Salome HOME
Minor source update for OM compatibility
[modules/adao.git] / src / daComposant / daCore / NumericObjects.py
index ba218365f0a14a2b0474b874b81dda1b4714ec8a..5903cddbced50da59c738fa77ad20e791ad116ec 100644 (file)
@@ -1,6 +1,6 @@
 # -*- coding: utf-8 -*-
 #
-# Copyright (C) 2008-2021 EDF R&D
+# Copyright (C) 2008-2024 EDF R&D
 #
 # This library is free software; you can redistribute it and/or
 # modify it under the terms of the GNU Lesser General Public
@@ -25,24 +25,29 @@ __doc__ = """
 """
 __author__ = "Jean-Philippe ARGAUD"
 
-import os, time, copy, types, sys, logging
-import math, numpy, scipy, scipy.optimize, scipy.version
-from daCore.BasicObjects import Operator
-from daCore.PlatformInfo import PlatformInfo
+import os, copy, types, sys, logging, math, numpy, scipy, itertools, warnings
+import scipy.linalg  # Py3.6
+from daCore.BasicObjects import Operator, Covariance, PartialAlgorithm
+from daCore.PlatformInfo import PlatformInfo, vt, vfloat
 mpr = PlatformInfo().MachinePrecision()
 mfp = PlatformInfo().MaximumPrecision()
 # logging.getLogger().setLevel(logging.DEBUG)
 
 # ==============================================================================
-def ExecuteFunction( paire ):
-    assert len(paire) == 2, "Incorrect number of arguments"
-    X, funcrepr = paire
-    __X = numpy.asmatrix(numpy.ravel( X )).T
-    __sys_path_tmp = sys.path ; sys.path.insert(0,funcrepr["__userFunction__path"])
+def ExecuteFunction( triplet ):
+    assert len(triplet) == 3, "Incorrect number of arguments"
+    X, xArgs, funcrepr = triplet
+    __X = numpy.ravel( X ).reshape((-1, 1))
+    __sys_path_tmp = sys.path
+    sys.path.insert(0, funcrepr["__userFunction__path"])
     __module = __import__(funcrepr["__userFunction__modl"], globals(), locals(), [])
-    __fonction = getattr(__module,funcrepr["__userFunction__name"])
-    sys.path = __sys_path_tmp ; del __sys_path_tmp
-    __HX  = __fonction( __X )
+    __fonction = getattr(__module, funcrepr["__userFunction__name"])
+    sys.path = __sys_path_tmp
+    del __sys_path_tmp
+    if isinstance(xArgs, dict):
+        __HX  = __fonction( __X, **xArgs )
+    else:
+        __HX  = __fonction( __X )
     return numpy.ravel( __HX )
 
 # ==============================================================================
@@ -56,23 +61,35 @@ class FDApproximation(object):
     "dX" qui sera multiplié par "increment" (donc en %), et on effectue de DF
     centrées si le booléen "centeredDF" est vrai.
     """
+    __slots__ = (
+        "__name", "__extraArgs", "__mpEnabled", "__mpWorkers", "__mfEnabled",
+        "__rmEnabled", "__avoidRC", "__tolerBP", "__centeredDF", "__lengthRJ",
+        "__listJPCP", "__listJPCI", "__listJPCR", "__listJPPN", "__listJPIN",
+        "__userOperator", "__userFunction", "__increment", "__pool", "__dX",
+        "__userFunction__name", "__userFunction__modl", "__userFunction__path",
+    )
+
     def __init__(self,
-            name                  = "FDApproximation",
-            Function              = None,
-            centeredDF            = False,
-            increment             = 0.01,
-            dX                    = None,
-            avoidingRedundancy    = True,
-            toleranceInRedundancy = 1.e-18,
-            lenghtOfRedundancy    = -1,
-            mpEnabled             = False,
-            mpWorkers             = None,
-            mfEnabled             = False,
-            ):
+                 name                  = "FDApproximation",
+                 Function              = None,
+                 centeredDF            = False,
+                 increment             = 0.01,
+                 dX                    = None,
+                 extraArguments        = None,
+                 reducingMemoryUse     = False,
+                 avoidingRedundancy    = True,
+                 toleranceInRedundancy = 1.e-18,
+                 lengthOfRedundancy    = -1,
+                 mpEnabled             = False,
+                 mpWorkers             = None,
+                 mfEnabled             = False ):
+        #
         self.__name = str(name)
+        self.__extraArgs = extraArguments
+        #
         if mpEnabled:
             try:
-                import multiprocessing
+                import multiprocessing  # noqa: F401
                 self.__mpEnabled = True
             except ImportError:
                 self.__mpEnabled = False
@@ -81,59 +98,77 @@ class FDApproximation(object):
         self.__mpWorkers = mpWorkers
         if self.__mpWorkers is not None and self.__mpWorkers < 1:
             self.__mpWorkers = None
-        logging.debug("FDA Calculs en multiprocessing : %s (nombre de processus : %s)"%(self.__mpEnabled,self.__mpWorkers))
+        logging.debug("FDA Calculs en multiprocessing : %s (nombre de processus : %s)"%(self.__mpEnabled, self.__mpWorkers))
         #
-        if mfEnabled:
-            self.__mfEnabled = True
-        else:
-            self.__mfEnabled = False
+        self.__mfEnabled = bool(mfEnabled)
         logging.debug("FDA Calculs en multifonctions : %s"%(self.__mfEnabled,))
         #
+        self.__rmEnabled = bool(reducingMemoryUse)
+        logging.debug("FDA Calculs avec réduction mémoire : %s"%(self.__rmEnabled,))
+        #
         if avoidingRedundancy:
             self.__avoidRC = True
             self.__tolerBP = float(toleranceInRedundancy)
-            self.__lenghtRJ = int(lenghtOfRedundancy)
-            self.__listJPCP = [] # Jacobian Previous Calculated Points
-            self.__listJPCI = [] # Jacobian Previous Calculated Increment
-            self.__listJPCR = [] # Jacobian Previous Calculated Results
-            self.__listJPPN = [] # Jacobian Previous Calculated Point Norms
-            self.__listJPIN = [] # Jacobian Previous Calculated Increment Norms
+            self.__lengthRJ = int(lengthOfRedundancy)
+            self.__listJPCP = []  # Jacobian Previous Calculated Points
+            self.__listJPCI = []  # Jacobian Previous Calculated Increment
+            self.__listJPCR = []  # Jacobian Previous Calculated Results
+            self.__listJPPN = []  # Jacobian Previous Calculated Point Norms
+            self.__listJPIN = []  # Jacobian Previous Calculated Increment Norms
         else:
             self.__avoidRC = False
+        logging.debug("FDA Calculs avec réduction des doublons : %s"%self.__avoidRC)
+        if self.__avoidRC:
+            logging.debug("FDA Tolérance de détermination des doublons : %.2e"%self.__tolerBP)
         #
         if self.__mpEnabled:
-            if isinstance(Function,types.FunctionType):
+            if isinstance(Function, types.FunctionType):
                 logging.debug("FDA Calculs en multiprocessing : FunctionType")
                 self.__userFunction__name = Function.__name__
                 try:
-                    mod = os.path.join(Function.__globals__['filepath'],Function.__globals__['filename'])
-                except:
+                    mod = os.path.join(Function.__globals__['filepath'], Function.__globals__['filename'])
+                except Exception:
                     mod = os.path.abspath(Function.__globals__['__file__'])
                 if not os.path.isfile(mod):
                     raise ImportError("No user defined function or method found with the name %s"%(mod,))
-                self.__userFunction__modl = os.path.basename(mod).replace('.pyc','').replace('.pyo','').replace('.py','')
+                self.__userFunction__modl = os.path.basename(mod).replace('.pyc', '').replace('.pyo', '').replace('.py', '')
                 self.__userFunction__path = os.path.dirname(mod)
                 del mod
-                self.__userOperator = Operator( name = self.__name, fromMethod = Function, avoidingRedundancy = self.__avoidRC, inputAsMultiFunction = self.__mfEnabled )
-                self.__userFunction = self.__userOperator.appliedTo # Pour le calcul Direct
-            elif isinstance(Function,types.MethodType):
+                self.__userOperator = Operator(
+                    name                 = self.__name,
+                    fromMethod           = Function,
+                    avoidingRedundancy   = self.__avoidRC,
+                    inputAsMultiFunction = self.__mfEnabled,
+                    extraArguments       = self.__extraArgs )
+                self.__userFunction = self.__userOperator.appliedTo  # Pour le calcul Direct
+            elif isinstance(Function, types.MethodType):
                 logging.debug("FDA Calculs en multiprocessing : MethodType")
                 self.__userFunction__name = Function.__name__
                 try:
-                    mod = os.path.join(Function.__globals__['filepath'],Function.__globals__['filename'])
-                except:
+                    mod = os.path.join(Function.__globals__['filepath'], Function.__globals__['filename'])
+                except Exception:
                     mod = os.path.abspath(Function.__func__.__globals__['__file__'])
                 if not os.path.isfile(mod):
                     raise ImportError("No user defined function or method found with the name %s"%(mod,))
-                self.__userFunction__modl = os.path.basename(mod).replace('.pyc','').replace('.pyo','').replace('.py','')
+                self.__userFunction__modl = os.path.basename(mod).replace('.pyc', '').replace('.pyo', '').replace('.py', '')
                 self.__userFunction__path = os.path.dirname(mod)
                 del mod
-                self.__userOperator = Operator( name = self.__name, fromMethod = Function, avoidingRedundancy = self.__avoidRC, inputAsMultiFunction = self.__mfEnabled )
-                self.__userFunction = self.__userOperator.appliedTo # Pour le calcul Direct
+                self.__userOperator = Operator(
+                    name                 = self.__name,
+                    fromMethod           = Function,
+                    avoidingRedundancy   = self.__avoidRC,
+                    inputAsMultiFunction = self.__mfEnabled,
+                    extraArguments       = self.__extraArgs )
+                self.__userFunction = self.__userOperator.appliedTo  # Pour le calcul Direct
             else:
                 raise TypeError("User defined function or method has to be provided for finite differences approximation.")
         else:
-            self.__userOperator = Operator( name = self.__name, fromMethod = Function, avoidingRedundancy = self.__avoidRC, inputAsMultiFunction = self.__mfEnabled )
+            self.__userOperator = Operator(
+                name                 = self.__name,
+                fromMethod           = Function,
+                avoidingRedundancy   = self.__avoidRC,
+                inputAsMultiFunction = self.__mfEnabled,
+                extraArguments       = self.__extraArgs )
             self.__userFunction = self.__userOperator.appliedTo
         #
         self.__centeredDF = bool(centeredDF)
@@ -144,41 +179,64 @@ class FDApproximation(object):
         if dX is None:
             self.__dX     = None
         else:
-            self.__dX     = numpy.asmatrix(numpy.ravel( dX )).T
-        logging.debug("FDA Reduction des doublons de calcul : %s"%self.__avoidRC)
-        if self.__avoidRC:
-            logging.debug("FDA Tolerance de determination des doublons : %.2e"%self.__tolerBP)
+            self.__dX     = numpy.ravel( dX )
 
     # ---------------------------------------------------------
-    def __doublon__(self, e, l, n, v=None):
+    def __doublon__(self, __e, __l, __n, __v=None):
         __ac, __iac = False, -1
-        for i in range(len(l)-1,-1,-1):
-            if numpy.linalg.norm(e - l[i]) < self.__tolerBP * n[i]:
+        for i in range(len(__l) - 1, -1, -1):
+            if numpy.linalg.norm(__e - __l[i]) < self.__tolerBP * __n[i]:
                 __ac, __iac = True, i
-                if v is not None: logging.debug("FDA Cas%s déja calculé, récupération du doublon %i"%(v,__iac))
+                if __v is not None:
+                    logging.debug("FDA Cas%s déjà calculé, récupération du doublon %i"%(__v, __iac))
                 break
         return __ac, __iac
 
     # ---------------------------------------------------------
-    def DirectOperator(self, X ):
+    def __listdotwith__(self, __LMatrix, __dotWith = None, __dotTWith = None):
+        "Produit incrémental d'une matrice liste de colonnes avec un vecteur"
+        if not isinstance(__LMatrix, (list, tuple)):
+            raise TypeError("Columnwise list matrix has not the proper type: %s"%type(__LMatrix))
+        if __dotWith is not None:
+            __Idwx = numpy.ravel( __dotWith )
+            assert len(__LMatrix) == __Idwx.size, "Incorrect size of elements"
+            __Produit = numpy.zeros(__LMatrix[0].size)
+            for i, col in enumerate(__LMatrix):
+                __Produit += float(__Idwx[i]) * col
+            return __Produit
+        elif __dotTWith is not None:
+            _Idwy = numpy.ravel( __dotTWith ).T
+            assert __LMatrix[0].size == _Idwy.size, "Incorrect size of elements"
+            __Produit = numpy.zeros(len(__LMatrix))
+            for i, col in enumerate(__LMatrix):
+                __Produit[i] = vfloat( _Idwy @ col)
+            return __Produit
+        else:
+            __Produit = None
+        return __Produit
+
+    # ---------------------------------------------------------
+    def DirectOperator(self, X, **extraArgs ):
         """
         Calcul du direct à l'aide de la fonction fournie.
+
+        NB : les extraArgs sont là pour assurer la compatibilité d'appel, mais
+        ne doivent pas être données ici à la fonction utilisateur.
         """
         logging.debug("FDA Calcul DirectOperator (explicite)")
         if self.__mfEnabled:
             _HX = self.__userFunction( X, argsAsSerie = True )
         else:
-            _X = numpy.asmatrix(numpy.ravel( X )).T
-            _HX = numpy.ravel(self.__userFunction( _X ))
+            _HX = numpy.ravel(self.__userFunction( numpy.ravel(X) ))
         #
         return _HX
 
     # ---------------------------------------------------------
-    def TangentMatrix(self, X ):
+    def TangentMatrix(self, X, dotWith = None, dotTWith = None ):
         """
         Calcul de l'opérateur tangent comme la Jacobienne par différences finies,
         c'est-à-dire le gradient de H en X. On utilise des différences finies
-        directionnelles autour du point X. X est un numpy.matrix.
+        directionnelles autour du point X. X est un numpy.ndarray.
 
         Différences finies centrées (approximation d'ordre 2):
         1/ Pour chaque composante i de X, on ajoute et on enlève la perturbation
@@ -203,15 +261,17 @@ class FDApproximation(object):
         logging.debug("FDA   Incrément de............: %s*X"%float(self.__increment))
         logging.debug("FDA   Approximation centrée...: %s"%(self.__centeredDF))
         #
-        if X is None or len(X)==0:
+        if X is None or len(X) == 0:
             raise ValueError("Nominal point X for approximate derivatives can not be None or void (given X: %s)."%(str(X),))
         #
-        _X = numpy.asmatrix(numpy.ravel( X )).T
+        _X = numpy.ravel( X )
         #
         if self.__dX is None:
             _dX  = self.__increment * _X
         else:
-            _dX = numpy.asmatrix(numpy.ravel( self.__dX )).T
+            _dX = numpy.ravel( self.__dX )
+        assert len(_X) == len(_dX), "Inconsistent dX increment length with respect to the X one"
+        assert _X.size == _dX.size, "Inconsistent dX increment size with respect to the X one"
         #
         if (_dX == 0.).any():
             moyenne = _dX.mean()
@@ -222,35 +282,40 @@ class FDApproximation(object):
         #
         __alreadyCalculated  = False
         if self.__avoidRC:
-            __bidon, __alreadyCalculatedP = self.__doublon__(_X,  self.__listJPCP, self.__listJPPN, None)
+            __bidon, __alreadyCalculatedP = self.__doublon__( _X, self.__listJPCP, self.__listJPPN, None)
             __bidon, __alreadyCalculatedI = self.__doublon__(_dX, self.__listJPCI, self.__listJPIN, None)
             if __alreadyCalculatedP == __alreadyCalculatedI > -1:
                 __alreadyCalculated, __i = True, __alreadyCalculatedP
-                logging.debug("FDA Cas J déja calculé, récupération du doublon %i"%__i)
+                logging.debug("FDA Cas J déjà calculé, récupération du doublon %i"%__i)
         #
         if __alreadyCalculated:
             logging.debug("FDA   Calcul Jacobienne (par récupération du doublon %i)"%__i)
             _Jacobienne = self.__listJPCR[__i]
+            logging.debug("FDA Fin du calcul de la Jacobienne")
+            if dotWith is not None:
+                return numpy.dot(  _Jacobienne, numpy.ravel( dotWith ))
+            elif dotTWith is not None:
+                return numpy.dot(_Jacobienne.T, numpy.ravel( dotTWith ))
         else:
             logging.debug("FDA   Calcul Jacobienne (explicite)")
             if self.__centeredDF:
                 #
                 if self.__mpEnabled and not self.__mfEnabled:
                     funcrepr = {
-                        "__userFunction__path" : self.__userFunction__path,
-                        "__userFunction__modl" : self.__userFunction__modl,
-                        "__userFunction__name" : self.__userFunction__name,
+                        "__userFunction__path": self.__userFunction__path,
+                        "__userFunction__modl": self.__userFunction__modl,
+                        "__userFunction__name": self.__userFunction__name,
                     }
                     _jobs = []
                     for i in range( len(_dX) ):
                         _dXi            = _dX[i]
-                        _X_plus_dXi     = numpy.array( _X.A1, dtype=float )
+                        _X_plus_dXi     = numpy.array( _X, dtype=float )
                         _X_plus_dXi[i]  = _X[i] + _dXi
-                        _X_moins_dXi    = numpy.array( _X.A1, dtype=float )
+                        _X_moins_dXi    = numpy.array( _X, dtype=float )
                         _X_moins_dXi[i] = _X[i] - _dXi
                         #
-                        _jobs.append( (_X_plus_dXi,  funcrepr) )
-                        _jobs.append( (_X_moins_dXi, funcrepr) )
+                        _jobs.append( ( _X_plus_dXi, self.__extraArgs, funcrepr) )
+                        _jobs.append( (_X_moins_dXi, self.__extraArgs, funcrepr) )
                     #
                     import multiprocessing
                     self.__pool = multiprocessing.Pool(self.__mpWorkers)
@@ -260,55 +325,55 @@ class FDApproximation(object):
                     #
                     _Jacobienne  = []
                     for i in range( len(_dX) ):
-                        _Jacobienne.append( numpy.ravel( _HX_plusmoins_dX[2*i] - _HX_plusmoins_dX[2*i+1] ) / (2.*_dX[i]) )
+                        _Jacobienne.append( numpy.ravel( _HX_plusmoins_dX[2 * i] - _HX_plusmoins_dX[2 * i + 1] ) / (2. * _dX[i]) )
                     #
                 elif self.__mfEnabled:
                     _xserie = []
                     for i in range( len(_dX) ):
                         _dXi            = _dX[i]
-                        _X_plus_dXi     = numpy.array( _X.A1, dtype=float )
+                        _X_plus_dXi     = numpy.array( _X, dtype=float )
                         _X_plus_dXi[i]  = _X[i] + _dXi
-                        _X_moins_dXi    = numpy.array( _X.A1, dtype=float )
+                        _X_moins_dXi    = numpy.array( _X, dtype=float )
                         _X_moins_dXi[i] = _X[i] - _dXi
                         #
                         _xserie.append( _X_plus_dXi )
                         _xserie.append( _X_moins_dXi )
                     #
                     _HX_plusmoins_dX = self.DirectOperator( _xserie )
-                     #
+                    #
                     _Jacobienne  = []
                     for i in range( len(_dX) ):
-                        _Jacobienne.append( numpy.ravel( _HX_plusmoins_dX[2*i] - _HX_plusmoins_dX[2*i+1] ) / (2.*_dX[i]) )
+                        _Jacobienne.append( numpy.ravel( _HX_plusmoins_dX[2 * i] - _HX_plusmoins_dX[2 * i + 1] ) / (2. * _dX[i]) )
                     #
                 else:
                     _Jacobienne  = []
                     for i in range( _dX.size ):
                         _dXi            = _dX[i]
-                        _X_plus_dXi     = numpy.array( _X.A1, dtype=float )
+                        _X_plus_dXi     = numpy.array( _X, dtype=float )
                         _X_plus_dXi[i]  = _X[i] + _dXi
-                        _X_moins_dXi    = numpy.array( _X.A1, dtype=float )
+                        _X_moins_dXi    = numpy.array( _X, dtype=float )
                         _X_moins_dXi[i] = _X[i] - _dXi
                         #
                         _HX_plus_dXi    = self.DirectOperator( _X_plus_dXi )
                         _HX_moins_dXi   = self.DirectOperator( _X_moins_dXi )
                         #
-                        _Jacobienne.append( numpy.ravel( _HX_plus_dXi - _HX_moins_dXi ) / (2.*_dXi) )
+                        _Jacobienne.append( numpy.ravel( _HX_plus_dXi - _HX_moins_dXi ) / (2. * _dXi) )
                 #
             else:
                 #
                 if self.__mpEnabled and not self.__mfEnabled:
                     funcrepr = {
-                        "__userFunction__path" : self.__userFunction__path,
-                        "__userFunction__modl" : self.__userFunction__modl,
-                        "__userFunction__name" : self.__userFunction__name,
+                        "__userFunction__path": self.__userFunction__path,
+                        "__userFunction__modl": self.__userFunction__modl,
+                        "__userFunction__name": self.__userFunction__name,
                     }
                     _jobs = []
-                    _jobs.append( (_X.A1, funcrepr) )
+                    _jobs.append( (_X, self.__extraArgs, funcrepr) )
                     for i in range( len(_dX) ):
-                        _X_plus_dXi    = numpy.array( _X.A1, dtype=float )
+                        _X_plus_dXi    = numpy.array( _X, dtype=float )
                         _X_plus_dXi[i] = _X[i] + _dX[i]
                         #
-                        _jobs.append( (_X_plus_dXi, funcrepr) )
+                        _jobs.append( (_X_plus_dXi, self.__extraArgs, funcrepr) )
                     #
                     import multiprocessing
                     self.__pool = multiprocessing.Pool(self.__mpWorkers)
@@ -324,9 +389,9 @@ class FDApproximation(object):
                     #
                 elif self.__mfEnabled:
                     _xserie = []
-                    _xserie.append( _X.A1 )
+                    _xserie.append( _X )
                     for i in range( len(_dX) ):
-                        _X_plus_dXi    = numpy.array( _X.A1, dtype=float )
+                        _X_plus_dXi    = numpy.array( _X, dtype=float )
                         _X_plus_dXi[i] = _X[i] + _dX[i]
                         #
                         _xserie.append( _X_plus_dXi )
@@ -338,2535 +403,1143 @@ class FDApproximation(object):
                     _Jacobienne = []
                     for i in range( len(_dX) ):
                         _Jacobienne.append( numpy.ravel(( _HX_plus_dX[i] - _HX ) / _dX[i]) )
-                   #
+                    #
                 else:
                     _Jacobienne  = []
                     _HX = self.DirectOperator( _X )
                     for i in range( _dX.size ):
                         _dXi            = _dX[i]
-                        _X_plus_dXi     = numpy.array( _X.A1, dtype=float )
+                        _X_plus_dXi     = numpy.array( _X, dtype=float )
                         _X_plus_dXi[i]  = _X[i] + _dXi
                         #
                         _HX_plus_dXi = self.DirectOperator( _X_plus_dXi )
                         #
                         _Jacobienne.append( numpy.ravel(( _HX_plus_dXi - _HX ) / _dXi) )
-                #
             #
-            _Jacobienne = numpy.asmatrix( numpy.vstack( _Jacobienne ) ).T
-            if self.__avoidRC:
-                if self.__lenghtRJ < 0: self.__lenghtRJ = 2 * _X.size
-                while len(self.__listJPCP) > self.__lenghtRJ:
-                    self.__listJPCP.pop(0)
-                    self.__listJPCI.pop(0)
-                    self.__listJPCR.pop(0)
-                    self.__listJPPN.pop(0)
-                    self.__listJPIN.pop(0)
-                self.__listJPCP.append( copy.copy(_X) )
-                self.__listJPCI.append( copy.copy(_dX) )
-                self.__listJPCR.append( copy.copy(_Jacobienne) )
-                self.__listJPPN.append( numpy.linalg.norm(_X) )
-                self.__listJPIN.append( numpy.linalg.norm(_Jacobienne) )
-        #
-        logging.debug("FDA Fin du calcul de la Jacobienne")
+            if (dotWith is not None) or (dotTWith is not None):
+                __Produit = self.__listdotwith__(_Jacobienne, dotWith, dotTWith)
+            else:
+                __Produit = None
+            if __Produit is None or self.__avoidRC:
+                _Jacobienne = numpy.transpose( numpy.vstack( _Jacobienne ) )
+                if self.__avoidRC:
+                    if self.__lengthRJ < 0:
+                        self.__lengthRJ = 2 * _X.size
+                    while len(self.__listJPCP) > self.__lengthRJ:
+                        self.__listJPCP.pop(0)
+                        self.__listJPCI.pop(0)
+                        self.__listJPCR.pop(0)
+                        self.__listJPPN.pop(0)
+                        self.__listJPIN.pop(0)
+                    self.__listJPCP.append( copy.copy(_X) )
+                    self.__listJPCI.append( copy.copy(_dX) )
+                    self.__listJPCR.append( copy.copy(_Jacobienne) )
+                    self.__listJPPN.append( numpy.linalg.norm(_X) )
+                    self.__listJPIN.append( numpy.linalg.norm(_Jacobienne) )
+            logging.debug("FDA Fin du calcul de la Jacobienne")
+            if __Produit is not None:
+                return __Produit
         #
         return _Jacobienne
 
