in ["MultiplicativeOnAnalysisCovariance", "MultiplicativeOnBackgroundCovariance"]:
-        if InflationFactor < 1.:
-            raise ValueError("Inflation factor for multiplicative inflation has to be greater or equal than 1.")
-        if InflationFactor < 1.+mpr:
-            return InputCovOrEns
-        OutputCovOrEns = InflationFactor**2 * InputCovOrEns
+    __InputCovOrEns = numpy.asarray(__InputCovOrEns)
+    if __InputCovOrEns.size == 0: return __InputCovOrEns
     #
-    elif InflationType in ["MultiplicativeOnAnalysisAnomalies", "MultiplicativeOnBackgroundAnomalies"]:
-        if InflationFactor < 1.:
+    if __InflationType in ["MultiplicativeOnAnalysisCovariance", "MultiplicativeOnBackgroundCovariance"]:
+        if __InflationFactor < 1.:
             raise ValueError("Inflation factor for multiplicative inflation has to be greater or equal than 1.")
-        if InflationFactor < 1.+mpr:
-            return InputCovOrEns
-        InputCovOrEnsMean = InputCovOrEns.mean(axis=1, dtype=mfp).astype('float')
-        OutputCovOrEns = InputCovOrEnsMean[:,numpy.newaxis] \
-            + InflationFactor * (InputCovOrEns - InputCovOrEnsMean[:,numpy.newaxis])
+        if __InflationFactor < 1.+mpr: # No inflation = 1
+            return __InputCovOrEns
+        __OutputCovOrEns = __InflationFactor**2 * __InputCovOrEns
     #
-    elif InflationType in ["AdditiveOnAnalysisCovariance", "AdditiveOnBackgroundCovariance"]:
-        if InflationFactor < 0.:
+    elif __InflationType in ["MultiplicativeOnAnalysisAnomalies", "MultiplicativeOnBackgroundAnomalies"]:
+        if __InflationFactor < 1.:
+            raise ValueError("Inflation factor for multiplicative inflation has to be greater or equal than 1.")
+        if __InflationFactor < 1.+mpr: # No inflation = 1
+            return __InputCovOrEns
+        __InputCovOrEnsMean = __InputCovOrEns.mean(axis=1, dtype=mfp).astype('float')
+        __OutputCovOrEns = __InputCovOrEnsMean[:,numpy.newaxis] \
+            + __InflationFactor * (__InputCovOrEns - __InputCovOrEnsMean[:,numpy.newaxis])
+    #
+    elif __InflationType in ["AdditiveOnAnalysisCovariance", "AdditiveOnBackgroundCovariance"]:
+        if __InflationFactor < 0.:
             raise ValueError("Inflation factor for additive inflation has to be greater or equal than 0.")
-        if InflationFactor < mpr:
-            return InputCovOrEns
-        __n, __m = numpy.asarray(InputCovOrEns).shape
+        if __InflationFactor < mpr: # No inflation = 0
+            return __InputCovOrEns
+        __n, __m = __InputCovOrEns.shape
         if __n != __m:
             raise ValueError("Additive inflation can only be applied to squared (covariance) matrix.")
-        OutputCovOrEns = (1. - InflationFactor) * InputCovOrEns + InflationFactor * numpy.identity(__n)
+        __tr = __InputCovOrEns.trace()/__n
+        if __InflationFactor > __tr:
+            raise ValueError("Inflation factor for additive inflation has to be small over %.0e."%__tr)
+        __OutputCovOrEns = (1. - __InflationFactor)*__InputCovOrEns + __InflationFactor * numpy.identity(__n)
     #
-    elif InflationType == "HybridOnBackgroundCovariance":
-        if InflationFactor < 0.:
+    elif __InflationType == "HybridOnBackgroundCovariance":
+        if __InflationFactor < 0.:
             raise ValueError("Inflation factor for hybrid inflation has to be greater or equal than 0.")
-        if InflationFactor < mpr:
-            return InputCovOrEns
-        __n, __m = numpy.asarray(InputCovOrEns).shape
+        if __InflationFactor < mpr: # No inflation = 0
+            return __InputCovOrEns
+        __n, __m = __InputCovOrEns.shape
         if __n != __m:
             raise ValueError("Additive inflation can only be applied to squared (covariance) matrix.")
-        if BackgroundCov is None:
+        if __BackgroundCov is None:
             raise ValueError("Background covariance matrix B has to be given for hybrid inflation.")
-        if InputCovOrEns.shape != BackgroundCov.shape:
+        if __InputCovOrEns.shape != __BackgroundCov.shape:
             raise ValueError("Ensemble covariance matrix has to be of same size than background covariance matrix B.")
-        OutputCovOrEns = (1. - InflationFactor) * InputCovOrEns + InflationFactor * BackgroundCov
+        __OutputCovOrEns = (1. - __InflationFactor) * __InputCovOrEns + __InflationFactor * __BackgroundCov
     #
-    elif InflationType == "Relaxation":
-        raise NotImplementedError("InflationType Relaxation")
+    elif __InflationType == "Relaxation":
+        raise NotImplementedError("Relaxation inflation type not implemented")
     #
     else:
-        raise ValueError("Error in inflation type, '%s' is not a valid keyword."%InflationType)
+        raise ValueError("Error in inflation type, '%s' is not a valid keyword."%__InflationType)
     #
-    return OutputCovOrEns
+    return __OutputCovOrEns
+
+# ==============================================================================
+def HessienneEstimation(__selfA, __nb, __HaM, __HtM, __BI, __RI):
+    "Estimation de la Hessienne"
+    #
+    __HessienneI = []
+    for i in range(int(__nb)):
+        __ee    = numpy.zeros((__nb,1))
+        __ee[i] = 1.
+        __HtEE  = numpy.dot(__HtM,__ee).reshape((-1,1))
+        __HessienneI.append( numpy.ravel( __BI * __ee + __HaM * (__RI * __HtEE) ) )
+    #
+    __A = numpy.linalg.inv(numpy.array( __HessienneI ))
+    __A = (__A + __A.T) * 0.5 # Symétrie
+    __A = __A + mpr*numpy.trace( __A ) * numpy.identity(__nb) # Positivité
+    #
+    if min(__A.shape) != max(__A.shape):
+        raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(__selfA._name,str(__A.shape)))
+    if (numpy.diag(__A) < 0).any():
+        raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(__selfA._name,))
+    if logging.getLogger().level < logging.WARNING: # La vérification n'a lieu qu'en debug
+        try:
+            numpy.linalg.cholesky( __A )
+        except:
+            raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(__selfA._name,))
+    #
+    return __A
 
 # ==============================================================================
 def QuantilesEstimations(selfA, A, Xa, HXa = None, Hm = None, HtM = None):
-    "Estimation des quantiles a posteriori (selfA est modifié)"
+    "Estimation des quantiles a posteriori à partir de A>0 (selfA est modifié)"
     nbsamples = selfA._parameters["NumberOfSamplesForQuantiles"]
     #
+    # Traitement des bornes
+    if "StateBoundsForQuantiles" in selfA._parameters:
+        LBounds = selfA._parameters["StateBoundsForQuantiles"] # Prioritaire
+    elif "Bounds" in selfA._parameters:
+        LBounds = selfA._parameters["Bounds"]  # Défaut raisonnable
+    else:
+        LBounds = None
+    if LBounds is not None:
+        LBounds = ForceNumericBounds( LBounds )
+    __Xa = numpy.ravel(Xa)
+    #
     # Échantillonnage des états
     YfQ  = None
     EXr  = None
-    if selfA._parameters["SimulationForQuantiles"] == "Linear":
-        HXa  = numpy.matrix(numpy.ravel( HXa )).T
     for i in range(nbsamples):
-        if selfA._parameters["SimulationForQuantiles"] == "Linear" and HtM is not None:
-            dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
-            dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
-            Yr = HXa + dYr
-            if selfA._toStore("SampledStateForQuantiles"): Xr = Xa+dXr
+        if selfA._parameters["SimulationForQuantiles"] == "Linear" and HtM is not None and HXa is not None:
+            dXr = (numpy.random.multivariate_normal(__Xa,A) - __Xa).reshape((-1,1))
+            if LBounds is not None: # "EstimateProjection" par défaut
+                dXr = numpy.max(numpy.hstack((dXr,LBounds[:,0].reshape((-1,1))) - __Xa.reshape((-1,1))),axis=1)
+                dXr = numpy.min(numpy.hstack((dXr,LBounds[:,1].reshape((-1,1))) - __Xa.reshape((-1,1))),axis=1)
+            dYr = HtM @ dXr
+            Yr = HXa.reshape((-1,1)) + dYr
+            if selfA._toStore("SampledStateForQuantiles"): Xr = __Xa + numpy.ravel(dXr)
         elif selfA._parameters["SimulationForQuantiles"] == "NonLinear" and Hm is not None:
-            Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
-            Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
+            Xr = numpy.random.multivariate_normal(__Xa,A)
+            if LBounds is not None: # "EstimateProjection" par défaut
+                Xr = numpy.max(numpy.hstack((Xr.reshape((-1,1)),LBounds[:,0].reshape((-1,1)))),axis=1)
+                Xr = numpy.min(numpy.hstack((Xr.reshape((-1,1)),LBounds[:,1].reshape((-1,1)))),axis=1)
+            Yr = numpy.asarray(Hm( Xr ))
+        else:
+            raise ValueError("Quantile simulations has only to be Linear or NonLinear.")
+        #
         if YfQ is None:
-            YfQ = Yr
-            if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.ravel(Xr)
+            YfQ = Yr.reshape((-1,1))
+            if selfA._toStore("SampledStateForQuantiles"): EXr = Xr.reshape((-1,1))
         else:
-            YfQ = numpy.hstack((YfQ,Yr))
-            if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.vstack((EXr,numpy.ravel(Xr)))
+            YfQ = numpy.hstack((YfQ,Yr.reshape((-1,1))))
+            if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.hstack((EXr,Xr.reshape((-1,1))))
     #
     # Extraction des quantiles
     YfQ.sort(axis=-1)
@@ -676,2669 +797,190 @@ def QuantilesEstimations(selfA, A, Xa, HXa = None, Hm = None, HtM = None):
     for quantile in selfA._parameters["Quantiles"]:
         if not (0. <= float(quantile) <= 1.): continue
         indice = int(nbsamples * float(quantile) - 1./nbsamples)
-        if YQ is None: YQ = YfQ[:,indice]
-        else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
-    selfA.StoredVariables["SimulationQuantiles"].store( YQ )
+        if YQ is None: YQ = YfQ[:,indice].reshape((-1,1))
+        else:          YQ = numpy.hstack((YQ,YfQ[:,indice].reshape((-1,1))))
+    if YQ is not None: # Liste non vide de quantiles
+        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
     if selfA._toStore("SampledStateForQuantiles"):
-        selfA.StoredVariables["SampledStateForQuantiles"].store( EXr.T )
+        selfA.StoredVariables["SampledStateForQuantiles"].store( EXr )
     #
     return 0
 
 # ==============================================================================
-def enks(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="EnKS16-KalmanFilterFormula"):
-    """
-    EnKS
-    """
-    #
-    # Opérateurs
-    H = HO["Direct"].appliedControledFormTo
-    #
-    if selfA._parameters["EstimationOf"] == "State":
-        M = EM["Direct"].appliedControledFormTo
-    #
-    if CM is not None and "Tangent" in CM and U is not None:
-        Cm = CM["Tangent"].asMatrix(Xb)
-    else:
-        Cm = None
-    #
-    # Précalcul des inversions de B et R
-    RIdemi = R.sqrtmI()
-    #
-    # Durée d'observation et tailles
-    LagL = selfA._parameters["SmootherLagL"]
-    if (not hasattr(Y,"store")) or (not hasattr(Y,"stepnumber")):
-        raise ValueError("Fixed-lag smoother requires a series of observation")
-    if Y.stepnumber() < LagL:
-        raise ValueError("Fixed-lag smoother requires a series of observation greater then the lag L")
-    duration = Y.stepnumber()
-    __p = numpy.cumprod(Y.shape())[-1]
-    __n = Xb.size
-    __m = selfA._parameters["NumberOfMembers"]
-    #
-    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
-    else:                         Pn = B
-    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
-        selfA.StoredVariables["Analysis"].store( Xb )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-            covarianceXa = Pn
-    #
-    # Calcul direct initial (on privilégie la mémorisation au recalcul)
-    __seed = numpy.random.get_state()
-    selfB = copy.deepcopy(selfA)
-    selfB._parameters["StoreSupplementaryCalculations"] = ["CurrentEnsembleState"]
-    if VariantM == "EnKS16-KalmanFilterFormula":
-        etkf(selfB, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM = "KalmanFilterFormula")
-    else:
-        raise ValueError("VariantM has to be chosen in the authorized methods list.")
