Salome HOME
Improvement and extension of EnKF algorithm (EnKS)
[modules/adao.git] / src / daComposant / daCore / NumericObjects.py
index 3938e4861204c97ed335414b39168c3e361995e7..5089c21f3ef060896e8739797cad63995898096f 100644 (file)
@@ -1,6 +1,6 @@
 # -*- coding: utf-8 -*-
 #
-# Copyright (C) 2008-2020 EDF R&D
+# Copyright (C) 2008-2021 EDF R&D
 #
 # This library is free software; you can redistribute it and/or
 # modify it under the terms of the GNU Lesser General Public
@@ -26,7 +26,7 @@ __doc__ = """
 __author__ = "Jean-Philippe ARGAUD"
 
 import os, time, copy, types, sys, logging
-import math, numpy, scipy
+import math, numpy, scipy, scipy.optimize, scipy.version
 from daCore.BasicObjects import Operator
 from daCore.PlatformInfo import PlatformInfo
 mpr = PlatformInfo().MachinePrecision()
@@ -34,15 +34,18 @@ mfp = PlatformInfo().MaximumPrecision()
 # logging.getLogger().setLevel(logging.DEBUG)
 
 # ==============================================================================
-def ExecuteFunction( paire ):
-    assert len(paire) == 2, "Incorrect number of arguments"
-    X, funcrepr = paire
+def ExecuteFunction( triplet ):
+    assert len(triplet) == 3, "Incorrect number of arguments"
+    X, xArgs, funcrepr = triplet
     __X = numpy.asmatrix(numpy.ravel( X )).T
     __sys_path_tmp = sys.path ; sys.path.insert(0,funcrepr["__userFunction__path"])
     __module = __import__(funcrepr["__userFunction__modl"], globals(), locals(), [])
     __fonction = getattr(__module,funcrepr["__userFunction__name"])
     sys.path = __sys_path_tmp ; del __sys_path_tmp
-    __HX  = __fonction( __X )
+    if isinstance(xArgs, dict):
+        __HX  = __fonction( __X, **xArgs )
+    else:
+        __HX  = __fonction( __X )
     return numpy.ravel( __HX )
 
 # ==============================================================================
@@ -62,6 +65,7 @@ class FDApproximation(object):
             centeredDF            = False,
             increment             = 0.01,
             dX                    = None,
+            extraArguments        = None,
             avoidingRedundancy    = True,
             toleranceInRedundancy = 1.e-18,
             lenghtOfRedundancy    = -1,
@@ -70,6 +74,7 @@ class FDApproximation(object):
             mfEnabled             = False,
             ):
         self.__name = str(name)
+        self.__extraArgs = extraArguments
         if mpEnabled:
             try:
                 import multiprocessing
@@ -114,7 +119,7 @@ class FDApproximation(object):
                 self.__userFunction__modl = os.path.basename(mod).replace('.pyc','').replace('.pyo','').replace('.py','')
                 self.__userFunction__path = os.path.dirname(mod)
                 del mod
-                self.__userOperator = Operator( name = self.__name, fromMethod = Function, avoidingRedundancy = self.__avoidRC, inputAsMultiFunction = self.__mfEnabled )
+                self.__userOperator = Operator( name = self.__name, fromMethod = Function, avoidingRedundancy = self.__avoidRC, inputAsMultiFunction = self.__mfEnabled, extraArguments = self.__extraArgs )
                 self.__userFunction = self.__userOperator.appliedTo # Pour le calcul Direct
             elif isinstance(Function,types.MethodType):
                 logging.debug("FDA Calculs en multiprocessing : MethodType")
@@ -128,12 +133,12 @@ class FDApproximation(object):
                 self.__userFunction__modl = os.path.basename(mod).replace('.pyc','').replace('.pyo','').replace('.py','')
                 self.__userFunction__path = os.path.dirname(mod)
                 del mod
-                self.__userOperator = Operator( name = self.__name, fromMethod = Function, avoidingRedundancy = self.__avoidRC, inputAsMultiFunction = self.__mfEnabled )
+                self.__userOperator = Operator( name = self.__name, fromMethod = Function, avoidingRedundancy = self.__avoidRC, inputAsMultiFunction = self.__mfEnabled, extraArguments = self.__extraArgs )
                 self.__userFunction = self.__userOperator.appliedTo # Pour le calcul Direct
             else:
                 raise TypeError("User defined function or method has to be provided for finite differences approximation.")
         else:
-            self.__userOperator = Operator( name = self.__name, fromMethod = Function, avoidingRedundancy = self.__avoidRC, inputAsMultiFunction = self.__mfEnabled )
+            self.__userOperator = Operator( name = self.__name, fromMethod = Function, avoidingRedundancy = self.__avoidRC, inputAsMultiFunction = self.__mfEnabled, extraArguments = self.__extraArgs )
             self.__userFunction = self.__userOperator.appliedTo
         #
         self.__centeredDF = bool(centeredDF)
@@ -160,9 +165,12 @@ class FDApproximation(object):
         return __ac, __iac
 