     # ---------------------------------------------------------
-    def TangentOperator(self, paire ):
+    def TangentOperator(self, paire, **extraArgs ):
         """
         Calcul du tangent à l'aide de la Jacobienne.
+
+        NB : les extraArgs sont là pour assurer la compatibilité d'appel, mais
+        ne doivent pas être données ici à la fonction utilisateur.
         """
         if self.__mfEnabled:
-            assert len(paire) == 1, "Incorrect lenght of arguments"
+            assert len(paire) == 1, "Incorrect length of arguments"
             _paire = paire[0]
             assert len(_paire) == 2, "Incorrect number of arguments"
         else:
             assert len(paire) == 2, "Incorrect number of arguments"
             _paire = paire
         X, dX = _paire
-        _Jacobienne = self.TangentMatrix( X )
         if dX is None or len(dX) == 0:
             #
             # Calcul de la forme matricielle si le second argument est None
             # -------------------------------------------------------------
-            if self.__mfEnabled: return [_Jacobienne,]
-            else:                return _Jacobienne
+            _Jacobienne = self.TangentMatrix( X )
+            if self.__mfEnabled:
+                return [_Jacobienne,]
+            else:
+                return _Jacobienne
         else:
             #
             # Calcul de la valeur linéarisée de H en X appliqué à dX
             # ------------------------------------------------------
-            _dX = numpy.asmatrix(numpy.ravel( dX )).T
-            _HtX = numpy.dot(_Jacobienne, _dX)
-            if self.__mfEnabled: return [_HtX.A1,]
-            else:                return _HtX.A1
+            _HtX = self.TangentMatrix( X, dotWith = dX )
+            if self.__mfEnabled:
+                return [_HtX,]
+            else:
+                return _HtX
 
     # ---------------------------------------------------------
-    def AdjointOperator(self, paire ):
+    def AdjointOperator(self, paire, **extraArgs ):
         """
         Calcul de l'adjoint à l'aide de la Jacobienne.
+
+        NB : les extraArgs sont là pour assurer la compatibilité d'appel, mais
+        ne doivent pas être données ici à la fonction utilisateur.
         """
         if self.__mfEnabled:
-            assert len(paire) == 1, "Incorrect lenght of arguments"
+            assert len(paire) == 1, "Incorrect length of arguments"
             _paire = paire[0]
             assert len(_paire) == 2, "Incorrect number of arguments"
         else:
             assert len(paire) == 2, "Incorrect number of arguments"
             _paire = paire
         X, Y = _paire
-        _JacobienneT = self.TangentMatrix( X ).T
         if Y is None or len(Y) == 0:
             #
             # Calcul de la forme matricielle si le second argument est None
             # -------------------------------------------------------------
-            if self.__mfEnabled: return [_JacobienneT,]
-            else:                return _JacobienneT
+            _JacobienneT = self.TangentMatrix( X ).T
+            if self.__mfEnabled:
+                return [_JacobienneT,]
+            else:
+                return _JacobienneT
         else:
             #
             # Calcul de la valeur de l'adjoint en X appliqué à Y
             # --------------------------------------------------
-            _Y = numpy.asmatrix(numpy.ravel( Y )).T
-            _HaY = numpy.dot(_JacobienneT, _Y)
-            if self.__mfEnabled: return [_HaY.A1,]
-            else:                return _HaY.A1
+            _HaY = self.TangentMatrix( X, dotTWith = Y )
+            if self.__mfEnabled:
+                return [_HaY,]
+            else:
+                return _HaY
 
 # ==============================================================================
-def mmqr(
-        func     = None,
-        x0       = None,
-        fprime   = None,
-        bounds   = None,
-        quantile = 0.5,
-        maxfun   = 15000,
-        toler    = 1.e-06,
-        y        = None,
-        ):
-    """
-    Implémentation informatique de l'algorithme MMQR, basée sur la publication :
-    David R. Hunter, Kenneth Lange, "Quantile Regression via an MM Algorithm",
-    Journal of Computational and Graphical Statistics, 9, 1, pp.60-77, 2000.
-    """
-    #
-    # Recuperation des donnees et informations initiales
-    # --------------------------------------------------
-    variables = numpy.ravel( x0 )
-    mesures   = numpy.ravel( y )
-    increment = sys.float_info[0]
-    p         = variables.size
-    n         = mesures.size
-    quantile  = float(quantile)
-    #
-    # Calcul des parametres du MM
-    # ---------------------------
-    tn      = float(toler) / n
-    e0      = -tn / math.log(tn)
-    epsilon = (e0-tn)/(1+math.log(e0))
+def SetInitialDirection( __Direction = [], __Amplitude = 1., __Position = None ):
+    "Établit ou élabore une direction avec une amplitude"
     #
-    # Calculs d'initialisation
-    # ------------------------
-    residus  = mesures - numpy.ravel( func( variables ) )
-    poids    = 1./(epsilon+numpy.abs(residus))
-    veps     = 1. - 2. * quantile - residus * poids
-    lastsurrogate = -numpy.sum(residus*veps) - (1.-2.*quantile)*numpy.sum(residus)
-    iteration = 0
+    if len(__Direction) == 0 and __Position is None:
+        raise ValueError("If initial direction is void, current position has to be given")
+    if abs(float(__Amplitude)) < mpr:
+        raise ValueError("Amplitude of perturbation can not be zero")
     #
-    # Recherche iterative
-    # -------------------
-    while (increment > toler) and (iteration < maxfun) :
-        iteration += 1
-        #
-        Derivees  = numpy.array(fprime(variables))
-        Derivees  = Derivees.reshape(n,p) # Necessaire pour remettre en place la matrice si elle passe par des tuyaux YACS
-        DeriveesT = Derivees.transpose()
-        M         =   numpy.dot( DeriveesT , (numpy.array(numpy.matrix(p*[poids,]).T)*Derivees) )
-        SM        =   numpy.transpose(numpy.dot( DeriveesT , veps ))
-        step      = - numpy.linalg.lstsq( M, SM, rcond=-1 )[0]
-        #
-        variables = variables + step
-        if bounds is not None:
-            # Attention : boucle infinie à éviter si un intervalle est trop petit
-            while( (variables < numpy.ravel(numpy.asmatrix(bounds)[:,0])).any() or (variables > numpy.ravel(numpy.asmatrix(bounds)[:,1])).any() ):
-                step      = step/2.
-                variables = variables - step
-        residus   = mesures - numpy.ravel( func(variables) )
-        surrogate = numpy.sum(residus**2 * poids) + (4.*quantile-2.) * numpy.sum(residus)
-        #
-        while ( (surrogate > lastsurrogate) and ( max(list(numpy.abs(step))) > 1.e-16 ) ) :
-            step      = step/2.
-            variables = variables - step
-            residus   = mesures - numpy.ravel( func(variables) )
-            surrogate = numpy.sum(residus**2 * poids) + (4.*quantile-2.) * numpy.sum(residus)
-        #
-        increment     = lastsurrogate-surrogate
-        poids         = 1./(epsilon+numpy.abs(residus))
-        veps          = 1. - 2. * quantile - residus * poids
-        lastsurrogate = -numpy.sum(residus * veps) - (1.-2.*quantile)*numpy.sum(residus)
+    if len(__Direction) > 0:
+        __dX0 = numpy.asarray(__Direction)
+    else:
+        __dX0 = []
+        __X0 = numpy.ravel(numpy.asarray(__Position))
+        __mX0 = numpy.mean( __X0, dtype=mfp )
+        if abs(__mX0) < 2 * mpr:
+            __mX0 = 1.  # Évite le problème de position nulle
+        for v in __X0:
+            if abs(v) > 1.e-8:
+                __dX0.append( numpy.random.normal(0., abs(v)) )
+            else:
+                __dX0.append( numpy.random.normal(0., __mX0) )
     #
-    # Mesure d'écart
-    # --------------
-    Ecart = quantile * numpy.sum(residus) - numpy.sum( residus[residus<0] )
+    __dX0 = numpy.asarray(__dX0, float)  # Évite le problème d'array de taille 1
+    __dX0 = numpy.ravel( __dX0 )         # Redresse les vecteurs
+    __dX0 = float(__Amplitude) * __dX0
     #
-    return variables, Ecart, [n,p,iteration,increment,0]
+    return __dX0
 
 # ==============================================================================
-def EnsembleOfCenteredPerturbations( _bgcenter, _bgcovariance, _nbmembers ):
-    "Génération d'un ensemble de taille _nbmembers-1 d'états aléatoires centrés"
+def EnsembleOfCenteredPerturbations( __bgCenter, __bgCovariance, __nbMembers ):
+    "Génération d'un ensemble de taille __nbMembers-1 d'états aléatoires centrés"
     #
-    _bgcenter = numpy.ravel(_bgcenter)[:,None]
-    if _nbmembers < 1:
-        raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(_nbmembers),))
+    __bgCenter = numpy.ravel(__bgCenter)[:, None]
+    if __nbMembers < 1:
+        raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(__nbMembers),))
     #
-    if _bgcovariance is None:
-        BackgroundEnsemble = numpy.tile( _bgcenter, _nbmembers)
+    if __bgCovariance is None:
+        _Perturbations = numpy.tile( __bgCenter, __nbMembers)
     else:
-        _Z = numpy.random.multivariate_normal(numpy.zeros(_bgcenter.size), _bgcovariance, size=_nbmembers).T
-        BackgroundEnsemble = numpy.tile( _bgcenter, _nbmembers) + _Z
+        _Z = numpy.random.multivariate_normal(numpy.zeros(__bgCenter.size), __bgCovariance, size=__nbMembers).T
+        _Perturbations = numpy.tile( __bgCenter, __nbMembers) + _Z
     #
-    return BackgroundEnsemble
+    return _Perturbations
 
 # ==============================================================================
-def EnsembleOfBackgroundPerturbations( _bgcenter, _bgcovariance, _nbmembers, _withSVD = True):
-    "Génération d'un ensemble de taille _nbmembers-1 d'états aléatoires centrés"
+def EnsembleOfBackgroundPerturbations(
+        __bgCenter,
+        __bgCovariance,
+        __nbMembers,
+        __withSVD = True ):
+    "Génération d'un ensemble de taille __nbMembers-1 d'états aléatoires centrés"
     def __CenteredRandomAnomalies(Zr, N):
         """
         Génère une matrice de N anomalies aléatoires centrées sur Zr selon les
         notes manuscrites de MB et conforme au code de PS avec eps = -1
         """
         eps = -1
-        Q = numpy.eye(N-1)-numpy.ones((N-1,N-1))/numpy.sqrt(N)/(numpy.sqrt(N)-eps)
-        Q = numpy.concatenate((Q, [eps*numpy.ones(N-1)/numpy.sqrt(N)]), axis=0)
-        R, _ = numpy.linalg.qr(numpy.random.normal(size = (N-1,N-1)))
-        Q = numpy.dot(Q,R)
-        Zr = numpy.dot(Q,Zr)
+        Q = numpy.identity(N - 1) - numpy.ones((N - 1, N - 1)) / numpy.sqrt(N) / (numpy.sqrt(N) - eps)
+        Q = numpy.concatenate((Q, [eps * numpy.ones(N - 1) / numpy.sqrt(N)]), axis=0)
+        R, _ = numpy.linalg.qr(numpy.random.normal(size = (N - 1, N - 1)))
+        Q = numpy.dot(Q, R)
+        Zr = numpy.dot(Q, Zr)
         return Zr.T
     #
-    _bgcenter = numpy.ravel(_bgcenter)[:,None]
-    if _nbmembers < 1:
-        raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(_nbmembers),))
-    if _bgcovariance is None:
-        BackgroundEnsemble = numpy.tile( _bgcenter, _nbmembers)
+    __bgCenter = numpy.ravel(__bgCenter).reshape((-1, 1))
+    if __nbMembers < 1:
+        raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(__nbMembers),))
+    if __bgCovariance is None:
+        _Perturbations = numpy.tile( __bgCenter, __nbMembers)
     else:
-        if _withSVD:
-            U, s, V = numpy.linalg.svd(_bgcovariance, full_matrices=False)
-            _nbctl = _bgcenter.size
-            if _nbmembers > _nbctl:
+        if __withSVD:
+            _U, _s, _V = numpy.linalg.svd(__bgCovariance, full_matrices=False)
+            _nbctl = __bgCenter.size
+            if __nbMembers > _nbctl:
                 _Z = numpy.concatenate((numpy.dot(
-                    numpy.diag(numpy.sqrt(s[:_nbctl])), V[:_nbctl]),
-                    numpy.random.multivariate_normal(numpy.zeros(_nbctl),_bgcovariance,_nbmembers-1-_nbctl)), axis = 0)
+                    numpy.diag(numpy.sqrt(_s[:_nbctl])), _V[:_nbctl]),
+                    numpy.random.multivariate_normal(numpy.zeros(_nbctl), __bgCovariance, __nbMembers - 1 - _nbctl)), axis = 0)
             else:
-                _Z = numpy.dot(numpy.diag(numpy.sqrt(s[:_nbmembers-1])), V[:_nbmembers-1])
-            _Zca = __CenteredRandomAnomalies(_Z, _nbmembers)
-            BackgroundEnsemble = _bgcenter + _Zca
+                _Z = numpy.dot(numpy.diag(numpy.sqrt(_s[:__nbMembers - 1])), _V[:__nbMembers - 1])
+            _Zca = __CenteredRandomAnomalies(_Z, __nbMembers)
+            _Perturbations = __bgCenter + _Zca
         else:
-            if max(abs(_bgcovariance.flatten())) > 0:
-                _nbctl = _bgcenter.size
-                _Z = numpy.random.multivariate_normal(numpy.zeros(_nbctl),_bgcovariance,_nbmembers-1)
-                _Zca = __CenteredRandomAnomalies(_Z, _nbmembers)
-                BackgroundEnsemble = _bgcenter + _Zca
+            if max(abs(__bgCovariance.flatten())) > 0:
+                _nbctl = __bgCenter.size
+                _Z = numpy.random.multivariate_normal(numpy.zeros(_nbctl), __bgCovariance, __nbMembers - 1)
+                _Zca = __CenteredRandomAnomalies(_Z, __nbMembers)
+                _Perturbations = __bgCenter + _Zca
             else:
-                BackgroundEnsemble = numpy.tile( _bgcenter, _nbmembers)
+                _Perturbations = numpy.tile( __bgCenter, __nbMembers)
     #
-    return BackgroundEnsemble
+    return _Perturbations
 