-    if LagL > 0:
-        EL  = selfB.StoredVariables["CurrentEnsembleState"][LagL-1]
-    else:
-        EL = EnsembleOfBackgroundPerturbations( Xb, None, __m ) # Cf. etkf
-    selfA._parameters["SetSeed"] = numpy.random.set_state(__seed)
-    #
-    for step in range(LagL,duration-1):
-        #
-        sEL = selfB.StoredVariables["CurrentEnsembleState"][step+1-LagL:step+1]
-        sEL.append(None)
-        #
-        if hasattr(Y,"store"):
-            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
-        else:
-            Ynpu = numpy.ravel( Y ).reshape((__p,1))
-        #
-        if U is not None:
-            if hasattr(U,"store") and len(U)>1:
-                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
-            elif hasattr(U,"store") and len(U)==1:
-                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
-            else:
-                Un = numpy.asmatrix(numpy.ravel( U )).T
-        else:
-            Un = None
-        #
-        #--------------------------
-        if VariantM == "EnKS16-KalmanFilterFormula":
-            if selfA._parameters["EstimationOf"] == "State": # Forecast
-                EL = M( [(EL[:,i], Un) for i in range(__m)],
-                    argsAsSerie = True,
-                    returnSerieAsArrayMatrix = True )
-                EL = EnsemblePerturbationWithGivenCovariance( EL, Q )
-                EZ = H( [(EL[:,i], Un) for i in range(__m)],
-                    argsAsSerie = True,
-                    returnSerieAsArrayMatrix = True )
-                if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
-                    Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
-                    EZ = EZ + Cm * Un
-            elif selfA._parameters["EstimationOf"] == "Parameters":
-                # --- > Par principe, M = Id, Q = 0
-                EZ = H( [(EL[:,i], Un) for i in range(__m)],
-                    argsAsSerie = True,
-                    returnSerieAsArrayMatrix = True )
-            #
-            vEm   = EL.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
-            vZm   = EZ.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
-            #
-            mS    = RIdemi @ EnsembleOfAnomalies( EZ, vZm, 1./math.sqrt(__m-1) )
-            delta = RIdemi @ ( Ynpu - vZm )
-            mT    = numpy.linalg.inv( numpy.identity(__m) + mS.T @ mS )
-            vw    = mT @ mS.T @ delta
-            #
-            Tdemi = numpy.real(scipy.linalg.sqrtm(mT))
-            mU    = numpy.identity(__m)
-            wTU   = (vw.reshape((__m,1)) + math.sqrt(__m-1) * Tdemi @ mU)
-            #
-            EX    = EnsembleOfAnomalies( EL, vEm, 1./math.sqrt(__m-1) )
-            EL    = vEm + EX @ wTU
-            #
-            sEL[LagL] = EL
-            for irl in range(LagL): # Lissage des L précédentes analysis
-                vEm = sEL[irl].mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
-                EX = EnsembleOfAnomalies( sEL[irl], vEm, 1./math.sqrt(__m-1) )
-                sEL[irl] = vEm + EX @ wTU
-            #
-            # Conservation de l'analyse retrospective d'ordre 0 avant rotation
-            Xa = sEL[0].mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
-            if selfA._toStore("APosterioriCovariance"):
-                EXn = sEL[0]
-            #
-            for irl in range(LagL):
-                sEL[irl] = sEL[irl+1]
-            sEL[LagL] = None
-        #--------------------------
-        else:
-            raise ValueError("VariantM has to be chosen in the authorized methods list.")
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        # ---> avec analysis
-        selfA.StoredVariables["Analysis"].store( Xa )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(EXn) )
-    #
-    # Stockage des dernières analyses incomplètement remises à jour
-    for irl in range(LagL):
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        Xa = sEL[irl].mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
-        selfA.StoredVariables["Analysis"].store( Xa )
-    #
-    return 0
+def ForceNumericBounds( __Bounds ):
+    "Force les bornes à être des valeurs numériques, sauf si globalement None"
+    # Conserve une valeur par défaut à None s'il n'y a pas de bornes
+    if __Bounds is None: return None
+    # Converti toutes les bornes individuelles None à +/- l'infini
+    __Bounds = numpy.asarray( __Bounds, dtype=float )
+    if len(__Bounds.shape) != 2 or min(__Bounds.shape) <= 0 or __Bounds.shape[1] != 2:
+        raise ValueError("Incorrectly shaped bounds data")
+    __Bounds[numpy.isnan(__Bounds[:,0]),0] = -sys.float_info.max
+    __Bounds[numpy.isnan(__Bounds[:,1]),1] =  sys.float_info.max
+    return __Bounds
 
 # ==============================================================================
-def etkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula"):
-    """
-    Ensemble-Transform EnKF
-    """
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA._parameters["StoreInternalVariables"] = True
-    #
-    # Opérateurs
-    # ----------
-    H = HO["Direct"].appliedControledFormTo
-    #
-    if selfA._parameters["EstimationOf"] == "State":
-        M = EM["Direct"].appliedControledFormTo
-    #
-    if CM is not None and "Tangent" in CM and U is not None:
-        Cm = CM["Tangent"].asMatrix(Xb)
-    else:
-        Cm = None
-    #
-    # Nombre de pas identique au nombre de pas d'observations
-    # -------------------------------------------------------
-    if hasattr(Y,"stepnumber"):
-        duration = Y.stepnumber()
-        __p = numpy.cumprod(Y.shape())[-1]
+def RecentredBounds( __Bounds, __Center, __Scale = None):
+    "Recentre les bornes autour de 0, sauf si globalement None"
+    # Conserve une valeur par défaut à None s'il n'y a pas de bornes
+    if __Bounds is None: return None
+    if __Scale is None:
+        # Recentre les valeurs numériques de bornes
+        return ForceNumericBounds( __Bounds ) - numpy.ravel( __Center ).reshape((-1,1))
     else:
-        duration = 2
-        __p = numpy.array(Y).size
-    #
-    # Précalcul des inversions de B et R
-    # ----------------------------------
-    if selfA._parameters["StoreInternalVariables"] \
-        or selfA._toStore("CostFunctionJ") \
-        or selfA._toStore("CostFunctionJb") \
-        or selfA._toStore("CostFunctionJo") \
-        or selfA._toStore("CurrentOptimum") \
-        or selfA._toStore("APosterioriCovariance"):
-        BI = B.getI()
-        RI = R.getI()
-    elif VariantM != "KalmanFilterFormula":
-        RI = R.getI()
-    if VariantM == "KalmanFilterFormula":
-        RIdemi = R.sqrtmI()
-    #
-    # Initialisation
-    # --------------
-    __n = Xb.size
-    __m = selfA._parameters["NumberOfMembers"]
-    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
-    else:                         Pn = B
-    Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
-    #~ Xn = EnsembleOfBackgroundPerturbations( Xb, Pn, __m )
-    #
-    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
-        selfA.StoredVariables["Analysis"].store( Xb )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-            covarianceXa = Pn
-    #
-    previousJMinimum = numpy.finfo(float).max
-    #
-    for step in range(duration-1):
-        if hasattr(Y,"store"):
-            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
-        else:
-            Ynpu = numpy.ravel( Y ).reshape((__p,1))
-        #
-        if U is not None:
-            if hasattr(U,"store") and len(U)>1:
-                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
-            elif hasattr(U,"store") and len(U)==1:
-                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
-            else:
-                Un = numpy.asmatrix(numpy.ravel( U )).T
-        else:
-            Un = None
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
-            EMX = M( [(Xn[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-            Xn_predicted = EnsemblePerturbationWithGivenCovariance( EMX, Q )
-            HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-            if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
-                Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
-                Xn_predicted = Xn_predicted + Cm * Un
-        elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
-            # --- > Par principe, M = Id, Q = 0
-            Xn_predicted = Xn
-            HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-        #
-        # Mean of forecast and observation of forecast
-        Xfm  = Xn_predicted.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
-        Hfm  = HX_predicted.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
-        #
-        # Anomalies
-        EaX   = EnsembleOfAnomalies( Xn_predicted, Xfm )
-        EaHX  = EnsembleOfAnomalies( HX_predicted, Hfm)
-        #
-        #--------------------------
-        if VariantM == "KalmanFilterFormula":
-            mS    = RIdemi * EaHX / math.sqrt(__m-1)
-            delta = RIdemi * ( Ynpu - Hfm )
-            mT    = numpy.linalg.inv( numpy.identity(__m) + mS.T @ mS )
-            vw    = mT @ mS.T @ delta
-            #
-            Tdemi = numpy.real(scipy.linalg.sqrtm(mT))
-            mU    = numpy.identity(__m)
-            #
-            EaX   = EaX / math.sqrt(__m-1)
-            Xn    = Xfm + EaX @ ( vw.reshape((__m,1)) + math.sqrt(__m-1) * Tdemi @ mU )
-        #--------------------------
-        elif VariantM == "Variational":
-            HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
-            def CostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
-                _Jo = 0.5 * _A.T @ (RI * _A)
-                _Jb = 0.5 * (__m-1) * w.T @ w
-                _J  = _Jo + _Jb
-                return float(_J)
-            def GradientOfCostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
-                _GardJo = - EaHX.T @ (RI * _A)
-                _GradJb = (__m-1) * w.reshape((__m,1))
-                _GradJ  = _GardJo + _GradJb
-                return numpy.ravel(_GradJ)
-            vw = scipy.optimize.fmin_cg(
-                f           = CostFunction,
-                x0          = numpy.zeros(__m),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                disp        = False,
-                )
-            #
-            Hto = EaHX.T @ (RI * EaHX)
-            Htb = (__m-1) * numpy.identity(__m)
-            Hta = Hto + Htb
-            #
-            Pta = numpy.linalg.inv( Hta )
-            EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
-            #
-            Xn  = Xfm + EaX @ (vw[:,None] + EWa)
-        #--------------------------
-        elif VariantM == "FiniteSize11": # Jauge Boc2011
-            HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
-            def CostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
-                _Jo = 0.5 * _A.T @ (RI * _A)
-                _Jb = 0.5 * __m * math.log(1 + 1/__m + w.T @ w)
-                _J  = _Jo + _Jb
-                return float(_J)
-            def GradientOfCostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
-                _GardJo = - EaHX.T @ (RI * _A)
-                _GradJb = __m * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w)
-                _GradJ  = _GardJo + _GradJb
-                return numpy.ravel(_GradJ)
-            vw = scipy.optimize.fmin_cg(
-                f           = CostFunction,
-                x0          = numpy.zeros(__m),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                disp        = False,
-                )
-            #
-            Hto = EaHX.T @ (RI * EaHX)
-            Htb = __m * \
-                ( (1 + 1/__m + vw.T @ vw) * numpy.identity(__m) - 2 * vw @ vw.T ) \
-                / (1 + 1/__m + vw.T @ vw)**2
-            Hta = Hto + Htb
-            #
-            Pta = numpy.linalg.inv( Hta )
-            EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
-            #
-            Xn  = Xfm + EaX @ (vw.reshape((__m,1)) + EWa)
-        #--------------------------
-        elif VariantM == "FiniteSize15": # Jauge Boc2015
-            HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
-            def CostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
-                _Jo = 0.5 * _A.T * RI * _A
-                _Jb = 0.5 * (__m+1) * math.log(1 + 1/__m + w.T @ w)
-                _J  = _Jo + _Jb
-                return float(_J)
-            def GradientOfCostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
-                _GardJo = - EaHX.T @ (RI * _A)
-                _GradJb = (__m+1) * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w)
-                _GradJ  = _GardJo + _GradJb
-                return numpy.ravel(_GradJ)
-            vw = scipy.optimize.fmin_cg(
-                f           = CostFunction,
-                x0          = numpy.zeros(__m),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                disp        = False,
-                )
-            #
-            Hto = EaHX.T @ (RI * EaHX)
-            Htb = (__m+1) * \
-                ( (1 + 1/__m + vw.T @ vw) * numpy.identity(__m) - 2 * vw @ vw.T ) \
-                / (1 + 1/__m + vw.T @ vw)**2
-            Hta = Hto + Htb
-            #
-            Pta = numpy.linalg.inv( Hta )
-            EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
-            #
-            Xn  = Xfm + EaX @ (vw.reshape((__m,1)) + EWa)
-        #--------------------------
-        elif VariantM == "FiniteSize16": # Jauge Boc2016
-            HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
-            def CostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
-                _Jo = 0.5 * _A.T @ (RI * _A)
-                _Jb = 0.5 * (__m+1) * math.log(1 + 1/__m + w.T @ w / (__m-1))
-                _J  = _Jo + _Jb
-                return float(_J)
-            def GradientOfCostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
-                _GardJo = - EaHX.T @ (RI * _A)
-                _GradJb = ((__m+1) / (__m-1)) * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w / (__m-1))
-                _GradJ  = _GardJo + _GradJb
-                return numpy.ravel(_GradJ)
-            vw = scipy.optimize.fmin_cg(
-                f           = CostFunction,
-                x0          = numpy.zeros(__m),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                disp        = False,
-                )
-            #
-            Hto = EaHX.T @ (RI * EaHX)
-            Htb = ((__m+1) / (__m-1)) * \
-                ( (1 + 1/__m + vw.T @ vw / (__m-1)) * numpy.identity(__m) - 2 * vw @ vw.T / (__m-1) ) \
-                / (1 + 1/__m + vw.T @ vw / (__m-1))**2
-            Hta = Hto + Htb
-            #
-            Pta = numpy.linalg.inv( Hta )
-            EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
-            #
-            Xn  = Xfm + EaX @ (vw[:,None] + EWa)
-        #--------------------------
-        else:
-            raise ValueError("VariantM has to be chosen in the authorized methods list.")