     # ---------------------------------------------------------
-    def DirectOperator(self, X ):
+    def DirectOperator(self, X, **extraArgs ):
         """
         Calcul du direct à l'aide de la fonction fournie.
+
+        NB : les extraArgs sont là pour assurer la compatibilité d'appel, mais
+        ne doivent pas être données ici à la fonction utilisateur.
         """
         logging.debug("FDA Calcul DirectOperator (explicite)")
         if self.__mfEnabled:
@@ -249,8 +257,8 @@ class FDApproximation(object):
                         _X_moins_dXi    = numpy.array( _X.A1, dtype=float )
                         _X_moins_dXi[i] = _X[i] - _dXi
                         #
-                        _jobs.append( (_X_plus_dXi,  funcrepr) )
-                        _jobs.append( (_X_moins_dXi, funcrepr) )
+                        _jobs.append( (_X_plus_dXi,  self.__extraArgs, funcrepr) )
+                        _jobs.append( (_X_moins_dXi, self.__extraArgs, funcrepr) )
                     #
                     import multiprocessing
                     self.__pool = multiprocessing.Pool(self.__mpWorkers)
@@ -303,12 +311,12 @@ class FDApproximation(object):
                         "__userFunction__name" : self.__userFunction__name,
                     }
                     _jobs = []
-                    _jobs.append( (_X.A1, funcrepr) )
+                    _jobs.append( (_X.A1, self.__extraArgs, funcrepr) )
                     for i in range( len(_dX) ):
                         _X_plus_dXi    = numpy.array( _X.A1, dtype=float )
                         _X_plus_dXi[i] = _X[i] + _dX[i]
                         #
-                        _jobs.append( (_X_plus_dXi, funcrepr) )
+                        _jobs.append( (_X_plus_dXi, self.__extraArgs, funcrepr) )
                     #
                     import multiprocessing
                     self.__pool = multiprocessing.Pool(self.__mpWorkers)
@@ -372,9 +380,12 @@ class FDApproximation(object):
         return _Jacobienne
 
     # ---------------------------------------------------------
-    def TangentOperator(self, paire ):
+    def TangentOperator(self, paire, **extraArgs ):
         """
         Calcul du tangent à l'aide de la Jacobienne.
+
+        NB : les extraArgs sont là pour assurer la compatibilité d'appel, mais
+        ne doivent pas être données ici à la fonction utilisateur.
         """
         if self.__mfEnabled:
             assert len(paire) == 1, "Incorrect lenght of arguments"
@@ -401,9 +412,12 @@ class FDApproximation(object):
             else:                return _HtX.A1
 
     # ---------------------------------------------------------
-    def AdjointOperator(self, paire ):
+    def AdjointOperator(self, paire, **extraArgs ):
         """
         Calcul de l'adjoint à l'aide de la Jacobienne.
+
+        NB : les extraArgs sont là pour assurer la compatibilité d'appel, mais
+        ne doivent pas être données ici à la fonction utilisateur.
         """
         if self.__mfEnabled:
             assert len(paire) == 1, "Incorrect lenght of arguments"
@@ -429,6 +443,1412 @@ class FDApproximation(object):
             if self.__mfEnabled: return [_HaY.A1,]
             else:                return _HaY.A1
 