 # ==============================================================================
-def EnsembleOfAnomalies( _ensemble, _optmean = None):
-    "Renvoie les anomalies centrées à partir d'un ensemble TailleEtat*NbMembres"
-    if _optmean is None:
-        Em = numpy.asarray(_ensemble).mean(axis=1, dtype=mfp).astype('float')[:,numpy.newaxis]
-    else:
-        Em = numpy.ravel(_optmean)[:,numpy.newaxis]
-    #
-    return numpy.asarray(_ensemble) - Em
+def EnsembleMean( __Ensemble ):
+    "Renvoie la moyenne empirique d'un ensemble"
+    return numpy.asarray(__Ensemble).mean(axis=1, dtype=mfp).astype('float').reshape((-1, 1))
 
 # ==============================================================================
-def CovarianceInflation(
-        InputCovOrEns,
-        InflationType   = None,
-        InflationFactor = None,
-        BackgroundCov   = None,
-        ):
-    """
-    Inflation applicable soit sur Pb ou Pa, soit sur les ensembles EXb ou EXa
-
-    Synthèse : Hunt 2007, section 2.3.5
-    """
-    if InflationFactor is None:
-        return InputCovOrEns
+def EnsembleOfAnomalies( __Ensemble, __OptMean = None, __Normalisation = 1. ):
+    "Renvoie les anomalies centrées à partir d'un ensemble"
+    if __OptMean is None:
+        __Em = EnsembleMean( __Ensemble )
     else:
-        InflationFactor = float(InflationFactor)
-    #
-    if InflationType in ["MultiplicativeOnAnalysisCovariance", "MultiplicativeOnBackgroundCovariance"]:
-        if InflationFactor < 1.:
-            raise ValueError("Inflation factor for multiplicative inflation has to be greater or equal than 1.")
-        if InflationFactor < 1.+mpr:
-            return InputCovOrEns
-        OutputCovOrEns = InflationFactor**2 * InputCovOrEns
+        __Em = numpy.ravel( __OptMean ).reshape((-1, 1))
     #
-    elif InflationType in ["MultiplicativeOnAnalysisAnomalies", "MultiplicativeOnBackgroundAnomalies"]:
-        if InflationFactor < 1.:
-            raise ValueError("Inflation factor for multiplicative inflation has to be greater or equal than 1.")
-        if InflationFactor < 1.+mpr:
-            return InputCovOrEns
-        InputCovOrEnsMean = InputCovOrEns.mean(axis=1, dtype=mfp).astype('float')
-        OutputCovOrEns = InputCovOrEnsMean[:,numpy.newaxis] \
-            + InflationFactor * (InputCovOrEns - InputCovOrEnsMean[:,numpy.newaxis])
-    #
-    elif InflationType in ["AdditiveOnAnalysisCovariance", "AdditiveOnBackgroundCovariance"]:
-        if InflationFactor < 0.:
-            raise ValueError("Inflation factor for additive inflation has to be greater or equal than 0.")
-        if InflationFactor < mpr:
-            return InputCovOrEns
-        __n, __m = numpy.asarray(InputCovOrEns).shape
-        if __n != __m:
-            raise ValueError("Additive inflation can only be applied to squared (covariance) matrix.")
-        OutputCovOrEns = (1. - InflationFactor) * InputCovOrEns + InflationFactor * numpy.eye(__n)
-    #
-    elif InflationType == "HybridOnBackgroundCovariance":
-        if InflationFactor < 0.:
-            raise ValueError("Inflation factor for hybrid inflation has to be greater or equal than 0.")
-        if InflationFactor < mpr:
-            return InputCovOrEns
-        __n, __m = numpy.asarray(InputCovOrEns).shape
-        if __n != __m:
-            raise ValueError("Additive inflation can only be applied to squared (covariance) matrix.")
-        if BackgroundCov is None:
-            raise ValueError("Background covariance matrix B has to be given for hybrid inflation.")
-        if InputCovOrEns.shape != BackgroundCov.shape:
-            raise ValueError("Ensemble covariance matrix has to be of same size than background covariance matrix B.")
-        OutputCovOrEns = (1. - InflationFactor) * InputCovOrEns + InflationFactor * BackgroundCov
-    #
-    elif InflationType == "Relaxation":
-        raise NotImplementedError("InflationType Relaxation")
-    #
-    else:
-        raise ValueError("Error in inflation type, '%s' is not a valid keyword."%InflationType)
-    #
-    return OutputCovOrEns
+    return __Normalisation * (numpy.asarray( __Ensemble ) - __Em)
 
 # ==============================================================================
-def std3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
-    """
-    3DVAR (Bouttier 1999, Courtier 1993)
-
-    selfA est identique au "self" d'algorithme appelant et contient les
-    valeurs.
-    """
-    #
-    # Correction pour pallier a un bug de TNC sur le retour du Minimum
-    if "Minimizer" in selfA._parameters and selfA._parameters["Minimizer"] == "TNC":
-        selfA.setParameterValue("StoreInternalVariables",True)
-    #
-    # Opérateurs
-    # ----------
-    Hm = HO["Direct"].appliedTo
-    Ha = HO["Adjoint"].appliedInXTo
-    #
-    # Utilisation éventuelle d'un vecteur H(Xb) précalculé
-    # ----------------------------------------------------
-    if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
-        HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
+def EnsembleErrorCovariance( __Ensemble, __Quick = False ):
+    "Renvoie l'estimation empirique de la covariance d'ensemble"
+    if __Quick:
+        # Covariance rapide mais rarement définie positive
+        __Covariance = numpy.cov( __Ensemble )
     else:
-        HXb = Hm( Xb )
-    HXb = numpy.asmatrix(numpy.ravel( HXb )).T
-    if Y.size != HXb.size:
-        raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
-    if max(Y.shape) != max(HXb.shape):
-        raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
-    #
-    if selfA._toStore("JacobianMatrixAtBackground"):
-        HtMb = HO["Tangent"].asMatrix(ValueForMethodForm = Xb)
-        HtMb = HtMb.reshape(Y.size,Xb.size) # ADAO & check shape
-        selfA.StoredVariables["JacobianMatrixAtBackground"].store( HtMb )
-    #
-    # Précalcul des inversions de B et R
-    # ----------------------------------
-    BI = B.getI()
-    RI = R.getI()
-    #
-    # Point de démarrage de l'optimisation
-    # ------------------------------------
-    Xini = selfA._parameters["InitializationPoint"]
-    #
-    # Définition de la fonction-coût
-    # ------------------------------
-    def CostFunction(x):
-        _X  = numpy.asmatrix(numpy.ravel( x )).T
-        if selfA._parameters["StoreInternalVariables"] or \
-            selfA._toStore("CurrentState") or \
-            selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentState"].store( _X )
-        _HX = Hm( _X )
-        _HX = numpy.asmatrix(numpy.ravel( _HX )).T
-        _Innovation = Y - _HX
-        if selfA._toStore("SimulatedObservationAtCurrentState") or \
-            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
-        #
-        Jb  = float( 0.5 * (_X - Xb).T * BI * (_X - Xb) )
-        Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-        J   = Jb + Jo
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
-        selfA.StoredVariables["CostFunctionJb"].store( Jb )
-        selfA.StoredVariables["CostFunctionJo"].store( Jo )
-        selfA.StoredVariables["CostFunctionJ" ].store( J )
-        if selfA._toStore("IndexOfOptimum") or \
-            selfA._toStore("CurrentOptimum") or \
-            selfA._toStore("CostFunctionJAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
-            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-        if selfA._toStore("IndexOfOptimum"):
-            selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-        if selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
-        if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
-        if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-        if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-        if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        return J
-    #
-    def GradientOfCostFunction(x):
-        _X      = numpy.asmatrix(numpy.ravel( x )).T
-        _HX     = Hm( _X )
-        _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
-        GradJb  = BI * (_X - Xb)
-        GradJo  = - Ha( (_X, RI * (Y - _HX)) )
-        GradJ   = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
-        return GradJ
-    #
-    # Minimisation de la fonctionnelle
-    # --------------------------------
-    nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
-    #
-    if selfA._parameters["Minimizer"] == "LBFGSB":
-        if "0.19" <= scipy.version.version <= "1.1.0":
-            import lbfgsbhlt as optimiseur
-        else:
-            import scipy.optimize as optimiseur
-        Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
-            factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            iprint      = selfA._parameters["optiprint"],
-            )
-        nfeval = Informations['funcalls']
-        rc     = Informations['warnflag']
-    elif selfA._parameters["Minimizer"] == "TNC":
-        Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"],
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            ftol        = selfA._parameters["CostDecrementTolerance"],
-            messages    = selfA._parameters["optmessages"],
-            )
-    elif selfA._parameters["Minimizer"] == "CG":
-        Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "NCG":
-        Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            avextol     = selfA._parameters["CostDecrementTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "BFGS":
-        Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
+        # Résultat souvent identique à numpy.cov, mais plus robuste
+        __n, __m = numpy.asarray( __Ensemble ).shape
+        __Anomalies = EnsembleOfAnomalies( __Ensemble )
+        # Estimation empirique
+        __Covariance = ( __Anomalies @ __Anomalies.T ) / (__m - 1)
+        # Assure la symétrie
+        __Covariance = ( __Covariance + __Covariance.T ) * 0.5
+        # Assure la positivité
+        __epsilon    = mpr * numpy.trace( __Covariance )
+        __Covariance = __Covariance + __epsilon * numpy.identity(__n)
+    #
+    return __Covariance
+
+# ==============================================================================
+def SingularValuesEstimation( __Ensemble, __Using = "SVDVALS"):
+    "Renvoie les valeurs singulières de l'ensemble et leur carré"
+    if __Using == "SVDVALS":  # Recommandé
+        __sv   = scipy.linalg.svdvals( __Ensemble )
+        __svsq = __sv**2
+    elif __Using == "SVD":
+        _, __sv, _ = numpy.linalg.svd( __Ensemble )
+        __svsq = __sv**2
+    elif __Using == "EIG":  # Lent
+        __eva, __eve = numpy.linalg.eig( __Ensemble @ __Ensemble.T )
+        __svsq = numpy.sort(numpy.abs(numpy.real( __eva )))[::-1]
+        __sv   = numpy.sqrt( __svsq )
+    elif __Using == "EIGH":
+        __eva, __eve = numpy.linalg.eigh( __Ensemble @ __Ensemble.T )
+        __svsq = numpy.sort(numpy.abs(numpy.real( __eva )))[::-1]
+        __sv   = numpy.sqrt( __svsq )
+    elif __Using == "EIGVALS":
+        __eva  = numpy.linalg.eigvals( __Ensemble @ __Ensemble.T )
+        __svsq = numpy.sort(numpy.abs(numpy.real( __eva )))[::-1]
+        __sv   = numpy.sqrt( __svsq )
+    elif __Using == "EIGVALSH":
+        __eva = numpy.linalg.eigvalsh( __Ensemble @ __Ensemble.T )
+        __svsq = numpy.sort(numpy.abs(numpy.real( __eva )))[::-1]
+        __sv   = numpy.sqrt( __svsq )
     else:
-        raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
-    #
-    IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-    MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
-    #
-    # Correction pour pallier a un bug de TNC sur le retour du Minimum
-    # ----------------------------------------------------------------
-    if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
-        Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
-    #
-    # Obtention de l'analyse
-    # ----------------------
-    Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
-    #
-    selfA.StoredVariables["Analysis"].store( Xa.A1 )
+        raise ValueError("Error in requested variant name: %s"%__Using)
     #
-    if selfA._toStore("OMA") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("SimulatedObservationAtOptimum"):
-        if selfA._toStore("SimulatedObservationAtCurrentState"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
-        elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
-        else:
-            HXa = Hm( Xa )
-    #
-    # Calcul de la covariance d'analyse
-    # ---------------------------------
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("JacobianMatrixAtOptimum") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
-        HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
-        HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles"):
-        HessienneI = []
-        nb = Xa.size
-        for i in range(nb):
-            _ee    = numpy.matrix(numpy.zeros(nb)).T
-            _ee[i] = 1.
-            _HtEE  = numpy.dot(HtM,_ee)
-            _HtEE  = numpy.asmatrix(numpy.ravel( _HtEE )).T
-            HessienneI.append( numpy.ravel( BI*_ee + HaM * (RI * _HtEE) ) )
-        HessienneI = numpy.matrix( HessienneI )
-        A = HessienneI.I
-        if min(A.shape) != max(A.shape):
-            raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
-        if (numpy.diag(A) < 0).any():
-            raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
-        if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
-            try:
-                L = numpy.linalg.cholesky( A )
-            except:
-                raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
-    if selfA._toStore("APosterioriCovariance"):
-        selfA.StoredVariables["APosterioriCovariance"].store( A )
-    if selfA._toStore("JacobianMatrixAtOptimum"):
-        selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
-    if selfA._toStore("KalmanGainAtOptimum"):
-        if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
-        elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
-        selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
-    #
-    # Calculs et/ou stockages supplémentaires
-    # ---------------------------------------
-    if selfA._toStore("Innovation") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("MahalanobisConsistency") or \
-        selfA._toStore("OMB"):
-        d  = Y - HXb
-    if selfA._toStore("Innovation"):
-        selfA.StoredVariables["Innovation"].store( numpy.ravel(d) )
-    if selfA._toStore("BMA"):
-        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
-    if selfA._toStore("OMA"):
-        selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
-    if selfA._toStore("OMB"):
-        selfA.StoredVariables["OMB"].store( numpy.ravel(d) )
-    if selfA._toStore("SigmaObs2"):
-        TraceR = R.trace(Y.size)
-        selfA.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
-    if selfA._toStore("MahalanobisConsistency"):
-        selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
-    if selfA._toStore("SimulationQuantiles"):
-        nech = selfA._parameters["NumberOfSamplesForQuantiles"]
-        HXa  = numpy.matrix(numpy.ravel( HXa )).T
-        YfQ  = None
-        for i in range(nech):
-            if selfA._parameters["SimulationForQuantiles"] == "Linear":
-                dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
-                dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
-                Yr = HXa + dYr
-            elif selfA._parameters["SimulationForQuantiles"] == "NonLinear":
-                Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
-                Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
-            if YfQ is None:
-                YfQ = Yr
-            else:
-                YfQ = numpy.hstack((YfQ,Yr))
-        YfQ.sort(axis=-1)
-        YQ = None
-        for quantile in selfA._parameters["Quantiles"]:
-            if not (0. <= float(quantile) <= 1.): continue
-            indice = int(nech * float(quantile) - 1./nech)
-            if YQ is None: YQ = YfQ[:,indice]
-            else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
-        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
-    if selfA._toStore("SimulatedObservationAtBackground"):
-        selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
-    if selfA._toStore("SimulatedObservationAtOptimum"):
-        selfA.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
+    __tisv = __svsq / __svsq.sum()
+    __qisv = 1. - __svsq.cumsum() / __svsq.sum()
+    # Différence à 1.e-16 : __qisv = 1. - __tisv.cumsum()
     #
-    return 0
+    return __sv, __svsq, __tisv, __qisv
 
 # ==============================================================================
-def van3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
-    """
-    3DVAR variational analysis with no inversion of B (Huang 2000)
+def MaxL2NormByColumn(__Ensemble, __LcCsts = False, __IncludedPoints = []):
+    "Maximum des normes L2 calculées par colonne"
+    if __LcCsts and len(__IncludedPoints) > 0:
+        normes = numpy.linalg.norm(
+            numpy.take(__Ensemble, __IncludedPoints, axis=0, mode='clip'),
+            axis = 0,
+        )
+    else:
+        normes = numpy.linalg.norm( __Ensemble, axis = 0)
+    nmax = numpy.max(normes)
+    imax = numpy.argmax(normes)
+    return nmax, imax, normes
 