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
-        #--------------------------
-        #
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("APosterioriCovariance") \
-            or selfA._toStore("InnovationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
-            _Innovation = Ynpu - _HXa
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        # ---> avec analysis
-        selfA.StoredVariables["Analysis"].store( Xa )
-        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
-        if selfA._toStore("InnovationAtCurrentAnalysis"):
-            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
-        # ---> avec current state
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CurrentState"):
-            selfA.StoredVariables["CurrentState"].store( Xn )
-        if selfA._toStore("ForecastState"):
-            selfA.StoredVariables["ForecastState"].store( EMX )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( EMX - Xa.reshape((__n,1)) )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( - HX_predicted + Ynpu )
-        if selfA._toStore("SimulatedObservationAtCurrentState") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
-        # ---> autres
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("CurrentOptimum") \
-            or selfA._toStore("APosterioriCovariance"):
-            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
-            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-            J   = Jb + Jo
-            selfA.StoredVariables["CostFunctionJb"].store( Jb )
-            selfA.StoredVariables["CostFunctionJo"].store( Jo )
-            selfA.StoredVariables["CostFunctionJ" ].store( J )
-            #
-            if selfA._toStore("IndexOfOptimum") \
-                or selfA._toStore("CurrentOptimum") \
-                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
-                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-            if selfA._toStore("IndexOfOptimum"):
-                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-            if selfA._toStore("CurrentOptimum"):
-                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
-            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
-            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
-        if selfA._parameters["EstimationOf"] == "Parameters" \
-            and J < previousJMinimum:
-            previousJMinimum    = J
-            XaMin               = Xa
-            if selfA._toStore("APosterioriCovariance"):
-                covarianceXaMin = Pn
-        # ---> Pour les smoothers
-        if selfA._toStore("CurrentEnsembleState"):
-            selfA.StoredVariables["CurrentEnsembleState"].store( Xn )
-    #
-    # Stockage final supplémentaire de l'optimum en estimation de paramètres
-    # ----------------------------------------------------------------------
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        selfA.StoredVariables["Analysis"].store( XaMin )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
-    #
-    return 0
+        # Recentre les valeurs numériques de bornes et change l'échelle par une matrice
+        return __Scale @ (ForceNumericBounds( __Bounds ) - numpy.ravel( __Center ).reshape((-1,1)))
 
 # ==============================================================================
-def ienkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="IEnKF12",
-    BnotT=False, _epsilon=1.e-3, _e=1.e-7, _jmax=15000):
-    """
-    Iterative EnKF
-    """
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA._parameters["StoreInternalVariables"] = True
-    #
-    # Opérateurs
-    # ----------
-    H = HO["Direct"].appliedControledFormTo
-    #
-    if selfA._parameters["EstimationOf"] == "State":
-        M = EM["Direct"].appliedControledFormTo
-    #
-    if CM is not None and "Tangent" in CM and U is not None:
-        Cm = CM["Tangent"].asMatrix(Xb)
-    else:
-        Cm = None
-    #
-    # Nombre de pas identique au nombre de pas d'observations
-    # -------------------------------------------------------
-    if hasattr(Y,"stepnumber"):
-        duration = Y.stepnumber()
-        __p = numpy.cumprod(Y.shape())[-1]
+def ApplyBounds( __Vector, __Bounds, __newClip = True):
+    "Applique des bornes numériques à un point"
+    # Conserve une valeur par défaut s'il n'y a pas de bornes
+    if __Bounds is None: return __Vector
+    #
+    if not isinstance(__Vector, numpy.ndarray): # Is an array
+        raise ValueError("Incorrect array definition of vector data")
+    if not isinstance(__Bounds, numpy.ndarray): # Is an array
+        raise ValueError("Incorrect array definition of bounds data")
+    if 2*__Vector.size != __Bounds.size: # Is a 2 column array of vector lenght
+        raise ValueError("Incorrect bounds number (%i) to be applied for this vector (of size %i)"%(__Bounds.size,__Vector.size))
+    if len(__Bounds.shape) != 2 or min(__Bounds.shape) <= 0 or __Bounds.shape[1] != 2:
+        raise ValueError("Incorrectly shaped bounds data")
+    #
+    if __newClip:
+        __Vector = __Vector.clip(
+            __Bounds[:,0].reshape(__Vector.shape),
+            __Bounds[:,1].reshape(__Vector.shape),
+            )
     else:
-        duration = 2
-        __p = numpy.array(Y).size
-    #
-    # Précalcul des inversions de B et R
-    # ----------------------------------
-    if selfA._parameters["StoreInternalVariables"] \
-        or selfA._toStore("CostFunctionJ") \
-        or selfA._toStore("CostFunctionJb") \
-        or selfA._toStore("CostFunctionJo") \
-        or selfA._toStore("CurrentOptimum") \
-        or selfA._toStore("APosterioriCovariance"):
-        BI = B.getI()
-    RI = R.getI()
+        __Vector = numpy.max(numpy.hstack((__Vector.reshape((-1,1)),numpy.asmatrix(__Bounds)[:,0])),axis=1)
+        __Vector = numpy.min(numpy.hstack((__Vector.reshape((-1,1)),numpy.asmatrix(__Bounds)[:,1])),axis=1)
+        __Vector = numpy.asarray(__Vector)
     #
-    # Initialisation
-    # --------------
-    __n = Xb.size
-    __m = selfA._parameters["NumberOfMembers"]
-    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
-    else:                         Pn = B
-    if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
-    else:                         Rn = R
-    if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n)
-    else:                         Qn = Q
-    Xn = EnsembleOfBackgroundPerturbations( Xb, Pn, __m )
-    #
-    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
-        selfA.StoredVariables["Analysis"].store( Xb )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-            covarianceXa = Pn
-    #
-    previousJMinimum = numpy.finfo(float).max
-    #
-    for step in range(duration-1):
-        if hasattr(Y,"store"):
-            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
-        else:
-            Ynpu = numpy.ravel( Y ).reshape((__p,1))
-        #
-        if U is not None:
-            if hasattr(U,"store") and len(U)>1:
-                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
-            elif hasattr(U,"store") and len(U)==1:
-                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
-            else:
-                Un = numpy.asmatrix(numpy.ravel( U )).T
-        else:
-            Un = None
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        #--------------------------
-        if VariantM == "IEnKF12":
-            Xfm = numpy.ravel(Xn.mean(axis=1, dtype=mfp).astype('float'))
-            EaX = EnsembleOfAnomalies( Xn ) / math.sqrt(__m-1)
-            __j = 0
-            Deltaw = 1
-            if not BnotT:
-                Ta  = numpy.identity(__m)
-            vw  = numpy.zeros(__m)
-            while numpy.linalg.norm(Deltaw) >= _e and __j <= _jmax:
-                vx1 = (Xfm + EaX @ vw).reshape((__n,1))
-                #
-                if BnotT:
-                    E1 = vx1 + _epsilon * EaX
-                else:
-                    E1 = vx1 + math.sqrt(__m-1) * EaX @ Ta
-                #
-                if selfA._parameters["EstimationOf"] == "State": # Forecast + Q
-                    E2 = M( [(E1[:,i,numpy.newaxis], Un) for i in range(__m)],
-                        argsAsSerie = True,
-                        returnSerieAsArrayMatrix = True )
-                elif selfA._parameters["EstimationOf"] == "Parameters":
-                    # --- > Par principe, M = Id
-                    E2 = Xn
-                vx2 = E2.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
-                vy1 = H((vx2, Un)).reshape((__p,1))
-                #
-                HE2 = H( [(E2[:,i,numpy.newaxis], Un) for i in range(__m)],
-                    argsAsSerie = True,
-                    returnSerieAsArrayMatrix = True )
-                vy2 = HE2.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
-                #
-                if BnotT:
-                    EaY = (HE2 - vy2) / _epsilon
-                else:
-                    EaY = ( (HE2 - vy2) @ numpy.linalg.inv(Ta) ) / math.sqrt(__m-1)
-                #
-                GradJ = numpy.ravel(vw[:,None] - EaY.transpose() @ (RI * ( Ynpu - vy1 )))
-                mH = numpy.identity(__m) + EaY.transpose() @ (RI * EaY)
-                Deltaw = - numpy.linalg.solve(mH,GradJ)
-                #
-                vw = vw + Deltaw
-                #
-                if not BnotT:
-                    Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
-                #
-                __j = __j + 1
-            #
-            A2 = EnsembleOfAnomalies( E2 )
-            #
-            if BnotT:
-                Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
-                A2 = math.sqrt(__m-1) * A2 @ Ta / _epsilon
-            #
-            Xn = vx2 + A2
-        #--------------------------
-        else:
-            raise ValueError("VariantM has to be chosen in the authorized methods list.")