+# ==============================================================================
+def EnsembleOfCenteredPerturbations( _bgcenter, _bgcovariance, _nbmembers ):
+    "Génération d'un ensemble de taille _nbmembers-1 d'états aléatoires centrés"
+    #
+    _bgcenter = numpy.ravel(_bgcenter)[:,None]
+    if _nbmembers < 1:
+        raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(_nbmembers),))
+    #
+    if _bgcovariance is None:
+        BackgroundEnsemble = numpy.tile( _bgcenter, _nbmembers)
+    else:
+        _Z = numpy.random.multivariate_normal(numpy.zeros(_bgcenter.size), _bgcovariance, size=_nbmembers).T
+        BackgroundEnsemble = numpy.tile( _bgcenter, _nbmembers) + _Z
+    #
+    return BackgroundEnsemble
+
+# ==============================================================================
+def EnsembleOfBackgroundPerturbations( _bgcenter, _bgcovariance, _nbmembers, _withSVD = True):
+    "Génération d'un ensemble de taille _nbmembers-1 d'états aléatoires centrés"
+    def __CenteredRandomAnomalies(Zr, N):
+        """
+        Génère une matrice de N anomalies aléatoires centrées sur Zr selon les
+        notes manuscrites de MB et conforme au code de PS avec eps = -1
+        """
+        eps = -1
+        Q = numpy.identity(N-1)-numpy.ones((N-1,N-1))/numpy.sqrt(N)/(numpy.sqrt(N)-eps)
+        Q = numpy.concatenate((Q, [eps*numpy.ones(N-1)/numpy.sqrt(N)]), axis=0)
+        R, _ = numpy.linalg.qr(numpy.random.normal(size = (N-1,N-1)))
+        Q = numpy.dot(Q,R)
+        Zr = numpy.dot(Q,Zr)
+        return Zr.T
+    #
+    _bgcenter = numpy.ravel(_bgcenter).reshape((-1,1))
+    if _nbmembers < 1:
+        raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(_nbmembers),))
+    if _bgcovariance is None:
+        BackgroundEnsemble = numpy.tile( _bgcenter, _nbmembers)
+    else:
+        if _withSVD:
+            U, s, V = numpy.linalg.svd(_bgcovariance, full_matrices=False)
+            _nbctl = _bgcenter.size
+            if _nbmembers > _nbctl:
+                _Z = numpy.concatenate((numpy.dot(
+                    numpy.diag(numpy.sqrt(s[:_nbctl])), V[:_nbctl]),
+                    numpy.random.multivariate_normal(numpy.zeros(_nbctl),_bgcovariance,_nbmembers-1-_nbctl)), axis = 0)
+            else:
+                _Z = numpy.dot(numpy.diag(numpy.sqrt(s[:_nbmembers-1])), V[:_nbmembers-1])
+            _Zca = __CenteredRandomAnomalies(_Z, _nbmembers)
+            BackgroundEnsemble = _bgcenter + _Zca
+        else:
+            if max(abs(_bgcovariance.flatten())) > 0:
+                _nbctl = _bgcenter.size
+                _Z = numpy.random.multivariate_normal(numpy.zeros(_nbctl),_bgcovariance,_nbmembers-1)
+                _Zca = __CenteredRandomAnomalies(_Z, _nbmembers)
+                BackgroundEnsemble = _bgcenter + _Zca
+            else:
+                BackgroundEnsemble = numpy.tile( _bgcenter, _nbmembers)
+    #
+    return BackgroundEnsemble
+
+# ==============================================================================
+def EnsembleOfAnomalies( Ensemble, OptMean = None, Normalisation = 1.):
+    "Renvoie les anomalies centrées à partir d'un ensemble TailleEtat*NbMembres"
+    if OptMean is None:
+        __Em = numpy.asarray(Ensemble).mean(axis=1, dtype=mfp).astype('float').reshape((-1,1))
+    else:
+        __Em = numpy.ravel(OptMean).reshape((-1,1))
+    #
+    return Normalisation * (numpy.asarray(Ensemble) - __Em)
+
+# ==============================================================================
+def EnsembleErrorCovariance( Ensemble ):
+    "Renvoie la covariance d'ensemble"
+    __Anomalies = EnsembleOfAnomalies( Ensemble )
+    __n, __m = numpy.asarray(__Anomalies).shape
+    # Estimation empirique
+    __Covariance = (__Anomalies @ __Anomalies.T) / (__m-1)