-    selfA est identique au "self" d'algorithme appelant et contient les
-    valeurs.
-    """
-    #
-    # Correction pour pallier a un bug de TNC sur le retour du Minimum
-    if "Minimizer" in selfA._parameters and selfA._parameters["Minimizer"] == "TNC":
-        selfA.setParameterValue("StoreInternalVariables",True)
-    #
-    # Initialisations
-    # ---------------
-    Hm = HO["Direct"].appliedTo
-    Ha = HO["Adjoint"].appliedInXTo
-    #
-    # Précalcul des inversions de B et R
-    BT = B.getT()
-    RI = R.getI()
-    #
-    # Point de démarrage de l'optimisation
-    Xini = numpy.zeros(Xb.shape)
-    #
-    # Définition de la fonction-coût
-    # ------------------------------
-    def CostFunction(v):
-        _V = numpy.asmatrix(numpy.ravel( v )).T
-        _X = Xb + B * _V
-        if selfA._parameters["StoreInternalVariables"] or \
-            selfA._toStore("CurrentState") or \
-            selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentState"].store( _X )
-        _HX = Hm( _X )
-        _HX = numpy.asmatrix(numpy.ravel( _HX )).T
-        _Innovation = Y - _HX
-        if selfA._toStore("SimulatedObservationAtCurrentState") or \
-            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
-        #
-        Jb  = float( 0.5 * _V.T * BT * _V )
-        Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-        J   = Jb + Jo
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
-        selfA.StoredVariables["CostFunctionJb"].store( Jb )
-        selfA.StoredVariables["CostFunctionJo"].store( Jo )
-        selfA.StoredVariables["CostFunctionJ" ].store( J )
-        if selfA._toStore("IndexOfOptimum") or \
-            selfA._toStore("CurrentOptimum") or \
-            selfA._toStore("CostFunctionJAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
-            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-        if selfA._toStore("IndexOfOptimum"):
-            selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-        if selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
-        if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
-        if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-        if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-        if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        return J
-    #
-    def GradientOfCostFunction(v):
-        _V = numpy.asmatrix(numpy.ravel( v )).T
-        _X = Xb + B * _V
-        _HX     = Hm( _X )
-        _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
-        GradJb  = BT * _V
-        GradJo  = - Ha( (_X, RI * (Y - _HX)) )
-        GradJ   = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
-        return GradJ
-    #
-    # Minimisation de la fonctionnelle
-    # --------------------------------
-    nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
-    #
-    if selfA._parameters["Minimizer"] == "LBFGSB":
-        if "0.19" <= scipy.version.version <= "1.1.0":
-            import lbfgsbhlt as optimiseur
-        else:
-            import scipy.optimize as optimiseur
-        Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
-            factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            iprint      = selfA._parameters["optiprint"],
-            )
-        nfeval = Informations['funcalls']
-        rc     = Informations['warnflag']
-    elif selfA._parameters["Minimizer"] == "TNC":
-        Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"],
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            ftol        = selfA._parameters["CostDecrementTolerance"],
-            messages    = selfA._parameters["optmessages"],
-            )
-    elif selfA._parameters["Minimizer"] == "CG":
-        Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "NCG":
-        Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            avextol     = selfA._parameters["CostDecrementTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "BFGS":
-        Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
+def MaxLinfNormByColumn(__Ensemble, __LcCsts = False, __IncludedPoints = []):
+    "Maximum des normes Linf calculées par colonne"
+    if __LcCsts and len(__IncludedPoints) > 0:
+        normes = numpy.linalg.norm(
+            numpy.take(__Ensemble, __IncludedPoints, axis=0, mode='clip'),
+            axis = 0, ord=numpy.inf,
+        )
     else:
-        raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
-    #
-    IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-    MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
-    #
-    # Correction pour pallier a un bug de TNC sur le retour du Minimum
-    # ----------------------------------------------------------------
-    if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
-        Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
-        Minimum = numpy.asmatrix(numpy.ravel( Minimum )).T
+        normes = numpy.linalg.norm( __Ensemble, axis = 0, ord=numpy.inf)
+    nmax = numpy.max(normes)
+    imax = numpy.argmax(normes)
+    return nmax, imax, normes
+
+def InterpolationErrorByColumn(
+        __Ensemble = None, __Basis = None, __Points = None, __M = 2,  # Usage 1
+        __Differences = None,                                         # Usage 2
+        __ErrorNorm = None,                                           # Commun
+        __LcCsts = False, __IncludedPoints = [],                      # Commun
+        __CDM = False,  # ComputeMaxDifference                        # Commun
+        __RMU = False,  # ReduceMemoryUse                             # Commun
+        __FTL = False,  # ForceTril                                   # Commun
+        ):   # noqa: E123
+    "Analyse des normes d'erreurs d'interpolation calculées par colonne"
+    if __ErrorNorm == "L2":
+        NormByColumn = MaxL2NormByColumn
     else:
-        Minimum = Xb + B * numpy.asmatrix(numpy.ravel( Minimum )).T
-    #
-    # Obtention de l'analyse
-    # ----------------------
-    Xa = Minimum
+        NormByColumn = MaxLinfNormByColumn
     #
-    selfA.StoredVariables["Analysis"].store( Xa )
-    #
-    if selfA._toStore("OMA") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("SimulatedObservationAtOptimum"):
-        if selfA._toStore("SimulatedObservationAtCurrentState"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
-        elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
+    if __Differences is None and not __RMU:  # Usage 1
+        if __FTL:
+            rBasis = numpy.tril( __Basis[__Points, :] )
         else:
-            HXa = Hm( Xa )
-    #
-    # Calcul de la covariance d'analyse
-    # ---------------------------------
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("JacobianMatrixAtOptimum") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
-        HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
-        HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles"):
-        BI = B.getI()
-        HessienneI = []
-        nb = Xa.size
-        for i in range(nb):
-            _ee    = numpy.matrix(numpy.zeros(nb)).T
-            _ee[i] = 1.
-            _HtEE  = numpy.dot(HtM,_ee)
-            _HtEE  = numpy.asmatrix(numpy.ravel( _HtEE )).T
-            HessienneI.append( numpy.ravel( BI*_ee + HaM * (RI * _HtEE) ) )
-        HessienneI = numpy.matrix( HessienneI )
-        A = HessienneI.I
-        if min(A.shape) != max(A.shape):
-            raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
-        if (numpy.diag(A) < 0).any():
-            raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
-        if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
-            try:
-                L = numpy.linalg.cholesky( A )
-            except:
-                raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
-    if selfA._toStore("APosterioriCovariance"):
-        selfA.StoredVariables["APosterioriCovariance"].store( A )
-    if selfA._toStore("JacobianMatrixAtOptimum"):
-        selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
-    if selfA._toStore("KalmanGainAtOptimum"):
-        if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
-        elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
-        selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
-    #
-    # Calculs et/ou stockages supplémentaires
-    # ---------------------------------------
-    if selfA._toStore("Innovation") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("MahalanobisConsistency") or \
-        selfA._toStore("OMB"):
-        d  = Y - HXb
-    if selfA._toStore("Innovation"):
-        selfA.StoredVariables["Innovation"].store( numpy.ravel(d) )
-    if selfA._toStore("BMA"):
-        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
-    if selfA._toStore("OMA"):
-        selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
-    if selfA._toStore("OMB"):
-        selfA.StoredVariables["OMB"].store( numpy.ravel(d) )
-    if selfA._toStore("SigmaObs2"):
-        TraceR = R.trace(Y.size)
-        selfA.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
-    if selfA._toStore("MahalanobisConsistency"):
-        selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
-    if selfA._toStore("SimulationQuantiles"):
-        nech = selfA._parameters["NumberOfSamplesForQuantiles"]
-        HXa  = numpy.matrix(numpy.ravel( HXa )).T
-        YfQ  = None
-        for i in range(nech):
-            if selfA._parameters["SimulationForQuantiles"] == "Linear":
-                dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
-                dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
-                Yr = HXa + dYr
-            elif selfA._parameters["SimulationForQuantiles"] == "NonLinear":
-                Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
-                Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
-            if YfQ is None:
-                YfQ = Yr
-            else:
-                YfQ = numpy.hstack((YfQ,Yr))
-        YfQ.sort(axis=-1)
-        YQ = None
-        for quantile in selfA._parameters["Quantiles"]:
-            if not (0. <= float(quantile) <= 1.): continue
-            indice = int(nech * float(quantile) - 1./nech)
-            if YQ is None: YQ = YfQ[:,indice]
-            else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
-        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
-    if selfA._toStore("SimulatedObservationAtBackground"):
-        selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
-    if selfA._toStore("SimulatedObservationAtOptimum"):
-        selfA.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
-    #
-    return 0
-
-# ==============================================================================
-def incr3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
-    """
-    3DVAR incrémental (Courtier 1994, 1997)
-
-    selfA est identique au "self" d'algorithme appelant et contient les
-    valeurs.
-    """
-    #
-    # Correction pour pallier a un bug de TNC sur le retour du Minimum
-    if "Minimizer" in selfA._parameters and selfA._parameters["Minimizer"] == "TNC":
-        selfA.setParameterValue("StoreInternalVariables",True)
-    #
-    # Initialisations
-    # ---------------
-    #
-    # Opérateur non-linéaire pour la boucle externe
-    Hm = HO["Direct"].appliedTo
-    #
-    # Précalcul des inversions de B et R
-    BI = B.getI()
-    RI = R.getI()
-    #
-    # Point de démarrage de l'optimisation
-    Xini = selfA._parameters["InitializationPoint"]
-    #
-    HXb = numpy.asmatrix(numpy.ravel( Hm( Xb ) )).T
-    Innovation = Y - HXb
-    #
-    # Outer Loop
-    # ----------
-    iOuter = 0
-    J      = 1./mpr
-    DeltaJ = 1./mpr
-    Xr     = Xini.reshape((-1,1))
-    while abs(DeltaJ) >= selfA._parameters["CostDecrementTolerance"] and iOuter <= selfA._parameters["MaximumNumberOfSteps"]:
+            rBasis = __Basis[__Points, :]
+        rEnsemble = __Ensemble[__Points, :]
         #
-        # Inner Loop
-        # ----------
-        Ht = HO["Tangent"].asMatrix(Xr)
-        Ht = Ht.reshape(Y.size,Xr.size) # ADAO & check shape
+        if __M > 1:
+            rBasis_inv = numpy.linalg.inv(rBasis)
+            Interpolator = numpy.dot(__Basis, numpy.dot(rBasis_inv, rEnsemble))
+        else:
+            rBasis_inv = 1. / rBasis
+            Interpolator = numpy.outer(__Basis, numpy.outer(rBasis_inv, rEnsemble))
         #
-        # Définition de la fonction-coût
-        # ------------------------------
-        def CostFunction(dx):
-            _dX  = numpy.asmatrix(numpy.ravel( dx )).T
-            if selfA._parameters["StoreInternalVariables"] or \
-                selfA._toStore("CurrentState") or \
-                selfA._toStore("CurrentOptimum"):
-                selfA.StoredVariables["CurrentState"].store( Xb + _dX )
-            _HdX = Ht * _dX
-            _HdX = numpy.asmatrix(numpy.ravel( _HdX )).T
-            _dInnovation = Innovation - _HdX
-            if selfA._toStore("SimulatedObservationAtCurrentState") or \
-                selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HXb + _HdX )
-            if selfA._toStore("InnovationAtCurrentState"):
-                selfA.StoredVariables["InnovationAtCurrentState"].store( _dInnovation )
-            #
-            Jb  = float( 0.5 * _dX.T * BI * _dX )
-            Jo  = float( 0.5 * _dInnovation.T * RI * _dInnovation )
-            J   = Jb + Jo
-            #
-            selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
-            selfA.StoredVariables["CostFunctionJb"].store( Jb )
-            selfA.StoredVariables["CostFunctionJo"].store( Jo )
-            selfA.StoredVariables["CostFunctionJ" ].store( J )
-            if selfA._toStore("IndexOfOptimum") or \
-                selfA._toStore("CurrentOptimum") or \
-                selfA._toStore("CostFunctionJAtCurrentOptimum") or \
-                selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
-                selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
-                selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-            if selfA._toStore("IndexOfOptimum"):
-                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-            if selfA._toStore("CurrentOptimum"):
-                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
-            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
-            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-            return J
+        differences = __Ensemble - Interpolator
         #
-        def GradientOfCostFunction(dx):
-            _dX          = numpy.asmatrix(numpy.ravel( dx )).T
-            _HdX         = Ht * _dX
-            _HdX         = numpy.asmatrix(numpy.ravel( _HdX )).T
-            _dInnovation = Innovation - _HdX
-            GradJb       = BI * _dX
-            GradJo       = - Ht.T @ (RI * _dInnovation)
-            GradJ        = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
-            return GradJ
+        error, nbr, _ = NormByColumn(differences, __LcCsts, __IncludedPoints)
         #
-        # Minimisation de la fonctionnelle
-        # --------------------------------
-        nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+        if __CDM:
+            maxDifference = differences[:, nbr]
         #
-        if selfA._parameters["Minimizer"] == "LBFGSB":
-            # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
-            if "0.19" <= scipy.version.version <= "1.1.0":
-                import lbfgsbhlt as optimiseur
-            else:
-                import scipy.optimize as optimiseur
-            Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
-                func        = CostFunction,
-                x0          = numpy.zeros(Xini.size),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                bounds      = selfA._parameters["Bounds"],
-                maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
-                factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
-                pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-                iprint      = selfA._parameters["optiprint"],
-                )
-            nfeval = Informations['funcalls']
-            rc     = Informations['warnflag']
-        elif selfA._parameters["Minimizer"] == "TNC":
-            Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
-                func        = CostFunction,
-                x0          = numpy.zeros(Xini.size),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                bounds      = selfA._parameters["Bounds"],
-                maxfun      = selfA._parameters["MaximumNumberOfSteps"],
-                pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-                ftol        = selfA._parameters["CostDecrementTolerance"],
-                messages    = selfA._parameters["optmessages"],
-                )
-        elif selfA._parameters["Minimizer"] == "CG":
-            Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
-                f           = CostFunction,
-                x0          = numpy.zeros(Xini.size),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-                gtol        = selfA._parameters["GradientNormTolerance"],
-                disp        = selfA._parameters["optdisp"],
-                full_output = True,
-                )
-        elif selfA._parameters["Minimizer"] == "NCG":
-            Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
-                f           = CostFunction,
-                x0          = numpy.zeros(Xini.size),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-                avextol     = selfA._parameters["CostDecrementTolerance"],
-                disp        = selfA._parameters["optdisp"],
-                full_output = True,
-                )
-        elif selfA._parameters["Minimizer"] == "BFGS":
-            Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
-                f           = CostFunction,
-                x0          = numpy.zeros(Xini.size),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-                gtol        = selfA._parameters["GradientNormTolerance"],
-                disp        = selfA._parameters["optdisp"],
-                full_output = True,
-                )
+    elif __Differences is None and __RMU:  # Usage 1
+        if __FTL:
+            rBasis = numpy.tril( __Basis[__Points, :] )
         else:
-            raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+            rBasis = __Basis[__Points, :]
+        rEnsemble = __Ensemble[__Points, :]
         #
-        IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-        MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
-        #
-        if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
-            Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
-            Minimum = numpy.asmatrix(numpy.ravel( Minimum )).T
+        if __M > 1:
+            rBasis_inv = numpy.linalg.inv(rBasis)
+            rCoordinates = numpy.dot(rBasis_inv, rEnsemble)
         else:
-            Minimum = Xb + numpy.asmatrix(numpy.ravel( Minimum )).T
+            rBasis_inv = 1. / rBasis
+            rCoordinates = numpy.outer(rBasis_inv, rEnsemble)
+        #
+        error = 0.
+        nbr = -1
+        for iCol in range(__Ensemble.shape[1]):
+            if __M > 1:
+                iDifference = __Ensemble[:, iCol] - numpy.dot(__Basis, rCoordinates[:, iCol])
+            else:
+                iDifference = __Ensemble[:, iCol] - numpy.ravel(numpy.outer(__Basis, rCoordinates[:, iCol]))
+            #
+            normDifference, _, _ = NormByColumn(iDifference, __LcCsts, __IncludedPoints)
+            #
+            if normDifference > error:
+                error         = normDifference
+                nbr           = iCol
         #
-        Xr     = Minimum
-        DeltaJ = selfA.StoredVariables["CostFunctionJ" ][-1] - J
-        iOuter = selfA.StoredVariables["CurrentIterationNumber"][-1]
-    #
-    # Obtention de l'analyse
-    # ----------------------
-    Xa = Xr
-    #
-    selfA.StoredVariables["Analysis"].store( Xa )
-    #
-    if selfA._toStore("OMA") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("SimulatedObservationAtOptimum"):
-        if selfA._toStore("SimulatedObservationAtCurrentState"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
-        elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
-        else:
-            HXa = Hm( Xa )
+        if __CDM:
+            maxDifference = __Ensemble[:, nbr] - numpy.dot(__Basis, rCoordinates[:, nbr])
+        #
+    else:  # Usage 2
+        differences = __Differences
+        #
+        error, nbr, _ = NormByColumn(differences, __LcCsts, __IncludedPoints)
+        #
+        if __CDM:
+            # faire cette variable intermédiaire coûte cher
+            maxDifference = differences[:, nbr]
     #
-    # Calcul de la covariance d'analyse
-    # ---------------------------------
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("JacobianMatrixAtOptimum") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
-        HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
-        HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles"):
-        HessienneI = []
-        nb = Xa.size
-        for i in range(nb):
-            _ee    = numpy.matrix(numpy.zeros(nb)).T
-            _ee[i] = 1.
-            _HtEE  = numpy.dot(HtM,_ee)
-            _HtEE  = numpy.asmatrix(numpy.ravel( _HtEE )).T
-            HessienneI.append( numpy.ravel( BI*_ee + HaM * (RI * _HtEE) ) )
-        HessienneI = numpy.matrix( HessienneI )
-        A = HessienneI.I
-        if min(A.shape) != max(A.shape):
-            raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
-        if (numpy.diag(A) < 0).any():
-            raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
-        if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
-            try:
-                L = numpy.linalg.cholesky( A )
-            except:
-                raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
-    if selfA._toStore("APosterioriCovariance"):
-        selfA.StoredVariables["APosterioriCovariance"].store( A )
-    if selfA._toStore("JacobianMatrixAtOptimum"):
-        selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
-    if selfA._toStore("KalmanGainAtOptimum"):
-        if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
-        elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
-        selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
+    if __CDM:
+        return error, nbr, maxDifference
+    else:
+        return error, nbr
+
+# ==============================================================================
+def EnsemblePerturbationWithGivenCovariance(
+        __Ensemble,
+        __Covariance,
+        __Seed = None ):
+    "Ajout d'une perturbation à chaque membre d'un ensemble selon une covariance prescrite"
+    if hasattr(__Covariance, "assparsematrix"):
+        if (abs(__Ensemble).mean() > mpr) and (abs(__Covariance.assparsematrix()) / abs(__Ensemble).mean() < mpr).all():
+            # Traitement d'une covariance nulle ou presque
+            return __Ensemble
+        if (abs(__Ensemble).mean() <= mpr) and (abs(__Covariance.assparsematrix()) < mpr).all():
+            # Traitement d'une covariance nulle ou presque
+            return __Ensemble
+    else:
+        if (abs(__Ensemble).mean() > mpr) and (abs(__Covariance) / abs(__Ensemble).mean() < mpr).all():
+            # Traitement d'une covariance nulle ou presque
+            return __Ensemble
+        if (abs(__Ensemble).mean() <= mpr) and (abs(__Covariance) < mpr).all():
+            # Traitement d'une covariance nulle ou presque
+            return __Ensemble
+    #
+    __n, __m = __Ensemble.shape
+    if __Seed is not None:
+        numpy.random.seed(__Seed)
+    #
+    if hasattr(__Covariance, "isscalar") and __Covariance.isscalar():
+        # Traitement d'une covariance multiple de l'identité
+        __zero = 0.
+        __std  = numpy.sqrt(__Covariance.assparsematrix())
+        __Ensemble += numpy.random.normal(__zero, __std, size=(__m, __n)).T
+    #
+    elif hasattr(__Covariance, "isvector") and __Covariance.isvector():
+        # Traitement d'une covariance diagonale avec variances non identiques
+        __zero = numpy.zeros(__n)
+        __std  = numpy.sqrt(__Covariance.assparsematrix())
+        __Ensemble += numpy.asarray([numpy.random.normal(__zero, __std) for i in range(__m)]).T
+    #
+    elif hasattr(__Covariance, "ismatrix") and __Covariance.ismatrix():
+        # Traitement d'une covariance pleine
+        __Ensemble += numpy.random.multivariate_normal(numpy.zeros(__n), __Covariance.asfullmatrix(__n), size=__m).T
+    #
+    elif isinstance(__Covariance, numpy.ndarray):
+        # Traitement d'une covariance numpy pleine, sachant qu'on arrive ici en dernier
+        __Ensemble += numpy.random.multivariate_normal(numpy.zeros(__n), __Covariance, size=__m).T
     #
-    # Calculs et/ou stockages supplémentaires
-    # ---------------------------------------
-    if selfA._toStore("Innovation") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("MahalanobisConsistency") or \
-        selfA._toStore("OMB"):
-        d  = Y - HXb
-    if selfA._toStore("Innovation"):
-        selfA.StoredVariables["Innovation"].store( numpy.ravel(d) )
-    if selfA._toStore("BMA"):
-        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
-    if selfA._toStore("OMA"):
-        selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
-    if selfA._toStore("OMB"):
-        selfA.StoredVariables["OMB"].store( numpy.ravel(d) )
-    if selfA._toStore("SigmaObs2"):
-        TraceR = R.trace(Y.size)
-        selfA.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
-    if selfA._toStore("MahalanobisConsistency"):
-        selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
-    if selfA._toStore("SimulationQuantiles"):
-        nech = selfA._parameters["NumberOfSamplesForQuantiles"]
-        HXa  = numpy.matrix(numpy.ravel( HXa )).T
-        YfQ  = None
-        for i in range(nech):
-            if selfA._parameters["SimulationForQuantiles"] == "Linear":
-                dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
-                dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
-                Yr = HXa + dYr
-            elif selfA._parameters["SimulationForQuantiles"] == "NonLinear":
-                Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
-                Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
-            if YfQ is None:
-                YfQ = Yr
-            else:
-                YfQ = numpy.hstack((YfQ,Yr))
-        YfQ.sort(axis=-1)
-        YQ = None
-        for quantile in selfA._parameters["Quantiles"]:
-            if not (0. <= float(quantile) <= 1.): continue
-            indice = int(nech * float(quantile) - 1./nech)
-            if YQ is None: YQ = YfQ[:,indice]
-            else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
-        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
-    if selfA._toStore("SimulatedObservationAtBackground"):
-        selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
-    if selfA._toStore("SimulatedObservationAtOptimum"):
-        selfA.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
+    else:
+        raise ValueError("Error in ensemble perturbation with inadequate covariance specification")
     #
-    return 0
+    return __Ensemble
 
 # ==============================================================================
-def psas3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+def CovarianceInflation(
+        __InputCovOrEns,
+        __InflationType   = None,
+        __InflationFactor = None,
+        __BackgroundCov   = None ):
     """
-    3DVAR PSAS (Huang 2000)
+    Inflation applicable soit sur Pb ou Pa, soit sur les ensembles EXb ou EXa
 