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
-        #--------------------------
-        #
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("APosterioriCovariance") \
-            or selfA._toStore("InnovationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
-            _Innovation = Ynpu - _HXa
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        # ---> avec analysis
-        selfA.StoredVariables["Analysis"].store( Xa )
-        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
-        if selfA._toStore("InnovationAtCurrentAnalysis"):
-            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
-        # ---> avec current state
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CurrentState"):
-            selfA.StoredVariables["CurrentState"].store( Xn )
-        if selfA._toStore("ForecastState"):
-            selfA.StoredVariables["ForecastState"].store( E2 )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( E2 - Xa )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( - HE2 + Ynpu )
-        if selfA._toStore("SimulatedObservationAtCurrentState") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HE2 )
-        # ---> autres
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("CurrentOptimum") \
-            or selfA._toStore("APosterioriCovariance"):
-            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
-            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-            J   = Jb + Jo
-            selfA.StoredVariables["CostFunctionJb"].store( Jb )
-            selfA.StoredVariables["CostFunctionJo"].store( Jo )
-            selfA.StoredVariables["CostFunctionJ" ].store( J )
-            #
-            if selfA._toStore("IndexOfOptimum") \
-                or selfA._toStore("CurrentOptimum") \
-                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
-                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-            if selfA._toStore("IndexOfOptimum"):
-                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-            if selfA._toStore("CurrentOptimum"):
-                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
-            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
-            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
-        if selfA._parameters["EstimationOf"] == "Parameters" \
-            and J < previousJMinimum:
-            previousJMinimum    = J
-            XaMin               = Xa
-            if selfA._toStore("APosterioriCovariance"):
-                covarianceXaMin = Pn
-    #
-    # Stockage final supplémentaire de l'optimum en estimation de paramètres
-    # ----------------------------------------------------------------------
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        selfA.StoredVariables["Analysis"].store( XaMin )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
-    #
-    return 0
+    return __Vector
 
 # ==============================================================================
-def incr3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
-    """
-    3DVAR incrémental
-    """
-    #
-    # Initialisations
-    # ---------------
-    #
-    # Opérateur non-linéaire pour la boucle externe
-    Hm = HO["Direct"].appliedTo
-    #
-    # Précalcul des inversions de B et R
-    BI = B.getI()
-    RI = R.getI()
-    #
-    # Point de démarrage de l'optimisation
-    Xini = selfA._parameters["InitializationPoint"]
-    #
-    HXb = numpy.asmatrix(numpy.ravel( Hm( Xb ) )).T
-    Innovation = Y - HXb
-    #
-    # Outer Loop
-    # ----------
-    iOuter = 0
-    J      = 1./mpr
-    DeltaJ = 1./mpr
-    Xr     = Xini.reshape((-1,1))
-    while abs(DeltaJ) >= selfA._parameters["CostDecrementTolerance"] and iOuter <= selfA._parameters["MaximumNumberOfSteps"]:
-        #
-        # Inner Loop
-        # ----------
-        Ht = HO["Tangent"].asMatrix(Xr)
-        Ht = Ht.reshape(Y.size,Xr.size) # ADAO & check shape
-        #
-        # Définition de la fonction-coût
-        # ------------------------------
-        def CostFunction(dx):
-            _dX  = numpy.asmatrix(numpy.ravel( dx )).T
-            if selfA._parameters["StoreInternalVariables"] or \
-                selfA._toStore("CurrentState") or \
-                selfA._toStore("CurrentOptimum"):
-                selfA.StoredVariables["CurrentState"].store( Xb + _dX )
-            _HdX = Ht * _dX
-            _HdX = numpy.asmatrix(numpy.ravel( _HdX )).T
-            _dInnovation = Innovation - _HdX
-            if selfA._toStore("SimulatedObservationAtCurrentState") or \
-                selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HXb + _HdX )
-            if selfA._toStore("InnovationAtCurrentState"):
-                selfA.StoredVariables["InnovationAtCurrentState"].store( _dInnovation )
-            #
-            Jb  = float( 0.5 * _dX.T * BI * _dX )
-            Jo  = float( 0.5 * _dInnovation.T * RI * _dInnovation )
-            J   = Jb + Jo
-            #
-            selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
-            selfA.StoredVariables["CostFunctionJb"].store( Jb )
-            selfA.StoredVariables["CostFunctionJo"].store( Jo )
-            selfA.StoredVariables["CostFunctionJ" ].store( J )
-            if selfA._toStore("IndexOfOptimum") or \
-                selfA._toStore("CurrentOptimum") or \
-                selfA._toStore("CostFunctionJAtCurrentOptimum") or \
-                selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
-                selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
-                selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-            if selfA._toStore("IndexOfOptimum"):
-                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-            if selfA._toStore("CurrentOptimum"):
-                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
-            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
-            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-            return J
-        #
-        def GradientOfCostFunction(dx):
-            _dX          = numpy.asmatrix(numpy.ravel( dx )).T
-            _HdX         = Ht * _dX
-            _HdX         = numpy.asmatrix(numpy.ravel( _HdX )).T
-            _dInnovation = Innovation - _HdX
-            GradJb       = BI * _dX
-            GradJo       = - Ht.T @ (RI * _dInnovation)
-            GradJ        = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
-            return GradJ
-        #
-        # Minimisation de la fonctionnelle
-        # --------------------------------
-        nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
-        #
-        if selfA._parameters["Minimizer"] == "LBFGSB":
-            # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
-            if "0.19" <= scipy.version.version <= "1.1.0":
-                import lbfgsbhlt as optimiseur
-            else:
-                import scipy.optimize as optimiseur
-            Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
-                func        = CostFunction,
-                x0          = numpy.zeros(Xini.size),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                bounds      = selfA._parameters["Bounds"],
-                maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
-                factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
-                pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-                iprint      = selfA._parameters["optiprint"],
-                )
-            nfeval = Informations['funcalls']
-            rc     = Informations['warnflag']
-        elif selfA._parameters["Minimizer"] == "TNC":
-            Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
-                func        = CostFunction,
-                x0          = numpy.zeros(Xini.size),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                bounds      = selfA._parameters["Bounds"],
-                maxfun      = selfA._parameters["MaximumNumberOfSteps"],
-                pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-                ftol        = selfA._parameters["CostDecrementTolerance"],
-                messages    = selfA._parameters["optmessages"],
-                )
-        elif selfA._parameters["Minimizer"] == "CG":
-            Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
-                f           = CostFunction,
-                x0          = numpy.zeros(Xini.size),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-                gtol        = selfA._parameters["GradientNormTolerance"],
-                disp        = selfA._parameters["optdisp"],
-                full_output = True,
-                )
-        elif selfA._parameters["Minimizer"] == "NCG":
-            Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
-                f           = CostFunction,
-                x0          = numpy.zeros(Xini.size),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-                avextol     = selfA._parameters["CostDecrementTolerance"],
-                disp        = selfA._parameters["optdisp"],
-                full_output = True,
-                )
-        elif selfA._parameters["Minimizer"] == "BFGS":
-            Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
-                f           = CostFunction,
-                x0          = numpy.zeros(Xini.size),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-                gtol        = selfA._parameters["GradientNormTolerance"],
-                disp        = selfA._parameters["optdisp"],
-                full_output = True,
-                )
-        else:
-            raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
-        #
-        IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-        MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
-        #
-        if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
-            Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
-            Minimum = numpy.asmatrix(numpy.ravel( Minimum )).T
-        else:
-            Minimum = Xb + numpy.asmatrix(numpy.ravel( Minimum )).T
-        #
-        Xr     = Minimum
-        DeltaJ = selfA.StoredVariables["CostFunctionJ" ][-1] - J
-        iOuter = selfA.StoredVariables["CurrentIterationNumber"][-1]
-    #
-    # Obtention de l'analyse
-    # ----------------------
-    Xa = Xr
-    #
-    selfA.StoredVariables["Analysis"].store( Xa )
-    #
-    if selfA._toStore("OMA") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("SimulatedObservationAtOptimum"):
-        if selfA._toStore("SimulatedObservationAtCurrentState"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
-        elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
-        else:
-            HXa = Hm( Xa )
-    #
-    # Calcul de la covariance d'analyse
-    # ---------------------------------
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("JacobianMatrixAtOptimum") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
-        HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
-        HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles"):
-        HessienneI = []
-        nb = Xa.size
-        for i in range(nb):
-            _ee    = numpy.matrix(numpy.zeros(nb)).T
-            _ee[i] = 1.
-            _HtEE  = numpy.dot(HtM,_ee)
-            _HtEE  = numpy.asmatrix(numpy.ravel( _HtEE )).T
-            HessienneI.append( numpy.ravel( BI*_ee + HaM * (RI * _HtEE) ) )
-        HessienneI = numpy.matrix( HessienneI )
-        A = HessienneI.I
-        if min(A.shape) != max(A.shape):
-            raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
-        if (numpy.diag(A) < 0).any():
-            raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
-        if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
-            try:
-                L = numpy.linalg.cholesky( A )
-            except:
-                raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
-    if selfA._toStore("APosterioriCovariance"):
-        selfA.StoredVariables["APosterioriCovariance"].store( A )
-    if selfA._toStore("JacobianMatrixAtOptimum"):
-        selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
-    if selfA._toStore("KalmanGainAtOptimum"):
-        if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
-        elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
-        selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
-    #
-    # Calculs et/ou stockages supplémentaires
-    # ---------------------------------------
-    if selfA._toStore("Innovation") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("MahalanobisConsistency") or \
-        selfA._toStore("OMB"):
-        d  = Y - HXb
-    if selfA._toStore("Innovation"):
-        selfA.StoredVariables["Innovation"].store( numpy.ravel(d) )
-    if selfA._toStore("BMA"):
-        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
-    if selfA._toStore("OMA"):
-        selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
-    if selfA._toStore("OMB"):
-        selfA.StoredVariables["OMB"].store( numpy.ravel(d) )
-    if selfA._toStore("SigmaObs2"):
-        TraceR = R.trace(Y.size)
-        selfA.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
-    if selfA._toStore("MahalanobisConsistency"):
-        selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
-    if selfA._toStore("SimulationQuantiles"):
-        nech = selfA._parameters["NumberOfSamplesForQuantiles"]
-        HXa  = numpy.matrix(numpy.ravel( HXa )).T
-        EXr  = None
-        YfQ  = None
-        for i in range(nech):
-            if selfA._parameters["SimulationForQuantiles"] == "Linear":
-                dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
-                dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
-                Yr = HXa + dYr
-                if selfA._toStore("SampledStateForQuantiles"): Xr = Xa+dXr
-            elif selfA._parameters["SimulationForQuantiles"] == "NonLinear":
-                Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
-                Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
-            if YfQ is None:
-                YfQ = Yr
-                if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.ravel(Xr)
-            else:
-                YfQ = numpy.hstack((YfQ,Yr))
-                if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.vstack((EXr,numpy.ravel(Xr)))
-        YfQ.sort(axis=-1)
-        YQ = None
-        for quantile in selfA._parameters["Quantiles"]:
-            if not (0. <= float(quantile) <= 1.): continue
-            indice = int(nech * float(quantile) - 1./nech)
-            if YQ is None: YQ = YfQ[:,indice]
-            else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
-        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
-        if selfA._toStore("SampledStateForQuantiles"):
-            selfA.StoredVariables["SampledStateForQuantiles"].store( EXr.T )
-    if selfA._toStore("SimulatedObservationAtBackground"):
-        selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
-    if selfA._toStore("SimulatedObservationAtOptimum"):
-        selfA.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
-    #
-    return 0
-
-# ==============================================================================
-def mlef(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="MLEF13",
-    BnotT=False, _epsilon=1.e-3, _e=1.e-7, _jmax=15000):
-    """
-    Maximum Likelihood Ensemble Filter
-    """
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA._parameters["StoreInternalVariables"] = True
-    #
-    # Opérateurs
-    # ----------
-    H = HO["Direct"].appliedControledFormTo
-    #
-    if selfA._parameters["EstimationOf"] == "State":
-        M = EM["Direct"].appliedControledFormTo
-    #
-    if CM is not None and "Tangent" in CM and U is not None:
-        Cm = CM["Tangent"].asMatrix(Xb)
-    else:
-        Cm = None
-    #
-    # Nombre de pas identique au nombre de pas d'observations
-    # -------------------------------------------------------
-    if hasattr(Y,"stepnumber"):
-        duration = Y.stepnumber()
-        __p = numpy.cumprod(Y.shape())[-1]
-    else:
-        duration = 2
-        __p = numpy.array(Y).size
-    #
-    # Précalcul des inversions de B et R
-    # ----------------------------------
-    if selfA._parameters["StoreInternalVariables"] \
-        or selfA._toStore("CostFunctionJ") \
-        or selfA._toStore("CostFunctionJb") \
-        or selfA._toStore("CostFunctionJo") \
-        or selfA._toStore("CurrentOptimum") \
-        or selfA._toStore("APosterioriCovariance"):
-        BI = B.getI()
-    RI = R.getI()
-    #
-    # Initialisation
-    # --------------
-    __n = Xb.size
-    __m = selfA._parameters["NumberOfMembers"]
-    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
-    else:                         Pn = B
-    if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
-    else:                         Rn = R
-    Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
-    #
-    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
-        selfA.StoredVariables["Analysis"].store( Xb )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-            covarianceXa = Pn
-    #
-    previousJMinimum = numpy.finfo(float).max
-    #
-    for step in range(duration-1):
-        if hasattr(Y,"store"):
-            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
-        else:
-            Ynpu = numpy.ravel( Y ).reshape((__p,1))
-        #
-        if U is not None:
-            if hasattr(U,"store") and len(U)>1:
-                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
-            elif hasattr(U,"store") and len(U)==1:
-                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
-            else:
-                Un = numpy.asmatrix(numpy.ravel( U )).T
-        else:
-            Un = None
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
-            EMX = M( [(Xn[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-            Xn_predicted = EnsemblePerturbationWithGivenCovariance( EMX, Q )
-            if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
-                Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
-                Xn_predicted = Xn_predicted + Cm * Un
-        elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
-            # --- > Par principe, M = Id, Q = 0
-            Xn_predicted = Xn
-        #
-        #--------------------------
-        if VariantM == "MLEF13":
-            Xfm = numpy.ravel(Xn_predicted.mean(axis=1, dtype=mfp).astype('float'))
-            EaX = EnsembleOfAnomalies( Xn_predicted, Xfm, 1./math.sqrt(__m-1) )
-            Ua  = numpy.identity(__m)
-            __j = 0
-            Deltaw = 1
-            if not BnotT:
-                Ta  = numpy.identity(__m)
-            vw  = numpy.zeros(__m)
-            while numpy.linalg.norm(Deltaw) >= _e and __j <= _jmax:
-                vx1 = (Xfm + EaX @ vw).reshape((__n,1))
-                #
-                if BnotT:
-                    E1 = vx1 + _epsilon * EaX
-                else:
-                    E1 = vx1 + math.sqrt(__m-1) * EaX @ Ta
-                #
-                HE2 = H( [(E1[:,i,numpy.newaxis], Un) for i in range(__m)],
-                    argsAsSerie = True,
-                    returnSerieAsArrayMatrix = True )
-                vy2 = HE2.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
-                #
-                if BnotT:
-                    EaY = (HE2 - vy2) / _epsilon
-                else:
-                    EaY = ( (HE2 - vy2) @ numpy.linalg.inv(Ta) ) / math.sqrt(__m-1)
-                #
-                GradJ = numpy.ravel(vw[:,None] - EaY.transpose() @ (RI * ( Ynpu - vy2 )))
-                mH = numpy.identity(__m) + EaY.transpose() @ (RI * EaY)
-                Deltaw = - numpy.linalg.solve(mH,GradJ)
-                #
-                vw = vw + Deltaw
-                #
-                if not BnotT:
-                    Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
-                #
-                __j = __j + 1
-            #
-            if BnotT:
-                Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
-            #
-            Xn = vx1 + math.sqrt(__m-1) * EaX @ Ta @ Ua
-        #--------------------------
-        else:
-            raise ValueError("VariantM has to be chosen in the authorized methods list.")