-    selfA est identique au "self" d'algorithme appelant et contient les
-    valeurs.
+    Synthèse : Hunt 2007, section 2.3.5
     """
-    #
-    # Correction pour pallier a un bug de TNC sur le retour du Minimum
-    if "Minimizer" in selfA._parameters and selfA._parameters["Minimizer"] == "TNC":
-        selfA.setParameterValue("StoreInternalVariables",True)
-    #
-    # Initialisations
-    # ---------------
-    #
-    # Opérateurs
-    Hm = HO["Direct"].appliedTo
-    #
-    # Utilisation éventuelle d'un vecteur H(Xb) précalculé
-    if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
-        HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
+    if __InflationFactor is None:
+        return __InputCovOrEns
     else:
-        HXb = Hm( Xb )
-    HXb = numpy.asmatrix(numpy.ravel( HXb )).T
-    if Y.size != HXb.size:
-        raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
-    if max(Y.shape) != max(HXb.shape):
-        raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
-    #
-    if selfA._toStore("JacobianMatrixAtBackground"):
-        HtMb = HO["Tangent"].asMatrix(ValueForMethodForm = Xb)
-        HtMb = HtMb.reshape(Y.size,Xb.size) # ADAO & check shape
-        selfA.StoredVariables["JacobianMatrixAtBackground"].store( HtMb )
-    #
-    Ht = HO["Tangent"].asMatrix(Xb)
-    BHT = B * Ht.T
-    HBHTpR = R + Ht * BHT
-    Innovation = Y - HXb
+        __InflationFactor = float(__InflationFactor)
     #
-    # Point de démarrage de l'optimisation
-    Xini = numpy.zeros(Xb.shape)
-    #
-    # Définition de la fonction-coût
-    # ------------------------------
-    def CostFunction(w):
-        _W = numpy.asmatrix(numpy.ravel( w )).T
-        if selfA._parameters["StoreInternalVariables"] or \
-            selfA._toStore("CurrentState") or \
-            selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentState"].store( Xb + BHT * _W )
-        if selfA._toStore("SimulatedObservationAtCurrentState") or \
-            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( Hm( Xb + BHT * _W ) )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( Innovation )
-        #
-        Jb  = float( 0.5 * _W.T * HBHTpR * _W )
-        Jo  = float( - _W.T * Innovation )
-        J   = Jb + Jo
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
-        selfA.StoredVariables["CostFunctionJb"].store( Jb )
-        selfA.StoredVariables["CostFunctionJo"].store( Jo )
-        selfA.StoredVariables["CostFunctionJ" ].store( J )
-        if selfA._toStore("IndexOfOptimum") or \
-            selfA._toStore("CurrentOptimum") or \
-            selfA._toStore("CostFunctionJAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
-            selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
-            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-        if selfA._toStore("IndexOfOptimum"):
-            selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-        if selfA._toStore("CurrentOptimum"):
-            selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
-        if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
-        if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-        if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-        if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-            selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        return J
+    __InputCovOrEns = numpy.asarray(__InputCovOrEns)
+    if __InputCovOrEns.size == 0:
+        return __InputCovOrEns
     #
-    def GradientOfCostFunction(w):
-        _W = numpy.asmatrix(numpy.ravel( w )).T
-        GradJb  = HBHTpR * _W
-        GradJo  = - Innovation
-        GradJ   = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
-        return GradJ
+    if __InflationType in ["MultiplicativeOnAnalysisCovariance", "MultiplicativeOnBackgroundCovariance"]:
+        if __InflationFactor < 1.:
+            raise ValueError("Inflation factor for multiplicative inflation has to be greater or equal than 1.")
+        if __InflationFactor < 1. + mpr:  # No inflation = 1
+            return __InputCovOrEns
+        __OutputCovOrEns = __InflationFactor**2 * __InputCovOrEns
     #
-    # Minimisation de la fonctionnelle
-    # --------------------------------
-    nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+    elif __InflationType in ["MultiplicativeOnAnalysisAnomalies", "MultiplicativeOnBackgroundAnomalies"]:
+        if __InflationFactor < 1.:
+            raise ValueError("Inflation factor for multiplicative inflation has to be greater or equal than 1.")
+        if __InflationFactor < 1. + mpr:  # No inflation = 1
+            return __InputCovOrEns
+        __InputCovOrEnsMean = __InputCovOrEns.mean(axis=1, dtype=mfp).astype('float')
+        __OutputCovOrEns = __InputCovOrEnsMean[:, numpy.newaxis] \
+            + __InflationFactor * (__InputCovOrEns - __InputCovOrEnsMean[:, numpy.newaxis])
+    #
+    elif __InflationType in ["AdditiveOnAnalysisCovariance", "AdditiveOnBackgroundCovariance"]:
+        if __InflationFactor < 0.:
+            raise ValueError("Inflation factor for additive inflation has to be greater or equal than 0.")
+        if __InflationFactor < mpr:  # No inflation = 0
+            return __InputCovOrEns
+        __n, __m = __InputCovOrEns.shape
+        if __n != __m:
+            raise ValueError("Additive inflation can only be applied to squared (covariance) matrix.")
+        __tr = __InputCovOrEns.trace() / __n
+        if __InflationFactor > __tr:
+            raise ValueError("Inflation factor for additive inflation has to be small over %.0e."%__tr)
+        __OutputCovOrEns = (1. - __InflationFactor) * __InputCovOrEns + __InflationFactor * numpy.identity(__n)
     #
-    if selfA._parameters["Minimizer"] == "LBFGSB":
-        # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
-        if "0.19" <= scipy.version.version <= "1.1.0":
-            import lbfgsbhlt as optimiseur
-        else:
-            import scipy.optimize as optimiseur
-        Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
-            factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            iprint      = selfA._parameters["optiprint"],
-            )
-        nfeval = Informations['funcalls']
-        rc     = Informations['warnflag']
-    elif selfA._parameters["Minimizer"] == "TNC":
-        Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
-            func        = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            bounds      = selfA._parameters["Bounds"],
-            maxfun      = selfA._parameters["MaximumNumberOfSteps"],
-            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
-            ftol        = selfA._parameters["CostDecrementTolerance"],
-            messages    = selfA._parameters["optmessages"],
-            )
-    elif selfA._parameters["Minimizer"] == "CG":
-        Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "NCG":
-        Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            avextol     = selfA._parameters["CostDecrementTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    elif selfA._parameters["Minimizer"] == "BFGS":
-        Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
-            f           = CostFunction,
-            x0          = Xini,
-            fprime      = GradientOfCostFunction,
-            args        = (),
-            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
-            gtol        = selfA._parameters["GradientNormTolerance"],
-            disp        = selfA._parameters["optdisp"],
-            full_output = True,
-            )
-    else:
-        raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+    elif __InflationType == "HybridOnBackgroundCovariance":
+        if __InflationFactor < 0.:
+            raise ValueError("Inflation factor for hybrid inflation has to be greater or equal than 0.")
+        if __InflationFactor < mpr:  # No inflation = 0
+            return __InputCovOrEns
+        __n, __m = __InputCovOrEns.shape
+        if __n != __m:
+            raise ValueError("Additive inflation can only be applied to squared (covariance) matrix.")
+        if __BackgroundCov is None:
+            raise ValueError("Background covariance matrix B has to be given for hybrid inflation.")
+        if __InputCovOrEns.shape != __BackgroundCov.shape:
+            raise ValueError("Ensemble covariance matrix has to be of same size than background covariance matrix B.")
+        __OutputCovOrEns = (1. - __InflationFactor) * __InputCovOrEns + __InflationFactor * __BackgroundCov
     #
-    IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-    MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
+    elif __InflationType == "Relaxation":
+        raise NotImplementedError("Relaxation inflation type not implemented")
     #
-    # Correction pour pallier a un bug de TNC sur le retour du Minimum
-    # ----------------------------------------------------------------
-    if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
-        Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
-        Minimum = numpy.asmatrix(numpy.ravel( Minimum )).T
     else:
-        Minimum = Xb + BHT * numpy.asmatrix(numpy.ravel( Minimum )).T
-    #
-    # Obtention de l'analyse
-    # ----------------------
-    Xa = Minimum
-    #
-    selfA.StoredVariables["Analysis"].store( Xa )
-    #
-    if selfA._toStore("OMA") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("SimulatedObservationAtOptimum"):
-        if selfA._toStore("SimulatedObservationAtCurrentState"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
-        elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
-        else:
-            HXa = Hm( Xa )
-    #
-    # Calcul de la covariance d'analyse
-    # ---------------------------------
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("JacobianMatrixAtOptimum") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
-        HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles") or \
-        selfA._toStore("KalmanGainAtOptimum"):
-        HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
-        HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
-    if selfA._toStore("APosterioriCovariance") or \
-        selfA._toStore("SimulationQuantiles"):
-        BI = B.getI()
-        RI = R.getI()
-        HessienneI = []
-        nb = Xa.size
-        for i in range(nb):
-            _ee    = numpy.matrix(numpy.zeros(nb)).T
-            _ee[i] = 1.
-            _HtEE  = numpy.dot(HtM,_ee)
-            _HtEE  = numpy.asmatrix(numpy.ravel( _HtEE )).T
-            HessienneI.append( numpy.ravel( BI*_ee + HaM * (RI * _HtEE) ) )
-        HessienneI = numpy.matrix( HessienneI )
-        A = HessienneI.I
-        if min(A.shape) != max(A.shape):
-            raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
-        if (numpy.diag(A) < 0).any():
-            raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
-        if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
-            try:
-                L = numpy.linalg.cholesky( A )
-            except:
-                raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
-    if selfA._toStore("APosterioriCovariance"):
-        selfA.StoredVariables["APosterioriCovariance"].store( A )
-    if selfA._toStore("JacobianMatrixAtOptimum"):
-        selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
-    if selfA._toStore("KalmanGainAtOptimum"):
-        if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
-        elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
-        selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
-    #
-    # Calculs et/ou stockages supplémentaires
-    # ---------------------------------------
-    if selfA._toStore("Innovation") or \
-        selfA._toStore("SigmaObs2") or \
-        selfA._toStore("MahalanobisConsistency") or \
-        selfA._toStore("OMB"):
-        d  = Y - HXb
-    if selfA._toStore("Innovation"):
-        selfA.StoredVariables["Innovation"].store( numpy.ravel(d) )
-    if selfA._toStore("BMA"):
-        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
-    if selfA._toStore("OMA"):
-        selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
-    if selfA._toStore("OMB"):
-        selfA.StoredVariables["OMB"].store( numpy.ravel(d) )
-    if selfA._toStore("SigmaObs2"):
-        TraceR = R.trace(Y.size)
-        selfA.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
-    if selfA._toStore("MahalanobisConsistency"):
-        selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
-    if selfA._toStore("SimulationQuantiles"):
-        nech = selfA._parameters["NumberOfSamplesForQuantiles"]
-        HXa  = numpy.matrix(numpy.ravel( HXa )).T
-        YfQ  = None
-        for i in range(nech):
-            if selfA._parameters["SimulationForQuantiles"] == "Linear":
-                dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
-                dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
-                Yr = HXa + dYr
-            elif selfA._parameters["SimulationForQuantiles"] == "NonLinear":
-                Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
-                Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
-            if YfQ is None:
-                YfQ = Yr
-            else:
-                YfQ = numpy.hstack((YfQ,Yr))
-        YfQ.sort(axis=-1)
-        YQ = None
-        for quantile in selfA._parameters["Quantiles"]:
-            if not (0. <= float(quantile) <= 1.): continue
-            indice = int(nech * float(quantile) - 1./nech)
-            if YQ is None: YQ = YfQ[:,indice]
-            else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
-        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
-    if selfA._toStore("SimulatedObservationAtBackground"):
-        selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
-    if selfA._toStore("SimulatedObservationAtOptimum"):
-        selfA.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
+        raise ValueError("Error in inflation type, '%s' is not a valid keyword."%__InflationType)
     #
-    return 0
+    return __OutputCovOrEns
 
 # ==============================================================================
-def senkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula"):
-    """
-    Stochastic EnKF (Envensen 1994, Burgers 1998)
+def HessienneEstimation( __selfA, __nb, __HaM, __HtM, __BI, __RI ):
+    "Estimation de la Hessienne"
+    #
+    __HessienneI = []
+    for i in range(int(__nb)):
+        __ee    = numpy.zeros((__nb, 1))
+        __ee[i] = 1.
+        __HtEE  = numpy.dot(__HtM, __ee).reshape((-1, 1))
+        __HessienneI.append( numpy.ravel( __BI * __ee + __HaM * (__RI * __HtEE) ) )
+    #
+    __A = numpy.linalg.inv(numpy.array( __HessienneI ))
+    __A = (__A + __A.T) * 0.5  # Symétrie
+    __A = __A + mpr * numpy.trace( __A ) * numpy.identity(__nb)  # Positivité
+    #
+    if min(__A.shape) != max(__A.shape):
+        raise ValueError(
+            "The %s a posteriori covariance matrix A"%(__selfA._name,) + \
+            " is of shape %s, despites it has to be a"%(str(__A.shape),) + \
+            " squared matrix. There is an error in the observation operator," + \
+            " please check it.")
+    if (numpy.diag(__A) < 0).any():
+        raise ValueError(
+            "The %s a posteriori covariance matrix A"%(__selfA._name,) + \
+            " has at least one negative value on its diagonal. There is an" + \
+            " error in the observation operator, please check it.")
+    if logging.getLogger().level < logging.WARNING:  # La vérification n'a lieu qu'en debug
+        try:
+            numpy.linalg.cholesky( __A )
+            logging.debug("%s La matrice de covariance a posteriori A est bien symétrique définie positive."%(__selfA._name,))
+        except Exception:
+            raise ValueError(
+                "The %s a posteriori covariance matrix A"%(__selfA._name,) + \
+                " is not symmetric positive-definite. Please check your a" + \
+                " priori covariances and your observation operator.")
+    #
+    return __A
 
-    selfA est identique au "self" d'algorithme appelant et contient les
-    valeurs.
-    """
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA._parameters["StoreInternalVariables"] = True
-    #
-    # Opérateurs
-    # ----------
-    H = HO["Direct"].appliedControledFormTo
-    #
-    if selfA._parameters["EstimationOf"] == "State":
-        M = EM["Direct"].appliedControledFormTo
-    #
-    if CM is not None and "Tangent" in CM and U is not None:
-        Cm = CM["Tangent"].asMatrix(Xb)
-    else:
-        Cm = None
-    #
-    # Nombre de pas identique au nombre de pas d'observations
-    # -------------------------------------------------------
-    if hasattr(Y,"stepnumber"):
-        duration = Y.stepnumber()
-        __p = numpy.cumprod(Y.shape())[-1]
+# ==============================================================================
+def QuantilesEstimations( selfA, A, Xa, HXa = None, Hm = None, HtM = None ):
+    "Estimation des quantiles a posteriori à partir de A>0 (selfA est modifié)"
+    nbsamples = selfA._parameters["NumberOfSamplesForQuantiles"]
+    #
+    # Traitement des bornes
+    if "StateBoundsForQuantiles" in selfA._parameters:
+        LBounds = selfA._parameters["StateBoundsForQuantiles"]  # Prioritaire
+    elif "Bounds" in selfA._parameters:
+        LBounds = selfA._parameters["Bounds"]  # Défaut raisonnable
     else:
-        duration = 2
-        __p = numpy.array(Y).size
-    #
-    # Précalcul des inversions de B et R
-    # ----------------------------------
-    if selfA._parameters["StoreInternalVariables"] \
-        or selfA._toStore("CostFunctionJ") \
-        or selfA._toStore("CostFunctionJb") \
-        or selfA._toStore("CostFunctionJo") \
-        or selfA._toStore("CurrentOptimum") \
-        or selfA._toStore("APosterioriCovariance"):
-        BI = B.getI()
-        RI = R.getI()
-    #
-    # Initialisation
-    # --------------
-    __n = Xb.size
-    __m = selfA._parameters["NumberOfMembers"]
-    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
-    else:                         Pn = B
-    if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
-    else:                         Rn = R
-    if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n)
-    else:                         Qn = Q
-    Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
-    #
-    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
-        selfA.StoredVariables["Analysis"].store( numpy.ravel(Xb) )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-            covarianceXa = Pn
-    #
-    previousJMinimum = numpy.finfo(float).max
-    #
-    for step in range(duration-1):
-        if hasattr(Y,"store"):
-            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,-1))
+        LBounds = None
+    if LBounds is not None:
+        LBounds = ForceNumericBounds( LBounds )
+    __Xa = numpy.ravel(Xa)
+    #
+    # Échantillonnage des états
+    YfQ  = None
+    EXr  = None
+    for i in range(nbsamples):
+        if selfA._parameters["SimulationForQuantiles"] == "Linear" and HtM is not None and HXa is not None:
+            dXr = (numpy.random.multivariate_normal(__Xa, A) - __Xa).reshape((-1, 1))
+            if LBounds is not None:  # "EstimateProjection" par défaut
+                dXr = numpy.max(numpy.hstack((dXr, LBounds[:, 0].reshape((-1, 1))) - __Xa.reshape((-1, 1))), axis=1)
+                dXr = numpy.min(numpy.hstack((dXr, LBounds[:, 1].reshape((-1, 1))) - __Xa.reshape((-1, 1))), axis=1)
+            dYr = HtM @ dXr
+            Yr = HXa.reshape((-1, 1)) + dYr
+            if selfA._toStore("SampledStateForQuantiles"):
+                Xr = __Xa + numpy.ravel(dXr)
+        elif selfA._parameters["SimulationForQuantiles"] == "NonLinear" and Hm is not None:
+            Xr = numpy.random.multivariate_normal(__Xa, A)
+            if LBounds is not None:  # "EstimateProjection" par défaut
+                Xr = numpy.max(numpy.hstack((Xr.reshape((-1, 1)), LBounds[:, 0].reshape((-1, 1)))), axis=1)
+                Xr = numpy.min(numpy.hstack((Xr.reshape((-1, 1)), LBounds[:, 1].reshape((-1, 1)))), axis=1)
+            Yr = numpy.asarray(Hm( Xr ))
         else:
-            Ynpu = numpy.ravel( Y ).reshape((__p,-1))
+            raise ValueError("Quantile simulations has only to be Linear or NonLinear.")
         #
-        if U is not None:
-            if hasattr(U,"store") and len(U)>1:
-                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
-            elif hasattr(U,"store") and len(U)==1:
-                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
-            else:
-                Un = numpy.asmatrix(numpy.ravel( U )).T
+        if YfQ is None:
+            YfQ = Yr.reshape((-1, 1))
+            if selfA._toStore("SampledStateForQuantiles"):
+                EXr = Xr.reshape((-1, 1))
         else:
-            Un = None
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
-            EMX = M( [(Xn[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-            qi = numpy.random.multivariate_normal(numpy.zeros(__n), Qn, size=__m).T
-            Xn_predicted = EMX + qi
-            HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-            if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
-                Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
-                Xn_predicted = Xn_predicted + Cm * Un
-        elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
-            # --- > Par principe, M = Id, Q = 0
-            Xn_predicted = Xn
-            HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-        #
-        # Mean of forecast and observation of forecast
-        Xfm  = Xn_predicted.mean(axis=1, dtype=mfp).astype('float').reshape((__n,-1))
-        Hfm  = HX_predicted.mean(axis=1, dtype=mfp).astype('float').reshape((__p,-1))
-        #
-        #--------------------------
-        if VariantM == "KalmanFilterFormula05":
-            PfHT, HPfHT = 0., 0.
-            for i in range(__m):
-                Exfi = Xn_predicted[:,i].reshape((__n,-1)) - Xfm
-                Eyfi = HX_predicted[:,i].reshape((__p,-1)) - Hfm
-                PfHT  += Exfi * Eyfi.T
-                HPfHT += Eyfi * Eyfi.T
-            PfHT  = (1./(__m-1)) * PfHT
-            HPfHT = (1./(__m-1)) * HPfHT
-            Kn     = PfHT * ( R + HPfHT ).I
-            del PfHT, HPfHT
-            #
-            for i in range(__m):
-                ri = numpy.random.multivariate_normal(numpy.zeros(__p), Rn)
-                Xn[:,i] = numpy.ravel(Xn_predicted[:,i]) + Kn @ (numpy.ravel(Ynpu) + ri - HX_predicted[:,i])
-        #--------------------------
-        elif VariantM == "KalmanFilterFormula16":
-            EpY   = EnsembleOfCenteredPerturbations(Ynpu, Rn, __m)
-            EpYm  = EpY.mean(axis=1, dtype=mfp).astype('float').reshape((__p,-1))
-            #
-            EaX   = EnsembleOfAnomalies( Xn_predicted ) / numpy.sqrt(__m-1)
-            EaY = (HX_predicted - Hfm - EpY + EpYm) / numpy.sqrt(__m-1)
-            #
-            Kn = EaX @ EaY.T @ numpy.linalg.inv( EaY @ EaY.T)
-            #
-            for i in range(__m):
-                Xn[:,i] = numpy.ravel(Xn_predicted[:,i]) + Kn @ (numpy.ravel(EpY[:,i]) - HX_predicted[:,i])
-        #--------------------------
+            YfQ = numpy.hstack((YfQ, Yr.reshape((-1, 1))))
+            if selfA._toStore("SampledStateForQuantiles"):
+                EXr = numpy.hstack((EXr, Xr.reshape((-1, 1))))
+    #
+    # Extraction des quantiles
+    YfQ.sort(axis=-1)
+    YQ = None
+    for quantile in selfA._parameters["Quantiles"]:
+        if not (0. <= float(quantile) <= 1.):
+            continue
+        indice = int(nbsamples * float(quantile) - 1. / nbsamples)
+        if YQ is None:
+            YQ = YfQ[:, indice].reshape((-1, 1))
         else:
-            raise ValueError("VariantM has to be chosen in the authorized methods list.")
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,-1))
-        #--------------------------
-        #
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("APosterioriCovariance") \
-            or selfA._toStore("InnovationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
-            _Innovation = Ynpu - _HXa
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        # ---> avec analysis
-        selfA.StoredVariables["Analysis"].store( Xa )
-        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
-        if selfA._toStore("InnovationAtCurrentAnalysis"):
-            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
-        # ---> avec current state
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CurrentState"):
-            selfA.StoredVariables["CurrentState"].store( Xn )
-        if selfA._toStore("ForecastState"):
-            selfA.StoredVariables["ForecastState"].store( EMX )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( EMX - Xa.reshape((__n,1)) )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( - HX_predicted + Ynpu )
-        if selfA._toStore("SimulatedObservationAtCurrentState") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
-        # ---> autres
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("CurrentOptimum") \
-            or selfA._toStore("APosterioriCovariance"):
-            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
-            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-            J   = Jb + Jo
-            selfA.StoredVariables["CostFunctionJb"].store( Jb )
-            selfA.StoredVariables["CostFunctionJo"].store( Jo )
-            selfA.StoredVariables["CostFunctionJ" ].store( J )
-            #
-            if selfA._toStore("IndexOfOptimum") \
-                or selfA._toStore("CurrentOptimum") \
-                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
-                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-            if selfA._toStore("IndexOfOptimum"):
-                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-            if selfA._toStore("CurrentOptimum"):
-                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
-            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
-            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        if selfA._toStore("APosterioriCovariance"):
-            Eai = EnsembleOfAnomalies( Xn ) / numpy.sqrt(__m-1) # Anomalies
-            Pn = Eai @ Eai.T
-            Pn = 0.5 * (Pn + Pn.T)
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-        if selfA._parameters["EstimationOf"] == "Parameters" \
-            and J < previousJMinimum:
-            previousJMinimum    = J
-            XaMin               = Xa
-            if selfA._toStore("APosterioriCovariance"):
-                covarianceXaMin = Pn
-    #
-    # Stockage final supplémentaire de l'optimum en estimation de paramètres
-    # ----------------------------------------------------------------------
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        selfA.StoredVariables["Analysis"].store( XaMin )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+            YQ = numpy.hstack((YQ, YfQ[:, indice].reshape((-1, 1))))
+    if YQ is not None:  # Liste non vide de quantiles
+        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
+    if selfA._toStore("SampledStateForQuantiles"):
+        selfA.StoredVariables["SampledStateForQuantiles"].store( EXr )
     #
     return 0
 