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
-        #--------------------------
-        #
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("APosterioriCovariance") \
-            or selfA._toStore("InnovationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
-            _Innovation = Ynpu - _HXa
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        # ---> avec analysis
-        selfA.StoredVariables["Analysis"].store( Xa )
-        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
-        if selfA._toStore("InnovationAtCurrentAnalysis"):
-            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
-        # ---> avec current state
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CurrentState"):
-            selfA.StoredVariables["CurrentState"].store( Xn )
-        if selfA._toStore("ForecastState"):
-            selfA.StoredVariables["ForecastState"].store( EMX )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( EMX - Xa )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( - HE2 + Ynpu )
-        if selfA._toStore("SimulatedObservationAtCurrentState") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HE2 )
-        # ---> autres
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("CurrentOptimum") \
-            or selfA._toStore("APosterioriCovariance"):
-            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
-            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-            J   = Jb + Jo
-            selfA.StoredVariables["CostFunctionJb"].store( Jb )
-            selfA.StoredVariables["CostFunctionJo"].store( Jo )
-            selfA.StoredVariables["CostFunctionJ" ].store( J )
-            #
-            if selfA._toStore("IndexOfOptimum") \
-                or selfA._toStore("CurrentOptimum") \
-                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
-                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-            if selfA._toStore("IndexOfOptimum"):
-                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-            if selfA._toStore("CurrentOptimum"):
-                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
-            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
-            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
-        if selfA._parameters["EstimationOf"] == "Parameters" \
-            and J < previousJMinimum:
-            previousJMinimum    = J
-            XaMin               = Xa
-            if selfA._toStore("APosterioriCovariance"):
-                covarianceXaMin = Pn
-    #
-    # Stockage final supplémentaire de l'optimum en estimation de paramètres
-    # ----------------------------------------------------------------------
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        selfA.StoredVariables["Analysis"].store( XaMin )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
-    #
-    return 0
+def Apply3DVarRecentringOnEnsemble(__EnXn, __EnXf, __Ynpu, __HO, __R, __B, __Betaf):
+    "Recentre l'ensemble Xn autour de l'analyse 3DVAR"
+    #
+    Xf = EnsembleMean( __EnXf )
+    Pf = Covariance( asCovariance=EnsembleErrorCovariance(__EnXf) )
+    Pf = (1 - __Betaf) * __B.asfullmatrix(Xf.size) + __Betaf * Pf
+    #
+    selfB = PartialAlgorithm("3DVAR")
+    selfB._parameters["Minimizer"] = "LBFGSB"
+    selfB._parameters["MaximumNumberOfSteps"] = 15000
+    selfB._parameters["CostDecrementTolerance"] = 1.e-7
+    selfB._parameters["ProjectedGradientTolerance"] = -1
+    selfB._parameters["GradientNormTolerance"] = 1.e-05
+    selfB._parameters["StoreInternalVariables"] = False
+    selfB._parameters["optiprint"] = -1
+    selfB._parameters["optdisp"] = 0
+    selfB._parameters["Bounds"] = None
+    selfB._parameters["InitializationPoint"] = Xf
+    from daAlgorithms.Atoms import std3dvar
+    std3dvar.std3dvar(selfB, Xf, __Ynpu, None, __HO, None, __R, Pf)
+    Xa = selfB.get("Analysis")[-1].reshape((-1,1))
+    del selfB
+    #
+    return Xa + EnsembleOfAnomalies( __EnXn )
 
 # ==============================================================================
-def mmqr(
-        func     = None,
-        x0       = None,
-        fprime   = None,
-        bounds   = None,
-        quantile = 0.5,
-        maxfun   = 15000,
-        toler    = 1.e-06,
-        y        = None,
+def multiXOsteps(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, oneCycle,
+        __CovForecast = False, __LinEvolution = False,
         ):
     """
-    Implémentation informatique de l'algorithme MMQR, basée sur la publication :
-    David R. Hunter, Kenneth Lange, "Quantile Regression via an MM Algorithm",
-    Journal of Computational and Graphical Statistics, 9, 1, pp.60-77, 2000.
-    """
-    #
-    # Recuperation des donnees et informations initiales
-    # --------------------------------------------------
-    variables = numpy.ravel( x0 )
-    mesures   = numpy.ravel( y )
-    increment = sys.float_info[0]
-    p         = variables.size
-    n         = mesures.size
-    quantile  = float(quantile)
-    #
-    # Calcul des parametres du MM
-    # ---------------------------
-    tn      = float(toler) / n
-    e0      = -tn / math.log(tn)
-    epsilon = (e0-tn)/(1+math.log(e0))
-    #
-    # Calculs d'initialisation
-    # ------------------------
-    residus  = mesures - numpy.ravel( func( variables ) )
-    poids    = 1./(epsilon+numpy.abs(residus))
-    veps     = 1. - 2. * quantile - residus * poids
-    lastsurrogate = -numpy.sum(residus*veps) - (1.-2.*quantile)*numpy.sum(residus)
-    iteration = 0
-    #
-    # Recherche iterative
-    # -------------------
-    while (increment > toler) and (iteration < maxfun) :
-        iteration += 1
-        #
-        Derivees  = numpy.array(fprime(variables))
-        Derivees  = Derivees.reshape(n,p) # Necessaire pour remettre en place la matrice si elle passe par des tuyaux YACS
-        DeriveesT = Derivees.transpose()
-        M         =   numpy.dot( DeriveesT , (numpy.array(numpy.matrix(p*[poids,]).T)*Derivees) )
-        SM        =   numpy.transpose(numpy.dot( DeriveesT , veps ))
-        step      = - numpy.linalg.lstsq( M, SM, rcond=-1 )[0]
-        #
-        variables = variables + step
-        if bounds is not None:
-            # Attention : boucle infinie à éviter si un intervalle est trop petit
-            while( (variables < numpy.ravel(numpy.asmatrix(bounds)[:,0])).any() or (variables > numpy.ravel(numpy.asmatrix(bounds)[:,1])).any() ):
-                step      = step/2.
-                variables = variables - step
-        residus   = mesures - numpy.ravel( func(variables) )
-        surrogate = numpy.sum(residus**2 * poids) + (4.*quantile-2.) * numpy.sum(residus)
-        #
-        while ( (surrogate > lastsurrogate) and ( max(list(numpy.abs(step))) > 1.e-16 ) ) :
-            step      = step/2.
-            variables = variables - step
-            residus   = mesures - numpy.ravel( func(variables) )
-            surrogate = numpy.sum(residus**2 * poids) + (4.*quantile-2.) * numpy.sum(residus)
-        #
-        increment     = lastsurrogate-surrogate
-        poids         = 1./(epsilon+numpy.abs(residus))
-        veps          = 1. - 2. * quantile - residus * poids
-        lastsurrogate = -numpy.sum(residus * veps) - (1.-2.*quantile)*numpy.sum(residus)
-    #
-    # Mesure d'écart
-    # --------------
-    Ecart = quantile * numpy.sum(residus) - numpy.sum( residus[residus<0] )
-    #
-    return variables, Ecart, [n,p,iteration,increment,0]
-
-# ==============================================================================
-def multi3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, oneCycle):
-    """
-    3DVAR multi-pas et multi-méthodes
+    Prévision multi-pas avec une correction par pas (multi-méthodes)
     """
     #
     # Initialisation
     # --------------
-    Xn = numpy.ravel(Xb).reshape((-1,1))
-    #
     if selfA._parameters["EstimationOf"] == "State":
-        M = EM["Direct"].appliedTo
-        #
         if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+            Xn = numpy.asarray(Xb)
+            if __CovForecast: Pn = B
             selfA.StoredVariables["Analysis"].store( Xn )
             if selfA._toStore("APosterioriCovariance"):
-                if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(Xn.size)
-                else:                         Pn = B
-                selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-            if selfA._toStore("ForecastState"):
-                selfA.StoredVariables["ForecastState"].store( Xn )
-    #
-    if hasattr(Y,"stepnumber"):
-        duration = Y.stepnumber()
-    else:
-        duration = 2
-    #
-    # Multi-pas
-    # ---------
-    for step in range(duration-1):
-        if hasattr(Y,"store"):
-            Ynpu = numpy.ravel( Y[step+1] ).reshape((-1,1))
-        else:
-            Ynpu = numpy.ravel( Y ).reshape((-1,1))
-        #
-        if selfA._parameters["EstimationOf"] == "State": # Forecast
-            Xn = selfA.StoredVariables["Analysis"][-1]
-            Xn_predicted = M( Xn )
-            if selfA._toStore("ForecastState"):
-                selfA.StoredVariables["ForecastState"].store( Xn_predicted )
-        elif selfA._parameters["EstimationOf"] == "Parameters": # No forecast
-            # --- > Par principe, M = Id, Q = 0
-            Xn_predicted = Xn
-        Xn_predicted = numpy.ravel(Xn_predicted).reshape((-1,1))
-        #
-        oneCycle(selfA, Xn_predicted, Ynpu, U, HO, None, None, R, B, None)
-    #
-    return 0
-
-# ==============================================================================
-def psas3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
-    """
-    3DVAR PSAS
-    """
-    #
-    # Initialisations
-    # ---------------
-    #
-    # Opérateurs
-    Hm = HO["Direct"].appliedTo
-    #
-    # Utilisation éventuelle d'un vecteur H(Xb) précalculé
-    if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
-        HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
-    else:
-        HXb = Hm( Xb )
-    HXb = numpy.asmatrix(numpy.ravel( HXb )).T
-    if Y.size != HXb.size:
-        raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
-    if max(Y.shape) != max(HXb.shape):
-        raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
-    #
-    if selfA._toStore("JacobianMatrixAtBackground"):
-        HtMb = HO["Tangent"].asMatrix(ValueForMethodForm = Xb)
-        HtMb = HtMb.reshape(Y.size,Xb.size) # ADAO & check shape
-        selfA.StoredVariables["JacobianMatrixAtBackground"].store( HtMb )
-    #
-    Ht = HO["Tangent"].asMatrix(Xb)
-    BHT = B * Ht.T
-    HBHTpR = R + Ht * BHT
-    Innovation = Y - HXb
-    #
-    # Point de démarrage de l'optimisation
-    Xini = numpy.zeros(Xb.shape)
-    #
-    # Définition de la fonction-coût
-    # ------------------------------
-    def CostFunction(w):
-        _W = numpy.asmatrix(numpy.ravel( w )).T
-        if selfA._parameters["StoreInternalVariables"] or \
-            selfA._toStore("CurrentState") or \
-            selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentState"].store( Xb + BHT * _W )
-        if selfA._toStore("SimulatedObservationAtCurrentState") or \
-            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( Hm( Xb + BHT * _W ) )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( Innovation )
-        #
-        Jb  = float( 0.5 * _W.T * HBHTpR * _W )
-        Jo  = float( - _W.T * Innovation )
-        J   = Jb + Jo
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
-        selfA.StoredVariables["CostFunctionJb"].store( Jb )
-        selfA.StoredVariables["CostFunctionJo"].store( Jo )
-        selfA.StoredVariables["CostFunctionJ" ].store( J )
-        if selfA._toStore("IndexOfOptimum") or \
-            selfA._toStore("CurrentOptimum") or \
-            selfA._toStore("CostFunctionJAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
-            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-        if selfA._toStore("IndexOfOptimum"):
-            selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-        if selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
-        if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
-        if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-        if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-        if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        return J
-    #
-    def GradientOfCostFunction(w):
-        _W = numpy.asmatrix(numpy.ravel( w )).T
-        GradJb  = HBHTpR * _W
-        GradJo  = - Innovation
-        GradJ   = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
-        return GradJ
-    #
-    # Minimisation de la fonctionnelle
-    # --------------------------------
-    nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
-    #
-    if selfA._parameters["Minimizer"] == "LBFGSB":
-        if "0.19" <= scipy.version.version <= "1.1.0":
-            import lbfgsbhlt as optimiseur
-        else:
-            import scipy.optimize as optimiseur
-        Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
-            factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            iprint      = selfA._parameters["optiprint"],
-            )
-        nfeval = Informations['funcalls']
-        rc     = Informations['warnflag']
-    elif selfA._parameters["Minimizer"] == "TNC":
-        Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"],
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            ftol        = selfA._parameters["CostDecrementTolerance"],
-            messages    = selfA._parameters["optmessages"],
-            )
-    elif selfA._parameters["Minimizer"] == "CG":
-        Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "NCG":
-        Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            avextol     = selfA._parameters["CostDecrementTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "BFGS":
-        Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    else:
-        raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
-    #
-    IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-    MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
-    #
-    # Correction pour pallier a un bug de TNC sur le retour du Minimum
-    # ----------------------------------------------------------------
-    if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
-        Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
-        Minimum = numpy.asmatrix(numpy.ravel( Minimum )).T
-    else:
-        Minimum = Xb + BHT * numpy.asmatrix(numpy.ravel( Minimum )).T
-    #
-    # Obtention de l'analyse
-    # ----------------------
-    Xa = Minimum
-    #
-    selfA.StoredVariables["Analysis"].store( Xa )
-    #
-    if selfA._toStore("OMA") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("SimulatedObservationAtOptimum"):
-        if selfA._toStore("SimulatedObservationAtCurrentState"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
-        elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
-        else:
-            HXa = Hm( Xa )
-    #
-    # Calcul de la covariance d'analyse
-    # ---------------------------------
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("JacobianMatrixAtOptimum") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
-        HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
-        HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles"):
-        BI = B.getI()
-        RI = R.getI()
-        HessienneI = []
-        nb = Xa.size
-        for i in range(nb):
-            _ee    = numpy.matrix(numpy.zeros(nb)).T
-            _ee[i] = 1.
-            _HtEE  = numpy.dot(HtM,_ee)
-            _HtEE  = numpy.asmatrix(numpy.ravel( _HtEE )).T
-            HessienneI.append( numpy.ravel( BI*_ee + HaM * (RI * _HtEE) ) )
-        HessienneI = numpy.matrix( HessienneI )
-        A = HessienneI.I
-        if min(A.shape) != max(A.shape):
-            raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
-        if (numpy.diag(A) < 0).any():
-            raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
-        if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
-            try:
-                L = numpy.linalg.cholesky( A )
-            except:
-                raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
-    if selfA._toStore("APosterioriCovariance"):
-        selfA.StoredVariables["APosterioriCovariance"].store( A )
-    if selfA._toStore("JacobianMatrixAtOptimum"):
-        selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
-    if selfA._toStore("KalmanGainAtOptimum"):
-        if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
-        elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
-        selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
-    #
-    # Calculs et/ou stockages supplémentaires
-    # ---------------------------------------
-    if selfA._toStore("Innovation") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("MahalanobisConsistency") or \
-        selfA._toStore("OMB"):
-        d  = Y - HXb
-    if selfA._toStore("Innovation"):
-        selfA.StoredVariables["Innovation"].store( numpy.ravel(d) )
-    if selfA._toStore("BMA"):
-        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
-    if selfA._toStore("OMA"):
-        selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
-    if selfA._toStore("OMB"):
-        selfA.StoredVariables["OMB"].store( numpy.ravel(d) )
-    if selfA._toStore("SigmaObs2"):
-        TraceR = R.trace(Y.size)
-        selfA.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
-    if selfA._toStore("MahalanobisConsistency"):
-        selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
-    if selfA._toStore("SimulationQuantiles"):
-        nech = selfA._parameters["NumberOfSamplesForQuantiles"]
-        HXa  = numpy.matrix(numpy.ravel( HXa )).T
-        EXr  = None
-        YfQ  = None
-        for i in range(nech):
-            if selfA._parameters["SimulationForQuantiles"] == "Linear":
-                dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
-                dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
-                Yr = HXa + dYr
-                if selfA._toStore("SampledStateForQuantiles"): Xr = Xa+dXr
-            elif selfA._parameters["SimulationForQuantiles"] == "NonLinear":
-                Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
-                Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
-            if YfQ is None:
-                YfQ = Yr
-                if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.ravel(Xr)
-            else:
-                YfQ = numpy.hstack((YfQ,Yr))
-                if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.vstack((EXr,numpy.ravel(Xr)))
-        YfQ.sort(axis=-1)
-        YQ = None
-        for quantile in selfA._parameters["Quantiles"]:
-            if not (0. <= float(quantile) <= 1.): continue
-            indice = int(nech * float(quantile) - 1./nech)
-            if YQ is None: YQ = YfQ[:,indice]
-            else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
-        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
-        if selfA._toStore("SampledStateForQuantiles"):
-            selfA.StoredVariables["SampledStateForQuantiles"].store( EXr.T )
-    if selfA._toStore("SimulatedObservationAtBackground"):
-        selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
-    if selfA._toStore("SimulatedObservationAtOptimum"):
-        selfA.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
-    #
-    return 0
-
-# ==============================================================================
-def senkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula"):
-    """
-    Stochastic EnKF
-    """
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA._parameters["StoreInternalVariables"] = True
-    #
-    # Opérateurs
-    H = HO["Direct"].appliedControledFormTo
-    #
-    if selfA._parameters["EstimationOf"] == "State":
-        M = EM["Direct"].appliedControledFormTo
-    #
-    if CM is not None and "Tangent" in CM and U is not None:
-        Cm = CM["Tangent"].asMatrix(Xb)
+                if hasattr(B,"asfullmatrix"):
+                    selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(Xn.size) )
+                else:
+                    selfA.StoredVariables["APosterioriCovariance"].store( B )
+            selfA._setInternalState("seed", numpy.random.get_state())
+        elif selfA._parameters["nextStep"]:
+            Xn = selfA._getInternalState("Xn")
+            if __CovForecast: Pn = selfA._getInternalState("Pn")
     else:
-        Cm = None
+        Xn = numpy.asarray(Xb)
+        if __CovForecast: Pn = B
     #
-    # Durée d'observation et tailles
     if hasattr(Y,"stepnumber"):
         duration = Y.stepnumber()
-        __p = numpy.cumprod(Y.shape())[-1]
     else:
         duration = 2
-        __p = numpy.array(Y).size
-    #
-    # Précalcul des inversions de B et R
-    if selfA._parameters["StoreInternalVariables"] \
-        or selfA._toStore("CostFunctionJ") \
-        or selfA._toStore("CostFunctionJb") \
-        or selfA._toStore("CostFunctionJo") \
-        or selfA._toStore("CurrentOptimum") \
-        or selfA._toStore("APosterioriCovariance"):
-        BI = B.getI()
-        RI = R.getI()
-    #
-    __n = Xb.size
-    __m = selfA._parameters["NumberOfMembers"]
-    #
-    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
-    else:                         Pn = B
-    if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
-    else:                         Rn = R
-    Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
-    #
-    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
-        selfA.StoredVariables["Analysis"].store( Xb )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-            covarianceXa = Pn
-    #
-    previousJMinimum = numpy.finfo(float).max
     #
+    # Multi-steps
+    # -----------
     for step in range(duration-1):
+        selfA.StoredVariables["CurrentStepNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        #
         if hasattr(Y,"store"):
-            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+            Ynpu = numpy.asarray( Y[step+1] ).reshape((-1,1))
         else:
-            Ynpu = numpy.ravel( Y ).reshape((__p,1))
+            Ynpu = numpy.asarray( Y ).reshape((-1,1))
         #
         if U is not None:
             if hasattr(U,"store") and len(U)>1:
-                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
+                Un = numpy.asarray( U[step] ).reshape((-1,1))
             elif hasattr(U,"store") and len(U)==1:
-                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+                Un = numpy.asarray( U[0] ).reshape((-1,1))
             else:
-                Un = numpy.asmatrix(numpy.ravel( U )).T
+                Un = numpy.asarray( U ).reshape((-1,1))
         else:
             Un = None
         #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
-            EMX = M( [(Xn[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-            Xn_predicted = EnsemblePerturbationWithGivenCovariance( EMX, Q )
-            HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-            if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
-                Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
-                Xn_predicted = Xn_predicted + Cm * Un
-        elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
+        # Predict (Time Update)
+        # ---------------------
+        if selfA._parameters["EstimationOf"] == "State":
+            if __CovForecast or __LinEvolution:
+                Mt = EM["Tangent"].asMatrix(Xn)
+                Mt = Mt.reshape(Xn.size,Xn.size) # ADAO & check shape
+            if __CovForecast:
+                Ma = EM["Adjoint"].asMatrix(Xn)
+                Ma = Ma.reshape(Xn.size,Xn.size) # ADAO & check shape
+                Pn_predicted = Q + Mt @ (Pn @ Ma)
+            if __LinEvolution:
+                Xn_predicted = Mt @ Xn
+            else:
+                M  = EM["Direct"].appliedControledFormTo
+                Xn_predicted = M( (Xn, Un) )
+            if CM is not None and "Tangent" in CM and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+                Cm = CM["Tangent"].asMatrix(Xn_predicted)
+                Cm = Cm.reshape(Xn.size,Un.size) # ADAO & check shape
+                Xn_predicted = Xn_predicted + (Cm @ Un).reshape((-1,1))
+        elif selfA._parameters["EstimationOf"] == "Parameters": # No forecast
             # --- > Par principe, M = Id, Q = 0
             Xn_predicted = Xn
-            HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-        #
-        # Mean of forecast and observation of forecast
-        Xfm  = Xn_predicted.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
-        Hfm  = HX_predicted.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
-        #
-        #--------------------------
-        if VariantM == "KalmanFilterFormula05":
-            PfHT, HPfHT = 0., 0.
-            for i in range(__m):
-                Exfi = Xn_predicted[:,i].reshape((__n,1)) - Xfm
-                Eyfi = HX_predicted[:,i].reshape((__p,1)) - Hfm
-                PfHT  += Exfi * Eyfi.T
-                HPfHT += Eyfi * Eyfi.T
-            PfHT  = (1./(__m-1)) * PfHT
-            HPfHT = (1./(__m-1)) * HPfHT
-            Kn     = PfHT * ( R + HPfHT ).I
-            del PfHT, HPfHT
-            #
-            for i in range(__m):
-                ri = numpy.random.multivariate_normal(numpy.zeros(__p), Rn)
-                Xn[:,i] = numpy.ravel(Xn_predicted[:,i]) + Kn @ (numpy.ravel(Ynpu) + ri - HX_predicted[:,i])
-        #--------------------------
-        elif VariantM == "KalmanFilterFormula16":
-            EpY   = EnsembleOfCenteredPerturbations(Ynpu, Rn, __m)
-            EpYm  = EpY.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
-            #
-            EaX   = EnsembleOfAnomalies( Xn_predicted ) / math.sqrt(__m-1)
-            EaY = (HX_predicted - Hfm - EpY + EpYm) / math.sqrt(__m-1)
-            #
-            Kn = EaX @ EaY.T @ numpy.linalg.inv( EaY @ EaY.T)
-            #
-            for i in range(__m):
-                Xn[:,i] = numpy.ravel(Xn_predicted[:,i]) + Kn @ (numpy.ravel(EpY[:,i]) - HX_predicted[:,i])
-        #--------------------------
-        else:
-            raise ValueError("VariantM has to be chosen in the authorized methods list.")