 # ==============================================================================
-def etkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula"):
-    """
-    Ensemble-Transform EnKF (ETKF or Deterministic EnKF: Bishop 2001, Hunt 2007)
+def ForceNumericBounds( __Bounds, __infNumbers = True ):
+    "Force les bornes à être des valeurs numériques, sauf si globalement None"
+    # Conserve une valeur par défaut à None s'il n'y a pas de bornes
+    if __Bounds is None:
+        return None
+    #
+    # Converti toutes les bornes individuelles None à +/- l'infini chiffré
+    __Bounds = numpy.asarray( __Bounds, dtype=float ).reshape((-1, 2))
+    if len(__Bounds.shape) != 2 or __Bounds.shape[0] == 0 or __Bounds.shape[1] != 2:
+        raise ValueError("Incorrectly shaped bounds data (effective shape is %s)"%(__Bounds.shape,))
+    if __infNumbers:
+        __Bounds[numpy.isnan(__Bounds[:, 0]), 0] = -float('inf')
+        __Bounds[numpy.isnan(__Bounds[:, 1]), 1] = float('inf')
+    else:
+        __Bounds[numpy.isnan(__Bounds[:, 0]), 0] = -sys.float_info.max
+        __Bounds[numpy.isnan(__Bounds[:, 1]), 1] = sys.float_info.max
+    return __Bounds
 
-    selfA est identique au "self" d'algorithme appelant et contient les
-    valeurs.
-    """
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA._parameters["StoreInternalVariables"] = True
-    #
-    # Opérateurs
-    # ----------
-    H = HO["Direct"].appliedControledFormTo
-    #
-    if selfA._parameters["EstimationOf"] == "State":
-        M = EM["Direct"].appliedControledFormTo
-    #
-    if CM is not None and "Tangent" in CM and U is not None:
-        Cm = CM["Tangent"].asMatrix(Xb)
+# ==============================================================================
+def RecentredBounds( __Bounds, __Center, __Scale = None ):
+    "Recentre les bornes autour de 0, sauf si globalement None"
+    # Conserve une valeur par défaut à None s'il n'y a pas de bornes
+    if __Bounds is None:
+        return None
+    #
+    if __Scale is None:
+        # Recentre les valeurs numériques de bornes
+        return ForceNumericBounds( __Bounds ) - numpy.ravel( __Center ).reshape((-1, 1))
     else:
-        Cm = None
-    #
-    # Nombre de pas identique au nombre de pas d'observations
-    # -------------------------------------------------------
-    if hasattr(Y,"stepnumber"):
-        duration = Y.stepnumber()
-        __p = numpy.cumprod(Y.shape())[-1]
+        # Recentre les valeurs numériques de bornes et change l'échelle par une matrice
+        return __Scale @ (ForceNumericBounds( __Bounds, False ) - numpy.ravel( __Center ).reshape((-1, 1)))
+
+# ==============================================================================
+def ApplyBounds( __Vector, __Bounds, __newClip = True ):
+    "Applique des bornes numériques à un point"
+    # Conserve une valeur par défaut s'il n'y a pas de bornes
+    if __Bounds is None:
+        return __Vector
+    #
+    if not isinstance(__Vector, numpy.ndarray):  # Is an array
+        raise ValueError("Incorrect array definition of vector data")
+    if not isinstance(__Bounds, numpy.ndarray):  # Is an array
+        raise ValueError("Incorrect array definition of bounds data")
+    if 2 * __Vector.size != __Bounds.size:  # Is a 2 column array of vector length
+        raise ValueError("Incorrect bounds number (%i) to be applied for this vector (of size %i)"%(__Bounds.size, __Vector.size))
+    if len(__Bounds.shape) != 2 or min(__Bounds.shape) <= 0 or __Bounds.shape[1] != 2:
+        raise ValueError("Incorrectly shaped bounds data")
+    #
+    if __newClip:
+        __Vector = __Vector.clip(
+            __Bounds[:, 0].reshape(__Vector.shape),
+            __Bounds[:, 1].reshape(__Vector.shape),
+        )
     else:
-        duration = 2
-        __p = numpy.array(Y).size
-    #
-    # Précalcul des inversions de B et R
-    # ----------------------------------
-    if selfA._parameters["StoreInternalVariables"] \
-        or selfA._toStore("CostFunctionJ") \
-        or selfA._toStore("CostFunctionJb") \
-        or selfA._toStore("CostFunctionJo") \
-        or selfA._toStore("CurrentOptimum") \
-        or selfA._toStore("APosterioriCovariance"):
-        BI = B.getI()
-        RI = R.getI()
-    elif VariantM != "KalmanFilterFormula":
-        RI = R.getI()
-    if VariantM == "KalmanFilterFormula":
-        RIdemi = R.choleskyI()
-    #
-    # Initialisation
-    # --------------
-    __n = Xb.size
-    __m = selfA._parameters["NumberOfMembers"]
-    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
-    else:                         Pn = B
-    if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
-    else:                         Rn = R
-    if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n)
-    else:                         Qn = Q
-    Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
-    #
-    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
-        selfA.StoredVariables["Analysis"].store( numpy.ravel(Xb) )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-            covarianceXa = Pn
+        __Vector = numpy.max(numpy.hstack((__Vector.reshape((-1, 1)), numpy.asmatrix(__Bounds)[:, 0])), axis=1)
+        __Vector = numpy.min(numpy.hstack((__Vector.reshape((-1, 1)), numpy.asmatrix(__Bounds)[:, 1])), axis=1)
+        __Vector = numpy.asarray(__Vector)
     #
-    previousJMinimum = numpy.finfo(float).max
-    #
-    for step in range(duration-1):
-        if hasattr(Y,"store"):
-            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,-1))
-        else:
-            Ynpu = numpy.ravel( Y ).reshape((__p,-1))
-        #
-        if U is not None:
-            if hasattr(U,"store") and len(U)>1:
-                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
-            elif hasattr(U,"store") and len(U)==1:
-                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
-            else:
-                Un = numpy.asmatrix(numpy.ravel( U )).T
+    return __Vector
+
+# ==============================================================================
+def VariablesAndIncrementsBounds( __Bounds, __BoxBounds, __Xini, __Name, __Multiplier = 1. ):
+    __Bounds    = ForceNumericBounds( __Bounds )
+    __BoxBounds = ForceNumericBounds( __BoxBounds )
+    if __Bounds is None and __BoxBounds is None:
+        raise ValueError("Algorithm %s requires bounds on all variables (by Bounds), or on all variable increments (by BoxBounds), or both, to be explicitly given."%(__Name,))
+    elif __Bounds is None and __BoxBounds is not None:
+        __Bounds    = __BoxBounds
+        logging.debug("%s Definition of parameter bounds from current parameter increment bounds"%(__Name,))
+    elif __Bounds is not None and __BoxBounds is None:
+        __BoxBounds = __Multiplier * (__Bounds - __Xini.reshape((-1, 1)))  # "M * [Xmin,Xmax]-Xini"
+        logging.debug("%s Definition of parameter increment bounds from current parameter bounds"%(__Name,))
+    return __Bounds, __BoxBounds
+
+# ==============================================================================
+def Apply3DVarRecentringOnEnsemble( __EnXn, __EnXf, __Ynpu, __HO, __R, __B, __SuppPars ):
+    "Recentre l'ensemble Xn autour de l'analyse 3DVAR"
+    __Betaf = __SuppPars["HybridCovarianceEquilibrium"]
+    #
+    Xf = EnsembleMean( __EnXf )
+    Pf = Covariance( asCovariance=EnsembleErrorCovariance(__EnXf) )
+    Pf = (1 - __Betaf) * __B.asfullmatrix(Xf.size) + __Betaf * Pf
+    #
+    selfB = PartialAlgorithm("3DVAR")
+    selfB._parameters["Minimizer"] = "LBFGSB"
+    selfB._parameters["MaximumNumberOfIterations"] = __SuppPars["HybridMaximumNumberOfIterations"]
+    selfB._parameters["CostDecrementTolerance"] = __SuppPars["HybridCostDecrementTolerance"]
+    selfB._parameters["ProjectedGradientTolerance"] = -1
+    selfB._parameters["GradientNormTolerance"] = 1.e-05
+    selfB._parameters["StoreInternalVariables"] = False
+    selfB._parameters["optiprint"] = -1
+    selfB._parameters["optdisp"] = 0
+    selfB._parameters["Bounds"] = None
+    selfB._parameters["InitializationPoint"] = Xf
+    from daAlgorithms.Atoms import std3dvar
+    std3dvar.std3dvar(selfB, Xf, __Ynpu, None, __HO, None, __R, Pf)
+    Xa = selfB.get("Analysis")[-1].reshape((-1, 1))
+    del selfB
+    #
+    return Xa + EnsembleOfAnomalies( __EnXn )
+
+# ==============================================================================
+def GenerateRandomPointInHyperSphere( __Center, __Radius ):
+    "Génère un point aléatoire uniformément à l'intérieur d'une hyper-sphère"
+    __Dimension  = numpy.asarray( __Center ).size
+    __GaussDelta = numpy.random.normal( 0, 1, size=__Center.shape )
+    __VectorNorm = numpy.linalg.norm( __GaussDelta )
+    __PointOnHS  = __Radius * (__GaussDelta / __VectorNorm)
+    __MoveInHS   = math.exp( math.log(numpy.random.uniform()) / __Dimension)  # rand()**1/n
+    __PointInHS  = __MoveInHS * __PointOnHS
+    return __Center + __PointInHS
+
+# ==============================================================================
+class GenerateWeightsAndSigmaPoints(object):
+    "Génère les points sigma et les poids associés"
+
+    def __init__(self,
+                 Nn=0, EO="State", VariantM="UKF",
+                 Alpha=None, Beta=2., Kappa=0.):
+        self.Nn = int(Nn)
+        self.Alpha = numpy.longdouble( Alpha )
+        self.Beta  = numpy.longdouble( Beta )
+        if abs(Kappa) < 2 * mpr:
+            if EO == "Parameters" and VariantM == "UKF":
+                self.Kappa = 3 - self.Nn
+            else:  # EO == "State":
+                self.Kappa = 0
         else:
-            Un = None
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
-            EMX = M( [(Xn[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-            qi = numpy.random.multivariate_normal(numpy.zeros(__n), Qn, size=__m).T
-            Xn_predicted = EMX + qi
-            HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-            if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
-                Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
-                Xn_predicted = Xn_predicted + Cm * Un
-        elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
-            # --- > Par principe, M = Id, Q = 0
-            Xn_predicted = Xn
-            HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-        #
-        # Mean of forecast and observation of forecast
-        Xfm  = Xn_predicted.mean(axis=1, dtype=mfp).astype('float').reshape((__n,-1))
-        Hfm  = HX_predicted.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
-        #
-        # Anomalies
-        EaX   = EnsembleOfAnomalies( Xn_predicted )
-        EaHX  = numpy.array(HX_predicted - Hfm)
-        #
-        #--------------------------
-        if VariantM == "KalmanFilterFormula":
-            mS    = RIdemi * EaHX / numpy.sqrt(__m-1)
-            delta = RIdemi * ( Ynpu - Hfm )
-            mT    = numpy.linalg.inv( numpy.eye(__m) + mS.T @ mS )
-            vw    = mT @ mS.transpose() @ delta
-            #
-            Tdemi = numpy.real(scipy.linalg.sqrtm(mT))
-            mU    = numpy.eye(__m)
-            #
-            EaX   = EaX / numpy.sqrt(__m-1)
-            Xn    = Xfm + EaX @ ( vw.reshape((__m,-1)) + numpy.sqrt(__m-1) * Tdemi @ mU )
-        #--------------------------
-        elif VariantM == "Variational":
-            HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
-            def CostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,-1)) - (EaHX @ w).reshape((__p,-1))
-                _Jo = 0.5 * _A.T @ (RI * _A)
-                _Jb = 0.5 * (__m-1) * w.T @ w
-                _J  = _Jo + _Jb
-                return float(_J)
-            def GradientOfCostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,-1)) - (EaHX @ w).reshape((__p,-1))
-                _GardJo = - EaHX.T @ (RI * _A)
-                _GradJb = (__m-1) * w.reshape((__m,1))
-                _GradJ  = _GardJo + _GradJb
-                return numpy.ravel(_GradJ)
-            vw = scipy.optimize.fmin_cg(
-                f           = CostFunction,
-                x0          = numpy.zeros(__m),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                disp        = False,
-                )
-            #
-            Hto = EaHX.T @ (RI * EaHX)
-            Htb = (__m-1) * numpy.eye(__m)
-            Hta = Hto + Htb
-            #
-            Pta = numpy.linalg.inv( Hta )
-            EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
-            #
-            Xn  = Xfm + EaX @ (vw[:,None] + EWa)
-        #--------------------------
-        elif VariantM == "FiniteSize11": # Jauge Boc2011
-            HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
-            def CostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,-1)) - (EaHX @ w).reshape((__p,-1))
-                _Jo = 0.5 * _A.T @ (RI * _A)
-                _Jb = 0.5 * __m * math.log(1 + 1/__m + w.T @ w)
-                _J  = _Jo + _Jb
-                return float(_J)
-            def GradientOfCostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,-1)) - (EaHX @ w).reshape((__p,-1))
-                _GardJo = - EaHX.T @ (RI * _A)
-                _GradJb = __m * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w)
-                _GradJ  = _GardJo + _GradJb
-                return numpy.ravel(_GradJ)
-            vw = scipy.optimize.fmin_cg(
-                f           = CostFunction,
-                x0          = numpy.zeros(__m),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                disp        = False,
-                )
-            #
-            Hto = EaHX.T @ (RI * EaHX)
-            Htb = __m * \
-                ( (1 + 1/__m + vw.T @ vw) * numpy.eye(__m) - 2 * vw @ vw.T ) \
-                / (1 + 1/__m + vw.T @ vw)**2
-            Hta = Hto + Htb
-            #
-            Pta = numpy.linalg.inv( Hta )
-            EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
-            #
-            Xn  = Xfm + EaX @ (vw.reshape((__m,-1)) + EWa)
-        #--------------------------
-        elif VariantM == "FiniteSize15": # Jauge Boc2015
-            HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
-            def CostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,-1)) - (EaHX @ w).reshape((__p,-1))
-                _Jo = 0.5 * _A.T * RI * _A
-                _Jb = 0.5 * (__m+1) * math.log(1 + 1/__m + w.T @ w)
-                _J  = _Jo + _Jb
-                return float(_J)
-            def GradientOfCostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,-1)) - (EaHX @ w).reshape((__p,-1))
-                _GardJo = - EaHX.T @ (RI * _A)
-                _GradJb = (__m+1) * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w)
-                _GradJ  = _GardJo + _GradJb
-                return numpy.ravel(_GradJ)
-            vw = scipy.optimize.fmin_cg(
-                f           = CostFunction,
-                x0          = numpy.zeros(__m),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                disp        = False,
-                )
-            #
-            Hto = EaHX.T @ (RI * EaHX)
-            Htb = (__m+1) * \
-                ( (1 + 1/__m + vw.T @ vw) * numpy.eye(__m) - 2 * vw @ vw.T ) \
-                / (1 + 1/__m + vw.T @ vw)**2
-            Hta = Hto + Htb
-            #
-            Pta = numpy.linalg.inv( Hta )
-            EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
-            #
-            Xn  = Xfm + EaX @ (vw.reshape((__m,-1)) + EWa)
-        #--------------------------
-        elif VariantM == "FiniteSize16": # Jauge Boc2016
-            HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
-            def CostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,-1)) - (EaHX @ w).reshape((__p,-1))
-                _Jo = 0.5 * _A.T @ (RI * _A)
-                _Jb = 0.5 * (__m+1) * math.log(1 + 1/__m + w.T @ w / (__m-1))
-                _J  = _Jo + _Jb
-                return float(_J)
-            def GradientOfCostFunction(w):
-                _A  = Ynpu - HXfm.reshape((__p,-1)) - (EaHX @ w).reshape((__p,-1))
-                _GardJo = - EaHX.T @ (RI * _A)
-                _GradJb = ((__m+1) / (__m-1)) * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w / (__m-1))
-                _GradJ  = _GardJo + _GradJb
-                return numpy.ravel(_GradJ)
-            vw = scipy.optimize.fmin_cg(
-                f           = CostFunction,
-                x0          = numpy.zeros(__m),
-                fprime      = GradientOfCostFunction,
-                args        = (),
-                disp        = False,
-                )
-            #
-            Hto = EaHX.T @ (RI * EaHX)
-            Htb = ((__m+1) / (__m-1)) * \
-                ( (1 + 1/__m + vw.T @ vw / (__m-1)) * numpy.eye(__m) - 2 * vw @ vw.T / (__m-1) ) \
-                / (1 + 1/__m + vw.T @ vw / (__m-1))**2
-            Hta = Hto + Htb
-            #
-            Pta = numpy.linalg.inv( Hta )
-            EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
-            #
-            Xn  = Xfm + EaX @ (vw[:,None] + EWa)
-        #--------------------------
+            self.Kappa = Kappa
+        self.Kappa  = numpy.longdouble( self.Kappa )
+        self.Lambda = self.Alpha**2 * ( self.Nn + self.Kappa ) - self.Nn
+        self.Gamma  = self.Alpha * numpy.sqrt( self.Nn + self.Kappa )
+        # Rq.: Gamma = sqrt(n+Lambda) = Alpha*sqrt(n+Kappa)
+        assert 0. < self.Alpha <= 1., "Alpha has to be between 0 strictly and 1 included"
+        #
+        if VariantM == "UKF":
+            self.Wm, self.Wc, self.SC = self.__UKF2000()
+        elif VariantM == "S3F":
+            self.Wm, self.Wc, self.SC = self.__S3F2022()
+        elif VariantM == "MSS":
+            self.Wm, self.Wc, self.SC = self.__MSS2011()
+        elif VariantM == "5OS":
+            self.Wm, self.Wc, self.SC = self.__5OS2002()
         else:
-            raise ValueError("VariantM has to be chosen in the authorized methods list.")
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,-1))
-        #--------------------------
-        #
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("APosterioriCovariance") \
-            or selfA._toStore("InnovationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
-            _Innovation = Ynpu - _HXa
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        # ---> avec analysis
-        selfA.StoredVariables["Analysis"].store( Xa )
-        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
-        if selfA._toStore("InnovationAtCurrentAnalysis"):
-            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
-        # ---> avec current state
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CurrentState"):
-            selfA.StoredVariables["CurrentState"].store( Xn )
-        if selfA._toStore("ForecastState"):
-            selfA.StoredVariables["ForecastState"].store( EMX )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( EMX - Xa.reshape((__n,1)) )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( - HX_predicted + Ynpu.reshape((__p,1)) )
-        if selfA._toStore("SimulatedObservationAtCurrentState") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
-        # ---> autres
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("CurrentOptimum") \
-            or selfA._toStore("APosterioriCovariance"):
-            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
-            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-            J   = Jb + Jo
-            selfA.StoredVariables["CostFunctionJb"].store( Jb )
-            selfA.StoredVariables["CostFunctionJo"].store( Jo )
-            selfA.StoredVariables["CostFunctionJ" ].store( J )
-            #
-            if selfA._toStore("IndexOfOptimum") \
-                or selfA._toStore("CurrentOptimum") \
-                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
-                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-            if selfA._toStore("IndexOfOptimum"):
-                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-            if selfA._toStore("CurrentOptimum"):
-                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
-            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
-            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        if selfA._toStore("APosterioriCovariance"):
-            Eai = EnsembleOfAnomalies( Xn ) / numpy.sqrt(__m-1) # Anomalies
-            Pn = Eai @ Eai.T
-            Pn = 0.5 * (Pn + Pn.T)
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-        if selfA._parameters["EstimationOf"] == "Parameters" \
-            and J < previousJMinimum:
-            previousJMinimum    = J
-            XaMin               = Xa
-            if selfA._toStore("APosterioriCovariance"):
-                covarianceXaMin = Pn
-    #
-    # Stockage final supplémentaire de l'optimum en estimation de paramètres
-    # ----------------------------------------------------------------------
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        selfA.StoredVariables["Analysis"].store( XaMin )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
-    #
-    return 0
+            raise ValueError("Variant \"%s\" is not a valid one."%VariantM)
+
+    def __UKF2000(self):
+        "Standard Set, Julier et al. 2000 (aka Canonical UKF)"
+        # Rq.: W^{(m)}_{i=/=0} = 1. / (2.*(n + Lambda))
+        Winn = 1. / (2. * ( self.Nn + self.Kappa ) * self.Alpha**2)
+        Ww = []
+        Ww.append( 0. )
+        for point in range(2 * self.Nn):
+            Ww.append( Winn )
+        # Rq.: LsLpL = Lambda / (n + Lambda)
+        LsLpL = 1. - self.Nn / (self.Alpha**2 * ( self.Nn + self.Kappa ))
+        Wm = numpy.array( Ww )
+        Wm[0] = LsLpL
+        Wc = numpy.array( Ww )
+        Wc[0] = LsLpL + (1. - self.Alpha**2 + self.Beta)
+        # OK: assert abs(Wm.sum()-1.) < self.Nn*mpr, "UKF ill-conditioned %s >= %s"%(abs(Wm.sum()-1.), self.Nn*mpr)
+        #
+        SC = numpy.zeros((self.Nn, len(Ww)))
+        for ligne in range(self.Nn):
+            it = ligne + 1
+            SC[ligne, it          ] = self.Gamma
+            SC[ligne, self.Nn + it] = -self.Gamma
+        #
+        return Wm, Wc, SC
+
+    def __S3F2022(self):
+        "Scaled Spherical Simplex Set, Papakonstantinou et al. 2022"
+        # Rq.: W^{(m)}_{i=/=0} = (n + Kappa) / ((n + Lambda) * (n + 1 + Kappa))
+        Winn = 1. / ((self.Nn + 1. + self.Kappa) * self.Alpha**2)
+        Ww = []
+        Ww.append( 0. )
+        for point in range(self.Nn + 1):
+            Ww.append( Winn )
+        # Rq.: LsLpL = Lambda / (n + Lambda)
+        LsLpL = 1. - self.Nn / (self.Alpha**2 * ( self.Nn + self.Kappa ))
+        Wm = numpy.array( Ww )
+        Wm[0] = LsLpL
+        Wc = numpy.array( Ww )
+        Wc[0] = LsLpL + (1. - self.Alpha**2 + self.Beta)
+        # OK: assert abs(Wm.sum()-1.) < self.Nn*mpr, "S3F ill-conditioned %s >= %s"%(abs(Wm.sum()-1.), self.Nn*mpr)
+        #
+        SC = numpy.zeros((self.Nn, len(Ww)))
+        for ligne in range(self.Nn):
+            it = ligne + 1
+            q_t = it / math.sqrt( it * (it + 1) * Winn )
+            SC[ligne, 1:it + 1] = -q_t / it
+            SC[ligne, it + 1  ] = q_t
+        #
+        return Wm, Wc, SC
+
+    def __MSS2011(self):
+        "Minimum Set, Menegaz et al. 2011"
+        rho2 = (1 - self.Alpha) / self.Nn
+        Cc = numpy.real(scipy.linalg.sqrtm( numpy.identity(self.Nn) - rho2 ))
+        Ww = self.Alpha * rho2 * scipy.linalg.inv(Cc) @ numpy.ones(self.Nn) @ scipy.linalg.inv(Cc.T)
+        Wm = Wc = numpy.concatenate((Ww, [self.Alpha]))
+        # OK: assert abs(Wm.sum()-1.) < self.Nn*mpr, "MSS ill-conditioned %s >= %s"%(abs(Wm.sum()-1.), self.Nn*mpr)
+        #
+        # inv(sqrt(W)) = diag(inv(sqrt(W)))
+        SC1an = Cc @ numpy.diag(1. / numpy.sqrt( Ww ))
+        SCnpu = (- numpy.sqrt(rho2) / numpy.sqrt(self.Alpha)) * numpy.ones(self.Nn).reshape((-1, 1))
+        SC = numpy.concatenate((SC1an, SCnpu), axis=1)
+        #
+        return Wm, Wc, SC
+
+    def __5OS2002(self):
+        "Fifth Order Set, Lerner 2002"
+        Ww = []
+        for point in range(2 * self.Nn):
+            Ww.append( (4. - self.Nn) / 18. )
+        for point in range(2 * self.Nn, 2 * self.Nn**2):
+            Ww.append( 1. / 36. )
+        Ww.append( (self.Nn**2 - 7 * self.Nn) / 18. + 1.)
+        Wm = Wc = numpy.array( Ww )
+        # OK: assert abs(Wm.sum()-1.) < self.Nn*mpr, "5OS ill-conditioned %s >= %s"%(abs(Wm.sum()-1.), self.Nn*mpr)
+        #
+        xi1n  = numpy.diag( math.sqrt(3) * numpy.ones( self.Nn ) )
+        xi2n  = numpy.diag( -math.sqrt(3) * numpy.ones( self.Nn ) )
+        #
+        xi3n1 = numpy.zeros((int((self.Nn - 1) * self.Nn / 2), self.Nn), dtype=float)
+        xi3n2 = numpy.zeros((int((self.Nn - 1) * self.Nn / 2), self.Nn), dtype=float)
+        xi4n1 = numpy.zeros((int((self.Nn - 1) * self.Nn / 2), self.Nn), dtype=float)
+        xi4n2 = numpy.zeros((int((self.Nn - 1) * self.Nn / 2), self.Nn), dtype=float)
+        ia = 0
+        for i1 in range(self.Nn - 1):
+            for i2 in range(i1 + 1, self.Nn):
+                xi3n1[ia, i1] = xi3n2[ia, i2] = math.sqrt(3)
+                xi3n2[ia, i1] = xi3n1[ia, i2] = -math.sqrt(3)
+                # --------------------------------
+                xi4n1[ia, i1] = xi4n1[ia, i2] = math.sqrt(3)
+                xi4n2[ia, i1] = xi4n2[ia, i2] = -math.sqrt(3)
+                ia += 1
+        SC = numpy.concatenate((xi1n, xi2n, xi3n1, xi3n2, xi4n1, xi4n2, numpy.zeros((1, self.Nn)))).T
+        #
+        return Wm, Wc, SC
+
+    def nbOfPoints(self):
+        assert self.Nn      == self.SC.shape[0], "Size mismatch %i =/= %i"%(self.Nn, self.SC.shape[0])
+        assert self.Wm.size == self.SC.shape[1], "Size mismatch %i =/= %i"%(self.Wm.size, self.SC.shape[1])
+        assert self.Wm.size == self.Wc.size, "Size mismatch %i =/= %i"%(self.Wm.size, self.Wc.size)
+        return self.Wm.size
+
+    def get(self):
+        return self.Wm, self.Wc, self.SC
+
+    def __repr__(self):
+        "x.__repr__() <==> repr(x)"
+        msg  = ""
+        msg += "    Alpha   = %s\n"%self.Alpha
+        msg += "    Beta    = %s\n"%self.Beta
+        msg += "    Kappa   = %s\n"%self.Kappa
+        msg += "    Lambda  = %s\n"%self.Lambda
+        msg += "    Gamma   = %s\n"%self.Gamma
+        msg += "    Wm      = %s\n"%self.Wm
+        msg += "    Wc      = %s\n"%self.Wc
+        msg += "    sum(Wm) = %s\n"%numpy.sum(self.Wm)
+        msg += "    SC      =\n%s\n"%self.SC
+        return msg
 
 # ==============================================================================
-def mlef(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="MLEF13",
-    BnotT=False, _epsilon=1.e-3, _e=1.e-7, _jmax=15000):
-    """
-    Maximum Likelihood Ensemble Filter (EnKF/MLEF Zupanski 2005, Bocquet 2013)
+def GetNeighborhoodTopology( __ntype, __ipop ):
+    "Renvoi une topologie de connexion pour une population de points"
+    if __ntype in ["FullyConnectedNeighborhood", "FullyConnectedNeighbourhood", "gbest"]:
+        __topology = [__ipop for __i in __ipop]
+    elif __ntype in ["RingNeighborhoodWithRadius1", "RingNeighbourhoodWithRadius1", "lbest"]:
+        __cpop = list(__ipop[-1:]) + list(__ipop) + list(__ipop[:1])
+        __topology = [__cpop[__n:__n + 3] for __n in range(len(__ipop))]
+    elif __ntype in ["RingNeighborhoodWithRadius2", "RingNeighbourhoodWithRadius2"]:
+        __cpop = list(__ipop[-2:]) + list(__ipop) + list(__ipop[:2])
+        __topology = [__cpop[__n:__n + 5] for __n in range(len(__ipop))]
+    elif __ntype in ["AdaptativeRandomWith3Neighbors", "AdaptativeRandomWith3Neighbours", "abest"]:
+        __cpop = 3 * list(__ipop)
+        __topology = [[__i] + list(numpy.random.choice(__cpop, 3)) for __i in __ipop]
+    elif __ntype in ["AdaptativeRandomWith5Neighbors", "AdaptativeRandomWith5Neighbours"]:
+        __cpop = 5 * list(__ipop)
+        __topology = [[__i] + list(numpy.random.choice(__cpop, 5)) for __i in __ipop]
+    else:
+        raise ValueError("Swarm topology type unavailable because name \"%s\" is unknown."%__ntype)
+    return __topology
 
-    selfA est identique au "self" d'algorithme appelant et contient les
-    valeurs.
-    """
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA._parameters["StoreInternalVariables"] = True
-    #
-    # Opérateurs
+# ==============================================================================
+def FindIndexesFromNames( __NameOfLocations = None, __ExcludeLocations = None, ForceArray = False ):
+    "Exprime les indices des noms exclus, en ignorant les absents"
+    if __ExcludeLocations is None:
+        __ExcludeIndexes = ()
+    elif isinstance(__ExcludeLocations, (list, numpy.ndarray, tuple)) and len(__ExcludeLocations) == 0:
+        __ExcludeIndexes = ()
     # ----------
-    H = HO["Direct"].appliedControledFormTo
-    #
-    if selfA._parameters["EstimationOf"] == "State":
-        M = EM["Direct"].appliedControledFormTo
-    #
-    if CM is not None and "Tangent" in CM and U is not None:
-        Cm = CM["Tangent"].asMatrix(Xb)
-    else:
-        Cm = None
-    #
-    # Nombre de pas identique au nombre de pas d'observations
-    # -------------------------------------------------------
-    if hasattr(Y,"stepnumber"):
-        duration = Y.stepnumber()
-        __p = numpy.cumprod(Y.shape())[-1]
-    else:
-        duration = 2
-        __p = numpy.array(Y).size
-    #
-    # Précalcul des inversions de B et R
-    # ----------------------------------
-    if selfA._parameters["StoreInternalVariables"] \
-        or selfA._toStore("CostFunctionJ") \
-        or selfA._toStore("CostFunctionJb") \
-        or selfA._toStore("CostFunctionJo") \
-        or selfA._toStore("CurrentOptimum") \
-        or selfA._toStore("APosterioriCovariance"):
-        BI = B.getI()
-    RI = R.getI()
-    #
-    # Initialisation
-    # --------------
-    __n = Xb.size
-    __m = selfA._parameters["NumberOfMembers"]
-    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
-    else:                         Pn = B
-    if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
-    else:                         Rn = R
-    if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n)
-    else:                         Qn = Q
-    Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
-    #
-    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
-        selfA.StoredVariables["Analysis"].store( numpy.ravel(Xb) )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-            covarianceXa = Pn
-    #
-    previousJMinimum = numpy.finfo(float).max
-    #
-    for step in range(duration-1):
-        if hasattr(Y,"store"):
-            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,-1))
-        else:
-            Ynpu = numpy.ravel( Y ).reshape((__p,-1))
-        #
-        if U is not None:
-            if hasattr(U,"store") and len(U)>1:
-                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
-            elif hasattr(U,"store") and len(U)==1:
-                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+    elif __NameOfLocations is None:
+        try:
+            __ExcludeIndexes = numpy.asarray(__ExcludeLocations, dtype=int)
+        except ValueError as e:
+            if "invalid literal for int() with base 10:" in str(e):
+                raise ValueError("to exclude named locations, initial location name list can not be void and has to have the same length as one state")
             else:
-                Un = numpy.asmatrix(numpy.ravel( U )).T
-        else:
-            Un = None
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
-            EMX = M( [(Xn[:,i], Un) for i in range(__m)],
-                argsAsSerie = True,
-                returnSerieAsArrayMatrix = True )
-            qi = numpy.random.multivariate_normal(numpy.zeros(__n), Qn, size=__m).T
-            Xn_predicted = EMX + qi
-            if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
-                Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
-                Xn_predicted = Xn_predicted + Cm * Un
-        elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
-            # --- > Par principe, M = Id, Q = 0
-            Xn_predicted = Xn
-        #
-        #--------------------------
-        if VariantM == "MLEF13":
-            Xfm = numpy.ravel(Xn_predicted.mean(axis=1, dtype=mfp).astype('float'))
-            EaX = EnsembleOfAnomalies( Xn_predicted ) / numpy.sqrt(__m-1)
-            Ua  = numpy.eye(__m)
-            __j = 0
-            Deltaw = 1
-            if not BnotT:
-                Ta  = numpy.eye(__m)
-            vw  = numpy.zeros(__m)
-            while numpy.linalg.norm(Deltaw) >= _e and __j <= _jmax:
-                vx1 = (Xfm + EaX @ vw).reshape((__n,-1))
-                #
-                if BnotT:
-                    E1 = vx1 + _epsilon * EaX
+                raise ValueError(str(e))
+    elif isinstance(__NameOfLocations, (list, numpy.ndarray, tuple)) and len(__NameOfLocations) == 0:
+        try:
+            __ExcludeIndexes = numpy.asarray(__ExcludeLocations, dtype=int)
+        except ValueError as e:
+            if "invalid literal for int() with base 10:" in str(e):
+                raise ValueError("to exclude named locations, initial location name list can not be void and has to have the same length as one state")
+            else:
+                raise ValueError(str(e))
+    # ----------
+    else:
+        try:
+            __ExcludeIndexes = numpy.asarray(__ExcludeLocations, dtype=int)
+        except ValueError as e:
+            if "invalid literal for int() with base 10:" in str(e):
+                if len(__NameOfLocations) < 1.e6 + 1 and len(__ExcludeLocations) > 1500:
+                    __Heuristic = True
                 else:
-                    E1 = vx1 + numpy.sqrt(__m-1) * EaX @ Ta
-                #
-                HE2 = H( [(E1[:,i,numpy.newaxis], Un) for i in range(__m)],
-                    argsAsSerie = True,
-                    returnSerieAsArrayMatrix = True )
-                vy2 = HE2.mean(axis=1, dtype=mfp).astype('float').reshape((__p,-1))
-                #
-                if BnotT:
-                    EaY = (HE2 - vy2) / _epsilon
+                    __Heuristic = False
+                if ForceArray or __Heuristic:
+                    # Recherche par array permettant des noms invalides, peu efficace
+                    __NameToIndex = dict(numpy.array((
+                        __NameOfLocations,
+                        range(len(__NameOfLocations))
+                    )).T)
+                    __ExcludeIndexes = numpy.asarray([__NameToIndex.get(k, -1) for k in __ExcludeLocations], dtype=int)
+                    #
                 else:
-                    EaY = ( (HE2 - vy2) @ numpy.linalg.inv(Ta) ) / numpy.sqrt(__m-1)
-                #
-                GradJ = numpy.ravel(vw[:,None] - EaY.transpose() @ (RI * ( Ynpu - vy2 )))
-                mH = numpy.eye(__m) + EaY.transpose() @ (RI * EaY)
-                Deltaw = - numpy.linalg.solve(mH,GradJ)
-                #
-                vw = vw + Deltaw
-                #
-                if not BnotT:
-                    Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
-                #
-                __j = __j + 1
-            #
-            if BnotT:
-                Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
-            #
-            Xn = vx1 + numpy.sqrt(__m-1) * EaX @ Ta @ Ua
-        #--------------------------
+                    # Recherche par liste permettant des noms invalides, très efficace
+                    def __NameToIndex_get( cle, default = -1 ):
+                        if cle in __NameOfLocations:
+                            return __NameOfLocations.index(cle)
+                        else:
+                            return default
+                    __ExcludeIndexes = numpy.asarray([__NameToIndex_get(k, -1) for k in __ExcludeLocations], dtype=int)
+                    #
+                    # Recherche par liste interdisant des noms invalides, mais encore un peu plus efficace
+                    # __ExcludeIndexes = numpy.asarray([__NameOfLocations.index(k) for k in __ExcludeLocations], dtype=int)
+                    #
+                # Ignore les noms absents
+                __ExcludeIndexes = numpy.compress(__ExcludeIndexes > -1, __ExcludeIndexes)
+                if len(__ExcludeIndexes) == 0:
+                    __ExcludeIndexes = ()
+            else:
+                raise ValueError(str(e))
+    # ----------
+    return __ExcludeIndexes
+
+# ==============================================================================
+def BuildComplexSampleList(
+        __SampleAsnUplet,
+        __SampleAsExplicitHyperCube,
+        __SampleAsMinMaxStepHyperCube,
+        __SampleAsMinMaxLatinHyperCube,
+        __SampleAsMinMaxSobolSequence,
+        __SampleAsIndependantRandomVariables,
+        __X0,
+        __Seed = None ):
+    # ---------------------------
+    if len(__SampleAsnUplet) > 0:
+        sampleList = __SampleAsnUplet
+        for i, Xx in enumerate(sampleList):
+            if numpy.ravel(Xx).size != __X0.size:
+                raise ValueError("The size %i of the %ith state X in the sample and %i of the checking point Xb are different, they have to be identical."%(numpy.ravel(Xx).size, i + 1, __X0.size))
+    # ---------------------------
+    elif len(__SampleAsExplicitHyperCube) > 0:
+        sampleList = itertools.product(*list(__SampleAsExplicitHyperCube))
+    # ---------------------------
+    elif len(__SampleAsMinMaxStepHyperCube) > 0:
+        coordinatesList = []
+        for i, dim in enumerate(__SampleAsMinMaxStepHyperCube):
+            if len(dim) != 3:
+                raise ValueError("For dimension %i, the variable definition \"%s\" is incorrect, it should be [min,max,step]."%(i, dim))
+            else:
+                coordinatesList.append(numpy.linspace(dim[0], dim[1], 1 + int((float(dim[1]) - float(dim[0])) / float(dim[2]))))
+        sampleList = itertools.product(*coordinatesList)
+    # ---------------------------
+    elif len(__SampleAsMinMaxLatinHyperCube) > 0:
+        if vt(scipy.version.version) <= vt("1.7.0"):
+            __msg = "In order to use Latin Hypercube sampling, you must at least use Scipy version 1.7.0 (and you are presently using Scipy %s). A void sample is then generated."%scipy.version.version
+            warnings.warn(__msg, FutureWarning, stacklevel=50)
+            sampleList = []
         else:
-            raise ValueError("VariantM has to be chosen in the authorized methods list.")
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,-1))
-        #--------------------------
-        #
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("APosterioriCovariance") \
-            or selfA._toStore("InnovationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
-            _Innovation = Ynpu - _HXa
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        # ---> avec analysis
-        selfA.StoredVariables["Analysis"].store( Xa )
-        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
-        if selfA._toStore("InnovationAtCurrentAnalysis"):
-            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
-        # ---> avec current state
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CurrentState"):
-            selfA.StoredVariables["CurrentState"].store( Xn )
-        if selfA._toStore("ForecastState"):
-            selfA.StoredVariables["ForecastState"].store( EMX )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( EMX - Xa.reshape((__n,1)) )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( - HE2 + Ynpu.reshape((__p,-1)) )
-        if selfA._toStore("SimulatedObservationAtCurrentState") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HE2 )
-        # ---> autres
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("CurrentOptimum") \
-            or selfA._toStore("APosterioriCovariance"):
-            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
-            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-            J   = Jb + Jo
-            selfA.StoredVariables["CostFunctionJb"].store( Jb )
-            selfA.StoredVariables["CostFunctionJo"].store( Jo )
-            selfA.StoredVariables["CostFunctionJ" ].store( J )
-            #
-            if selfA._toStore("IndexOfOptimum") \
-                or selfA._toStore("CurrentOptimum") \
-                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
-                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-            if selfA._toStore("IndexOfOptimum"):
-                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-            if selfA._toStore("CurrentOptimum"):
-                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
-            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
-            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        if selfA._toStore("APosterioriCovariance"):
-            Eai = EnsembleOfAnomalies( Xn ) / numpy.sqrt(__m-1) # Anomalies
-            Pn = Eai @ Eai.T
-            Pn = 0.5 * (Pn + Pn.T)
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-        if selfA._parameters["EstimationOf"] == "Parameters" \
-            and J < previousJMinimum:
-            previousJMinimum    = J
-            XaMin               = Xa
-            if selfA._toStore("APosterioriCovariance"):
-                covarianceXaMin = Pn
-    #
-    # Stockage final supplémentaire de l'optimum en estimation de paramètres
-    # ----------------------------------------------------------------------
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        selfA.StoredVariables["Analysis"].store( XaMin )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
-    #
-    return 0
+            __spDesc = list(__SampleAsMinMaxLatinHyperCube)
+            __nbDime, __nbSamp  = map(int, __spDesc.pop())  # Réduction du dernier
+            __sample = scipy.stats.qmc.LatinHypercube(
+                d = len(__spDesc),
+                seed = numpy.random.default_rng(__Seed),
+            )
+            __sample = __sample.random(n = __nbSamp)
+            __bounds = numpy.array(__spDesc)[:, 0:2]
+            __l_bounds = __bounds[:, 0]
+            __u_bounds = __bounds[:, 1]
+            sampleList = scipy.stats.qmc.scale(__sample, __l_bounds, __u_bounds)
+    # ---------------------------
+    elif len(__SampleAsMinMaxSobolSequence) > 0:
+        if vt(scipy.version.version) <= vt("1.7.0"):
+            __msg = "In order to use Latin Hypercube sampling, you must at least use Scipy version 1.7.0 (and you are presently using Scipy %s). A void sample is then generated."%scipy.version.version
+            warnings.warn(__msg, FutureWarning, stacklevel=50)
+            sampleList = []
+        else:
+            __spDesc = list(__SampleAsMinMaxSobolSequence)
+            __nbDime, __nbSamp  = map(int, __spDesc.pop())  # Réduction du dernier
+            if __nbDime != len(__spDesc):
+                warnings.warn("Declared space dimension (%i) is not equal to number of bounds (%i), the last one will be used."%(__nbDime, len(__spDesc)), FutureWarning, stacklevel=50)
+            __sample = scipy.stats.qmc.Sobol(
+                d = len(__spDesc),
+                seed = numpy.random.default_rng(__Seed),
+            )
+            __sample = __sample.random_base2(m = int(math.log2(__nbSamp)) + 1)
+            __bounds = numpy.array(__spDesc)[:, 0:2]
+            __l_bounds = __bounds[:, 0]
+            __u_bounds = __bounds[:, 1]
+            sampleList = scipy.stats.qmc.scale(__sample, __l_bounds, __u_bounds)
+    # ---------------------------
+    elif len(__SampleAsIndependantRandomVariables) > 0:
+        coordinatesList = []
+        for i, dim in enumerate(__SampleAsIndependantRandomVariables):
+            if len(dim) != 3:
+                raise ValueError("For dimension %i, the variable definition \"%s\" is incorrect, it should be ('distribution',(parameters),length) with distribution in ['normal'(mean,std),'lognormal'(mean,sigma),'uniform'(low,high),'weibull'(shape)]."%(i, dim))
+            elif not ( str(dim[0]) in ['normal', 'lognormal', 'uniform', 'weibull'] \
+                       and hasattr(numpy.random, str(dim[0])) ):
+                raise ValueError("For dimension %i, the distribution name \"%s\" is not allowed, please choose in ['normal'(mean,std),'lognormal'(mean,sigma),'uniform'(low,high),'weibull'(shape)]"%(i, str(dim[0])))
+            else:
+                distribution = getattr(numpy.random, str(dim[0]), 'normal')
+                coordinatesList.append(distribution(*dim[1], size=max(1, int(dim[2]))))
+        sampleList = itertools.product(*coordinatesList)
+    else:
+        sampleList = iter([__X0,])
+    # ----------
+    return sampleList
 