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
-        #--------------------------
-        #
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("APosterioriCovariance") \
-            or selfA._toStore("InnovationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
-            _Innovation = Ynpu - _HXa
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        # ---> avec analysis
-        selfA.StoredVariables["Analysis"].store( Xa )
-        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
-        if selfA._toStore("InnovationAtCurrentAnalysis"):
-            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
-        # ---> avec current state
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CurrentState"):
-            selfA.StoredVariables["CurrentState"].store( Xn )
+            if __CovForecast: Pn_predicted = Pn
+        Xn_predicted = numpy.asarray(Xn_predicted).reshape((-1,1))
         if selfA._toStore("ForecastState"):
-            selfA.StoredVariables["ForecastState"].store( EMX )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( EMX - Xa )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( - HX_predicted + Ynpu )
-        if selfA._toStore("SimulatedObservationAtCurrentState") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
-        # ---> autres
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("CurrentOptimum") \
-            or selfA._toStore("APosterioriCovariance"):
-            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
-            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-            J   = Jb + Jo
-            selfA.StoredVariables["CostFunctionJb"].store( Jb )
-            selfA.StoredVariables["CostFunctionJo"].store( Jo )
-            selfA.StoredVariables["CostFunctionJ" ].store( J )
-            #
-            if selfA._toStore("IndexOfOptimum") \
-                or selfA._toStore("CurrentOptimum") \
-                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
-                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-            if selfA._toStore("IndexOfOptimum"):
-                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-            if selfA._toStore("CurrentOptimum"):
-                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
-            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
-            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
-        if selfA._parameters["EstimationOf"] == "Parameters" \
-            and J < previousJMinimum:
-            previousJMinimum    = J
-            XaMin               = Xa
-            if selfA._toStore("APosterioriCovariance"):
-                covarianceXaMin = Pn
-    #
-    # Stockage final supplémentaire de l'optimum en estimation de paramètres
-    # ----------------------------------------------------------------------
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        selfA.StoredVariables["Analysis"].store( XaMin )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
-    #
-    return 0
-
-# ==============================================================================
-def std3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
-    """
-    3DVAR
-    """
-    #
-    # Initialisations
-    # ---------------
-    #
-    # Opérateurs
-    Hm = HO["Direct"].appliedTo
-    Ha = HO["Adjoint"].appliedInXTo
-    #
-    # Utilisation éventuelle d'un vecteur H(Xb) précalculé
-    if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
-        HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
-    else:
-        HXb = Hm( Xb )
-    HXb = numpy.asmatrix(numpy.ravel( HXb )).T
-    if Y.size != HXb.size:
-        raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
-    if max(Y.shape) != max(HXb.shape):
-        raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
-    #
-    if selfA._toStore("JacobianMatrixAtBackground"):
-        HtMb = HO["Tangent"].asMatrix(ValueForMethodForm = Xb)
-        HtMb = HtMb.reshape(Y.size,Xb.size) # ADAO & check shape
-        selfA.StoredVariables["JacobianMatrixAtBackground"].store( HtMb )
-    #
-    # Précalcul des inversions de B et R
-    BI = B.getI()
-    RI = R.getI()
-    #
-    # Point de démarrage de l'optimisation
-    Xini = selfA._parameters["InitializationPoint"]
-    #
-    # Définition de la fonction-coût
-    # ------------------------------
-    def CostFunction(x):
-        _X  = numpy.asmatrix(numpy.ravel( x )).T
-        if selfA._parameters["StoreInternalVariables"] or \
-            selfA._toStore("CurrentState") or \
-            selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentState"].store( _X )
-        _HX = Hm( _X )
-        _HX = numpy.asmatrix(numpy.ravel( _HX )).T
-        _Innovation = Y - _HX
-        if selfA._toStore("SimulatedObservationAtCurrentState") or \
-            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
-        #
-        Jb  = float( 0.5 * (_X - Xb).T * BI * (_X - Xb) )
-        Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-        J   = Jb + Jo
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
-        selfA.StoredVariables["CostFunctionJb"].store( Jb )
-        selfA.StoredVariables["CostFunctionJo"].store( Jo )
-        selfA.StoredVariables["CostFunctionJ" ].store( J )
-        if selfA._toStore("IndexOfOptimum") or \
-            selfA._toStore("CurrentOptimum") or \
-            selfA._toStore("CostFunctionJAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
-            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-        if selfA._toStore("IndexOfOptimum"):
-            selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-        if selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
-        if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
-        if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-        if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-        if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        return J
-    #
-    def GradientOfCostFunction(x):
-        _X      = numpy.asmatrix(numpy.ravel( x )).T
-        _HX     = Hm( _X )
-        _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
-        GradJb  = BI * (_X - Xb)
-        GradJo  = - Ha( (_X, RI * (Y - _HX)) )
-        GradJ   = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
-        return GradJ
-    #
-    # Minimisation de la fonctionnelle
-    # --------------------------------
-    nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
-    #
-    if selfA._parameters["Minimizer"] == "LBFGSB":
-        if "0.19" <= scipy.version.version <= "1.1.0":
-            import lbfgsbhlt as optimiseur
-        else:
-            import scipy.optimize as optimiseur
-        Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
-            factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            iprint      = selfA._parameters["optiprint"],
-            )
-        nfeval = Informations['funcalls']
-        rc     = Informations['warnflag']
-    elif selfA._parameters["Minimizer"] == "TNC":
-        Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"],
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            ftol        = selfA._parameters["CostDecrementTolerance"],
-            messages    = selfA._parameters["optmessages"],
-            )
-    elif selfA._parameters["Minimizer"] == "CG":
-        Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "NCG":
-        Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            avextol     = selfA._parameters["CostDecrementTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "BFGS":
-        Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    else:
-        raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
-    #
-    IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-    MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
-    #
-    # Correction pour pallier a un bug de TNC sur le retour du Minimum
-    # ----------------------------------------------------------------
-    if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
-        Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
-    #
-    # Obtention de l'analyse
-    # ----------------------
-    Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
-    #
-    selfA.StoredVariables["Analysis"].store( Xa )
-    #
-    if selfA._toStore("OMA") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("SimulatedObservationAtOptimum"):
-        if selfA._toStore("SimulatedObservationAtCurrentState"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
-        elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
-        else:
-            HXa = Hm( Xa )
-    #
-    # Calcul de la covariance d'analyse
-    # ---------------------------------
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("JacobianMatrixAtOptimum") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
-        HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
-        HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles"):
-        HessienneI = []
-        nb = Xa.size
-        for i in range(nb):
-            _ee    = numpy.matrix(numpy.zeros(nb)).T
-            _ee[i] = 1.
-            _HtEE  = numpy.dot(HtM,_ee)
-            _HtEE  = numpy.asmatrix(numpy.ravel( _HtEE )).T
-            HessienneI.append( numpy.ravel( BI*_ee + HaM * (RI * _HtEE) ) )
-        HessienneI = numpy.matrix( HessienneI )
-        A = HessienneI.I
-        if min(A.shape) != max(A.shape):
-            raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
-        if (numpy.diag(A) < 0).any():
-            raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
-        if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
-            try:
-                L = numpy.linalg.cholesky( A )
-            except:
-                raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
-    if selfA._toStore("APosterioriCovariance"):
-        selfA.StoredVariables["APosterioriCovariance"].store( A )
-    if selfA._toStore("JacobianMatrixAtOptimum"):
-        selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
-    if selfA._toStore("KalmanGainAtOptimum"):
-        if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
-        elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
-        selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
-    #
-    # Calculs et/ou stockages supplémentaires
-    # ---------------------------------------
-    if selfA._toStore("Innovation") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("MahalanobisConsistency") or \
-        selfA._toStore("OMB"):
-        d  = Y - HXb
-    if selfA._toStore("Innovation"):
-        selfA.StoredVariables["Innovation"].store( numpy.ravel(d) )
-    if selfA._toStore("BMA"):
-        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
-    if selfA._toStore("OMA"):
-        selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
-    if selfA._toStore("OMB"):
-        selfA.StoredVariables["OMB"].store( numpy.ravel(d) )
-    if selfA._toStore("SigmaObs2"):
-        TraceR = R.trace(Y.size)
-        selfA.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
-    if selfA._toStore("MahalanobisConsistency"):
-        selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
-    if selfA._toStore("SimulationQuantiles"):
-        QuantilesEstimations(selfA, A, Xa, HXa, Hm, HtM)
-    if selfA._toStore("SimulatedObservationAtBackground"):
-        selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
-    if selfA._toStore("SimulatedObservationAtOptimum"):
-        selfA.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
-    #
-    return 0
-
-# ==============================================================================
-def std4dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
-    """
-    4DVAR
-    """
-    #
-    # Initialisations
-    # ---------------
-    #
-    # Opérateurs
-    Hm = HO["Direct"].appliedControledFormTo
-    Mm = EM["Direct"].appliedControledFormTo
-    #
-    if CM is not None and "Tangent" in CM and U is not None:
-        Cm = CM["Tangent"].asMatrix(Xb)
-    else:
-        Cm = None
-    #
-    def Un(_step):
-        if U is not None:
-            if hasattr(U,"store") and 1<=_step<len(U) :
-                _Un = numpy.asmatrix(numpy.ravel( U[_step] )).T
-            elif hasattr(U,"store") and len(U)==1:
-                _Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+            selfA.StoredVariables["ForecastState"].store( Xn_predicted )
+        if __CovForecast:
+            if hasattr(Pn_predicted,"asfullmatrix"):
+                Pn_predicted = Pn_predicted.asfullmatrix(Xn.size)
             else:
-                _Un = numpy.asmatrix(numpy.ravel( U )).T
-        else:
-            _Un = None
-        return _Un
-    def CmUn(_xn,_un):
-        if Cm is not None and _un is not None: # Attention : si Cm est aussi dans M, doublon !
-            _Cm   = Cm.reshape(_xn.size,_un.size) # ADAO & check shape
-            _CmUn = _Cm * _un
-        else:
-            _CmUn = 0.
-        return _CmUn
-    #
-    # Remarque : les observations sont exploitées à partir du pas de temps
-    # numéro 1, et sont utilisées dans Yo comme rangées selon ces indices.
-    # Donc le pas 0 n'est pas utilisé puisque la première étape commence
-    # avec l'observation du pas 1.
-    #
-    # Nombre de pas identique au nombre de pas d'observations
-    if hasattr(Y,"stepnumber"):
-        duration = Y.stepnumber()
-    else:
-        duration = 2
-    #
-    # Précalcul des inversions de B et R
-    BI = B.getI()
-    RI = R.getI()
-    #
-    # Point de démarrage de l'optimisation
-    Xini = selfA._parameters["InitializationPoint"]
-    #
-    # Définition de la fonction-coût
-    # ------------------------------
-    selfA.DirectCalculation = [None,] # Le pas 0 n'est pas observé
-    selfA.DirectInnovation  = [None,] # Le pas 0 n'est pas observé
-    def CostFunction(x):
-        _X  = numpy.asmatrix(numpy.ravel( x )).T
-        if selfA._parameters["StoreInternalVariables"] or \
-            selfA._toStore("CurrentState") or \
-            selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentState"].store( _X )
-        Jb  = float( 0.5 * (_X - Xb).T * BI * (_X - Xb) )
-        selfA.DirectCalculation = [None,]
-        selfA.DirectInnovation  = [None,]
-        Jo  = 0.