 # ==============================================================================
-def ienkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="IEnKF12",
-    BnotT=False, _epsilon=1.e-3, _e=1.e-7, _jmax=15000):
+def multiXOsteps(
+        selfA, Xb, Y, U, HO, EM, CM, R, B, Q, oneCycle,
+        __CovForecast = False ):
     """
-    Iterative EnKF (Sakov 2012, Sakov 2018)
-
-    selfA est identique au "self" d'algorithme appelant et contient les
-    valeurs.
+    Prévision multi-pas avec une correction par pas (multi-méthodes)
     """
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA._parameters["StoreInternalVariables"] = True
-    #
-    # Opérateurs
-    # ----------
-    H = HO["Direct"].appliedControledFormTo
     #
+    # Initialisation
+    # --------------
     if selfA._parameters["EstimationOf"] == "State":
-        M = EM["Direct"].appliedControledFormTo
-    #
-    if CM is not None and "Tangent" in CM and U is not None:
-        Cm = CM["Tangent"].asMatrix(Xb)
+        if len(selfA.StoredVariables["Analysis"]) == 0 or not selfA._parameters["nextStep"]:
+            Xn = numpy.asarray(Xb)
+            if __CovForecast:
+                Pn = B
+            selfA.StoredVariables["Analysis"].store( Xn )
+            if selfA._toStore("APosterioriCovariance"):
+                if hasattr(B, "asfullmatrix"):
+                    selfA.StoredVariables["APosterioriCovariance"].store( B.asfullmatrix(Xn.size) )
+                else:
+                    selfA.StoredVariables["APosterioriCovariance"].store( B )
+            selfA._setInternalState("seed", numpy.random.get_state())
+        elif selfA._parameters["nextStep"]:
+            Xn = selfA._getInternalState("Xn")
+            if __CovForecast:
+                Pn = selfA._getInternalState("Pn")
     else:
-        Cm = None
+        Xn = numpy.asarray(Xb)
+        if __CovForecast:
+            Pn = B
     #
-    # Nombre de pas identique au nombre de pas d'observations
-    # -------------------------------------------------------
-    if hasattr(Y,"stepnumber"):
+    if hasattr(Y, "stepnumber"):
         duration = Y.stepnumber()
-        __p = numpy.cumprod(Y.shape())[-1]
     else:
         duration = 2
-        __p = numpy.array(Y).size
-    #
-    # Précalcul des inversions de B et R
-    # ----------------------------------
-    if selfA._parameters["StoreInternalVariables"] \
-        or selfA._toStore("CostFunctionJ") \
-        or selfA._toStore("CostFunctionJb") \
-        or selfA._toStore("CostFunctionJo") \
-        or selfA._toStore("CurrentOptimum") \
-        or selfA._toStore("APosterioriCovariance"):
-        BI = B.getI()
-    RI = R.getI()
-    #
-    # Initialisation
-    # --------------
-    __n = Xb.size
-    __m = selfA._parameters["NumberOfMembers"]
-    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
-    else:                         Pn = B
-    if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
-    else:                         Rn = R
-    if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n)
-    else:                         Qn = Q
-    Xn = EnsembleOfBackgroundPerturbations( Xb, Pn, __m )
-    #
-    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
-        selfA.StoredVariables["Analysis"].store( numpy.ravel(Xb) )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-            covarianceXa = Pn
-    #
-    previousJMinimum = numpy.finfo(float).max
     #
-    for step in range(duration-1):
-        if hasattr(Y,"store"):
-            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,-1))
+    # Multi-steps
+    # -----------
+    for step in range(duration - 1):
+        selfA.StoredVariables["CurrentStepNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        #
+        if hasattr(Y, "store"):
+            Ynpu = numpy.asarray( Y[step + 1] ).reshape((-1, 1))
         else:
-            Ynpu = numpy.ravel( Y ).reshape((__p,-1))
+            Ynpu = numpy.asarray( Y ).reshape((-1, 1))
         #
         if U is not None:
-            if hasattr(U,"store") and len(U)>1:
-                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
-            elif hasattr(U,"store") and len(U)==1:
-                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+            if hasattr(U, "store") and len(U) > 1:
+                Un = numpy.asarray( U[step] ).reshape((-1, 1))
+            elif hasattr(U, "store") and len(U) == 1:
+                Un = numpy.asarray( U[0] ).reshape((-1, 1))
             else:
-                Un = numpy.asmatrix(numpy.ravel( U )).T
+                Un = numpy.asarray( U ).reshape((-1, 1))
         else:
             Un = None
         #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
-        #
-        #--------------------------
-        if VariantM == "IEnKF12":
-            Xfm = numpy.ravel(Xn.mean(axis=1, dtype=mfp).astype('float'))
-            EaX = EnsembleOfAnomalies( Xn ) / numpy.sqrt(__m-1)
-            __j = 0
-            Deltaw = 1
-            if not BnotT:
-                Ta  = numpy.eye(__m)
-            vw  = numpy.zeros(__m)
-            while numpy.linalg.norm(Deltaw) >= _e and __j <= _jmax:
-                vx1 = (Xfm + EaX @ vw).reshape((__n,-1))
-                #
-                if BnotT:
-                    E1 = vx1 + _epsilon * EaX
-                else:
-                    E1 = vx1 + numpy.sqrt(__m-1) * EaX @ Ta
-                #
-                if selfA._parameters["EstimationOf"] == "State": # Forecast + Q
-                    E2 = M( [(E1[:,i,numpy.newaxis], Un) for i in range(__m)],
-                        argsAsSerie = True,
-                        returnSerieAsArrayMatrix = True )
-                elif selfA._parameters["EstimationOf"] == "Parameters":
-                    # --- > Par principe, M = Id
-                    E2 = Xn
-                vx2 = E2.mean(axis=1, dtype=mfp).astype('float').reshape((__n,-1))
-                vy1 = H((vx2, Un)).reshape((__p,-1))
-                #
-                HE2 = H( [(E2[:,i,numpy.newaxis], Un) for i in range(__m)],
-                    argsAsSerie = True,
-                    returnSerieAsArrayMatrix = True )
-                vy2 = HE2.mean(axis=1, dtype=mfp).astype('float').reshape((__p,-1))
-                #
-                if BnotT:
-                    EaY = (HE2 - vy2) / _epsilon
-                else:
-                    EaY = ( (HE2 - vy2) @ numpy.linalg.inv(Ta) ) / numpy.sqrt(__m-1)
-                #
-                GradJ = numpy.ravel(vw[:,None] - EaY.transpose() @ (RI * ( Ynpu - vy1 )))
-                mH = numpy.eye(__m) + EaY.transpose() @ (RI * EaY)
-                Deltaw = - numpy.linalg.solve(mH,GradJ)
-                #
-                vw = vw + Deltaw
-                #
-                if not BnotT:
-                    Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
-                #
-                __j = __j + 1
-            #
-            A2 = EnsembleOfAnomalies( E2 )
-            #
-            if BnotT:
-                Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
-                A2 = numpy.sqrt(__m-1) * A2 @ Ta / _epsilon
-            #
-            Xn = vx2 + A2
-        #--------------------------
+        # Predict (Time Update)
+        # ---------------------
+        if selfA._parameters["EstimationOf"] == "State":
+            if __CovForecast:
+                Mt = EM["Tangent"].asMatrix(Xn)
+                Mt = Mt.reshape(Xn.size, Xn.size)  # ADAO & check shape
+                Ma = EM["Adjoint"].asMatrix(Xn)
+                Ma = Ma.reshape(Xn.size, Xn.size)  # ADAO & check shape
+                Pn_predicted = Q + Mt @ (Pn @ Ma)
+            Mm = EM["Direct"].appliedControledFormTo
+            Xn_predicted = Mm( (Xn, Un) ).reshape((-1, 1))
+            if CM is not None and "Tangent" in CM and Un is not None:  # Attention : si Cm est aussi dans M, doublon !
+                Cm = CM["Tangent"].asMatrix(Xn_predicted)
+                Cm = Cm.reshape(Xn.size, Un.size)  # ADAO & check shape
+                Xn_predicted = Xn_predicted + (Cm @ Un).reshape((-1, 1))
+        elif selfA._parameters["EstimationOf"] == "Parameters":  # No forecast
+            # --- > Par principe, M = Id, Q = 0
+            Xn_predicted = Xn
+            if __CovForecast:
+                Pn_predicted = Pn
+        Xn_predicted = numpy.asarray(Xn_predicted).reshape((-1, 1))
+        if selfA._toStore("ForecastState"):
+            selfA.StoredVariables["ForecastState"].store( Xn_predicted )
+        if __CovForecast:
+            if hasattr(Pn_predicted, "asfullmatrix"):
+                Pn_predicted = Pn_predicted.asfullmatrix(Xn.size)
+            else:
+                Pn_predicted = numpy.asarray(Pn_predicted).reshape((Xn.size, Xn.size))
+            if selfA._toStore("ForecastCovariance"):
+                selfA.StoredVariables["ForecastCovariance"].store( Pn_predicted )
+        #
+        # Correct (Measurement Update)
+        # ----------------------------
+        if __CovForecast:
+            oneCycle(selfA, Xn_predicted, Ynpu, Un, HO, CM, R, Pn_predicted, True)
         else:
-            raise ValueError("VariantM has to be chosen in the authorized methods list.")
-        #
-        if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
-            Xn = CovarianceInflation( Xn,
-                selfA._parameters["InflationType"],
-                selfA._parameters["InflationFactor"],
-                )
+            oneCycle(selfA, Xn_predicted, Ynpu, Un, HO, CM, R, B, True)
         #
-        Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,-1))
-        #--------------------------
-        #
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("APosterioriCovariance") \
-            or selfA._toStore("InnovationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
-            _Innovation = Ynpu - _HXa
-        #
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        # ---> avec analysis
-        selfA.StoredVariables["Analysis"].store( Xa )
-        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
-        if selfA._toStore("InnovationAtCurrentAnalysis"):
-            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
-        # ---> avec current state
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CurrentState"):
-            selfA.StoredVariables["CurrentState"].store( Xn )
-        if selfA._toStore("ForecastState"):
-            selfA.StoredVariables["ForecastState"].store( E2 )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( E2 - Xa )
-        if selfA._toStore("InnovationAtCurrentState"):
-            selfA.StoredVariables["InnovationAtCurrentState"].store( - HE2 + Ynpu.reshape((__p,-1)) )
-        if selfA._toStore("SimulatedObservationAtCurrentState") \
-            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HE2 )
-        # ---> autres
-        if selfA._parameters["StoreInternalVariables"] \
-            or selfA._toStore("CostFunctionJ") \
-            or selfA._toStore("CostFunctionJb") \
-            or selfA._toStore("CostFunctionJo") \
-            or selfA._toStore("CurrentOptimum") \
-            or selfA._toStore("APosterioriCovariance"):
-            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
-            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
-            J   = Jb + Jo
-            selfA.StoredVariables["CostFunctionJb"].store( Jb )
-            selfA.StoredVariables["CostFunctionJo"].store( Jo )
-            selfA.StoredVariables["CostFunctionJ" ].store( J )
-            #
-            if selfA._toStore("IndexOfOptimum") \
-                or selfA._toStore("CurrentOptimum") \
-                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
-                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
-                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-            if selfA._toStore("IndexOfOptimum"):
-                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
-            if selfA._toStore("CurrentOptimum"):
-                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
-            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
-                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
-            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
-            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
-            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
-                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
-        if selfA._toStore("APosterioriCovariance"):
-            Eai = EnsembleOfAnomalies( Xn ) / numpy.sqrt(__m-1) # Anomalies
-            Pn = Eai @ Eai.T
-            Pn = 0.5 * (Pn + Pn.T)
-            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
-        if selfA._parameters["EstimationOf"] == "Parameters" \
-            and J < previousJMinimum:
-            previousJMinimum    = J
-            XaMin               = Xa
-            if selfA._toStore("APosterioriCovariance"):
-                covarianceXaMin = Pn
-    #
-    # Stockage final supplémentaire de l'optimum en estimation de paramètres
-    # ----------------------------------------------------------------------
-    if selfA._parameters["EstimationOf"] == "Parameters":
-        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
-        selfA.StoredVariables["Analysis"].store( XaMin )
-        if selfA._toStore("APosterioriCovariance"):
-            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
-        if selfA._toStore("BMA"):
-            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+        # --------------------------
+        Xn = selfA._getInternalState("Xn")
+        if __CovForecast:
+            Pn = selfA._getInternalState("Pn")
     #
     return 0
 
 # ==============================================================================
 if __name__ == "__main__":
-    print('\n AUTODIAGNOSTIC\n')
+    print("\n AUTODIAGNOSTIC\n")