-        _Xn = _X
-        for step in range(0,duration-1):
-            if hasattr(Y,"store"):
-                _Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T
-            else:
-                _Ynpu = numpy.asmatrix(numpy.ravel( Y )).T
-            _Un = Un(step)
-            #
-            # Etape d'évolution
-            if selfA._parameters["EstimationOf"] == "State":
-                _Xn = Mm( (_Xn, _Un) ) + CmUn(_Xn, _Un)
-            elif selfA._parameters["EstimationOf"] == "Parameters":
-                pass
-            #
-            if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
-                _Xn = numpy.max(numpy.hstack((_Xn,numpy.asmatrix(selfA._parameters["Bounds"])[:,0])),axis=1)
-                _Xn = numpy.min(numpy.hstack((_Xn,numpy.asmatrix(selfA._parameters["Bounds"])[:,1])),axis=1)
-            #
-            # Etape de différence aux observations
-            if selfA._parameters["EstimationOf"] == "State":
-                _YmHMX = _Ynpu - numpy.asmatrix(numpy.ravel( Hm( (_Xn, None) ) )).T
-            elif selfA._parameters["EstimationOf"] == "Parameters":
-                _YmHMX = _Ynpu - numpy.asmatrix(numpy.ravel( Hm( (_Xn, _Un) ) )).T - CmUn(_Xn, _Un)
-            #
-            # Stockage de l'état
-            selfA.DirectCalculation.append( _Xn )
-            selfA.DirectInnovation.append( _YmHMX )
-            #
-            # Ajout dans la fonctionnelle d'observation
-            Jo = Jo + 0.5 * float( _YmHMX.T * RI * _YmHMX )
-        J = Jb + Jo
+                Pn_predicted = numpy.asarray(Pn_predicted).reshape((Xn.size,Xn.size))
+            if selfA._toStore("ForecastCovariance"):
+                selfA.StoredVariables["ForecastCovariance"].store( Pn_predicted )
         #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
-        selfA.StoredVariables["CostFunctionJb"].store( Jb )
-        selfA.StoredVariables["CostFunctionJo"].store( Jo )
-        selfA.StoredVariables["CostFunctionJ" ].store( J )
-        if selfA._toStore("IndexOfOptimum") or \
-            selfA._toStore("CurrentOptimum") or \
-            selfA._toStore("CostFunctionJAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-            IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-        if selfA._toStore("IndexOfOptimum"):
-            selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-        if selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
-        if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-        if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-        return J
-    #
-    def GradientOfCostFunction(x):
-        _X      = numpy.asmatrix(numpy.ravel( x )).T
-        GradJb  = BI * (_X - Xb)
-        GradJo  = 0.
-        for step in range(duration-1,0,-1):
-            # Étape de récupération du dernier stockage de l'évolution
-            _Xn = selfA.DirectCalculation.pop()
-            # Étape de récupération du dernier stockage de l'innovation
-            _YmHMX = selfA.DirectInnovation.pop()
-            # Calcul des adjoints
-            Ha = HO["Adjoint"].asMatrix(ValueForMethodForm = _Xn)
-            Ha = Ha.reshape(_Xn.size,_YmHMX.size) # ADAO & check shape
-            Ma = EM["Adjoint"].asMatrix(ValueForMethodForm = _Xn)
-            Ma = Ma.reshape(_Xn.size,_Xn.size) # ADAO & check shape
-            # Calcul du gradient par état adjoint
-            GradJo = GradJo + Ha * RI * _YmHMX # Équivaut pour Ha linéaire à : Ha( (_Xn, RI * _YmHMX) )
-            GradJo = Ma * GradJo               # Équivaut pour Ma linéaire à : Ma( (_Xn, GradJo) )
-        GradJ = numpy.ravel( GradJb ) - numpy.ravel( GradJo )
-        return GradJ
-    #
-    # Minimisation de la fonctionnelle
-    # --------------------------------
-    nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
-    #
-    if selfA._parameters["Minimizer"] == "LBFGSB":
-        if "0.19" <= scipy.version.version <= "1.1.0":
-            import lbfgsbhlt as optimiseur
+        # Correct (Measurement Update)
+        # ----------------------------
+        if __CovForecast:
+            oneCycle(selfA, Xn_predicted, Ynpu, Un, HO, CM, R, Pn_predicted, True)
         else:
-            import scipy.optimize as optimiseur
-        Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
-            factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            iprint      = selfA._parameters["optiprint"],
-            )
-        nfeval = Informations['funcalls']
-        rc     = Informations['warnflag']
-    elif selfA._parameters["Minimizer"] == "TNC":
-        Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"],
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            ftol        = selfA._parameters["CostDecrementTolerance"],
-            messages    = selfA._parameters["optmessages"],
-            )
-    elif selfA._parameters["Minimizer"] == "CG":
-        Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "NCG":
-        Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            avextol     = selfA._parameters["CostDecrementTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "BFGS":
-        Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    else:
-        raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
-    #
-    IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-    MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
-    #
-    # Correction pour pallier a un bug de TNC sur le retour du Minimum
-    # ----------------------------------------------------------------
-    if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
-        Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
-    #
-    # Obtention de l'analyse
-    # ----------------------
-    Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
-    #
-    selfA.StoredVariables["Analysis"].store( Xa )
-    #
-    # Calculs et/ou stockages supplémentaires
-    # ---------------------------------------
-    if selfA._toStore("BMA"):
-        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
-    #
-    return 0
-
-# ==============================================================================
-def van3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
-    """
-    3DVAR variational analysis with no inversion of B
-    """
-    #
-    # Initialisations
-    # ---------------
-    #
-    # Opérateurs
-    Hm = HO["Direct"].appliedTo
-    Ha = HO["Adjoint"].appliedInXTo
-    #
-    # Précalcul des inversions de B et R
-    BT = B.getT()
-    RI = R.getI()
-    #
-    # Point de démarrage de l'optimisation
-    Xini = numpy.zeros(Xb.shape)
-    #
-    # Définition de la fonction-coût
-    # ------------------------------
-    def CostFunction(v):
-        _V = numpy.asmatrix(numpy.ravel( v )).T
-        _X = Xb + B * _V
-        if selfA._parameters["StoreInternalVariables"] or \
-            selfA._toStore("CurrentState") or \
-            selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentState"].store( _X )
-        _HX = Hm( _X )
-        _HX = numpy.asmatrix(numpy.ravel( _HX )).T
-        _Innovation = Y - _HX
-        if selfA._toStore("SimulatedObservationAtCurrentState") or \
-            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
-        #
-        Jb  = float( 0.5 * _V.T * BT * _V )
-        Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-        J   = Jb + Jo
+            oneCycle(selfA, Xn_predicted, Ynpu, Un, HO, CM, R, B, True)
         #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
-        selfA.StoredVariables["CostFunctionJb"].store( Jb )
-        selfA.StoredVariables["CostFunctionJo"].store( Jo )
-        selfA.StoredVariables["CostFunctionJ" ].store( J )
-        if selfA._toStore("IndexOfOptimum") or \
-            selfA._toStore("CurrentOptimum") or \
-            selfA._toStore("CostFunctionJAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
-            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-        if selfA._toStore("IndexOfOptimum"):
-            selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-        if selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
-        if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
-        if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-        if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-        if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        return J
-    #
-    def GradientOfCostFunction(v):
-        _V = numpy.asmatrix(numpy.ravel( v )).T
-        _X = Xb + B * _V
-        _HX     = Hm( _X )
-        _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
-        GradJb  = BT * _V
-        GradJo  = - Ha( (_X, RI * (Y - _HX)) )
-        GradJ   = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
-        return GradJ
-    #
-    # Minimisation de la fonctionnelle
-    # --------------------------------
-    nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
-    #
-    if selfA._parameters["Minimizer"] == "LBFGSB":
-        if "0.19" <= scipy.version.version <= "1.1.0":
-            import lbfgsbhlt as optimiseur
-        else:
-            import scipy.optimize as optimiseur
-        Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
-            factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            iprint      = selfA._parameters["optiprint"],
-            )
-        nfeval = Informations['funcalls']
-        rc     = Informations['warnflag']
-    elif selfA._parameters["Minimizer"] == "TNC":
-        Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"],
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            ftol        = selfA._parameters["CostDecrementTolerance"],
-            messages    = selfA._parameters["optmessages"],
-            )
-    elif selfA._parameters["Minimizer"] == "CG":
-        Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "NCG":
-        Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            avextol     = selfA._parameters["CostDecrementTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "BFGS":
-        Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    else:
-        raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
-    #
-    IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-    MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
-    #
-    # Correction pour pallier a un bug de TNC sur le retour du Minimum
-    # ----------------------------------------------------------------
-    if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
-        Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
-        Minimum = numpy.asmatrix(numpy.ravel( Minimum )).T
-    else:
-        Minimum = Xb + B * numpy.asmatrix(numpy.ravel( Minimum )).T
-    #
-    # Obtention de l'analyse
-    # ----------------------
-    Xa = Minimum
-    #
-    selfA.StoredVariables["Analysis"].store( Xa )
-    #
-    if selfA._toStore("OMA") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("SimulatedObservationAtOptimum"):
-        if selfA._toStore("SimulatedObservationAtCurrentState"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
-        elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
-        else:
-            HXa = Hm( Xa )
-    #
-    # Calcul de la covariance d'analyse
-    # ---------------------------------
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("JacobianMatrixAtOptimum") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
-        HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
-        HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles"):
-        BI = B.getI()
-        HessienneI = []
-        nb = Xa.size
-        for i in range(nb):
-            _ee    = numpy.matrix(numpy.zeros(nb)).T
-            _ee[i] = 1.
-            _HtEE  = numpy.dot(HtM,_ee)
-            _HtEE  = numpy.asmatrix(numpy.ravel( _HtEE )).T
-            HessienneI.append( numpy.ravel( BI*_ee + HaM * (RI * _HtEE) ) )
-        HessienneI = numpy.matrix( HessienneI )
-        A = HessienneI.I
-        if min(A.shape) != max(A.shape):
-            raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
-        if (numpy.diag(A) < 0).any():
-            raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
-        if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
-            try:
-                L = numpy.linalg.cholesky( A )
-            except:
-                raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
-    if selfA._toStore("APosterioriCovariance"):
-        selfA.StoredVariables["APosterioriCovariance"].store( A )
-    if selfA._toStore("JacobianMatrixAtOptimum"):
-        selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
-    if selfA._toStore("KalmanGainAtOptimum"):
-        if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
-        elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
-        selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
-    #
-    # Calculs et/ou stockages supplémentaires
-    # ---------------------------------------
-    if selfA._toStore("Innovation") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("MahalanobisConsistency") or \
-        selfA._toStore("OMB"):
-        d  = Y - HXb
-    if selfA._toStore("Innovation"):
-        selfA.StoredVariables["Innovation"].store( numpy.ravel(d) )
-    if selfA._toStore("BMA"):
-        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
-    if selfA._toStore("OMA"):
-        selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
-    if selfA._toStore("OMB"):
-        selfA.StoredVariables["OMB"].store( numpy.ravel(d) )
-    if selfA._toStore("SigmaObs2"):
-        TraceR = R.trace(Y.size)
-        selfA.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
-    if selfA._toStore("MahalanobisConsistency"):
-        selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
-    if selfA._toStore("SimulationQuantiles"):
-        nech = selfA._parameters["NumberOfSamplesForQuantiles"]
-        HXa  = numpy.matrix(numpy.ravel( HXa )).T
-        EXr  = None
-        YfQ  = None
-        for i in range(nech):
-            if selfA._parameters["SimulationForQuantiles"] == "Linear":
-                dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
-                dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
-                Yr = HXa + dYr
-                if selfA._toStore("SampledStateForQuantiles"): Xr = Xa+dXr
-            elif selfA._parameters["SimulationForQuantiles"] == "NonLinear":
-                Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
-                Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
-            if YfQ is None:
-                YfQ = Yr
-                if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.ravel(Xr)
-            else:
-                YfQ = numpy.hstack((YfQ,Yr))
-                if selfA._toStore("SampledStateForQuantiles"): EXr = numpy.vstack((EXr,numpy.ravel(Xr)))
-        YfQ.sort(axis=-1)
-        YQ = None
-        for quantile in selfA._parameters["Quantiles"]:
-            if not (0. <= float(quantile) <= 1.): continue
-            indice = int(nech * float(quantile) - 1./nech)
-            if YQ is None: YQ = YfQ[:,indice]
-            else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
-        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
-        if selfA._toStore("SampledStateForQuantiles"):
-            selfA.StoredVariables["SampledStateForQuantiles"].store( EXr.T )
-    if selfA._toStore("SimulatedObservationAtBackground"):
-        selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
-    if selfA._toStore("SimulatedObservationAtOptimum"):
-        selfA.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
+        #--------------------------
+        Xn = selfA._getInternalState("Xn")
+        if __CovForecast: Pn = selfA._getInternalState("Pn")
     #
     return 0