+    # Assure la symétrie
+    __Covariance = (__Covariance + __Covariance.T) * 0.5
+    # Assure la positivité
+    __epsilon    = mpr*numpy.trace(__Covariance)
+    __Covariance = __Covariance + __epsilon * numpy.identity(__n)
+    #
+    return __Covariance
+
+# ==============================================================================
+def CovarianceInflation(
+        InputCovOrEns,
+        InflationType   = None,
+        InflationFactor = None,
+        BackgroundCov   = None,
+        ):
+    """
+    Inflation applicable soit sur Pb ou Pa, soit sur les ensembles EXb ou EXa
+
+    Synthèse : Hunt 2007, section 2.3.5
+    """
+    if InflationFactor is None:
+        return InputCovOrEns
+    else:
+        InflationFactor = float(InflationFactor)
+    #
+    if InflationType in ["MultiplicativeOnAnalysisCovariance", "MultiplicativeOnBackgroundCovariance"]:
+        if InflationFactor < 1.:
+            raise ValueError("Inflation factor for multiplicative inflation has to be greater or equal than 1.")
+        if InflationFactor < 1.+mpr:
+            return InputCovOrEns
+        OutputCovOrEns = InflationFactor**2 * InputCovOrEns
+    #
+    elif InflationType in ["MultiplicativeOnAnalysisAnomalies", "MultiplicativeOnBackgroundAnomalies"]:
+        if InflationFactor < 1.:
+            raise ValueError("Inflation factor for multiplicative inflation has to be greater or equal than 1.")
+        if InflationFactor < 1.+mpr:
+            return InputCovOrEns
+        InputCovOrEnsMean = InputCovOrEns.mean(axis=1, dtype=mfp).astype('float')
+        OutputCovOrEns = InputCovOrEnsMean[:,numpy.newaxis] \
+            + InflationFactor * (InputCovOrEns - InputCovOrEnsMean[:,numpy.newaxis])
+    #
+    elif InflationType in ["AdditiveOnAnalysisCovariance", "AdditiveOnBackgroundCovariance"]:
+        if InflationFactor < 0.:
+            raise ValueError("Inflation factor for additive inflation has to be greater or equal than 0.")
+        if InflationFactor < mpr:
+            return InputCovOrEns
+        __n, __m = numpy.asarray(InputCovOrEns).shape
+        if __n != __m:
+            raise ValueError("Additive inflation can only be applied to squared (covariance) matrix.")
+        OutputCovOrEns = (1. - InflationFactor) * InputCovOrEns + InflationFactor * numpy.identity(__n)
+    #
+    elif InflationType == "HybridOnBackgroundCovariance":
+        if InflationFactor < 0.:
+            raise ValueError("Inflation factor for hybrid inflation has to be greater or equal than 0.")
+        if InflationFactor < mpr:
+            return InputCovOrEns
+        __n, __m = numpy.asarray(InputCovOrEns).shape
+        if __n != __m:
+            raise ValueError("Additive inflation can only be applied to squared (covariance) matrix.")
+        if BackgroundCov is None:
+            raise ValueError("Background covariance matrix B has to be given for hybrid inflation.")
+        if InputCovOrEns.shape != BackgroundCov.shape:
+            raise ValueError("Ensemble covariance matrix has to be of same size than background covariance matrix B.")
+        OutputCovOrEns = (1. - InflationFactor) * InputCovOrEns + InflationFactor * BackgroundCov
+    #
+    elif InflationType == "Relaxation":
+        raise NotImplementedError("InflationType Relaxation")
+    #
+    else:
+        raise ValueError("Error in inflation type, '%s' is not a valid keyword."%InflationType)
+    #
+    return OutputCovOrEns
+
+# ==============================================================================
+def enks(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="EnKS16-KalmanFilterFormula"):
+    """
+    EnKS
+    """
+    #
+    # Initialisations
+    # ---------------
+    #
+    # Opérateurs
+    H = HO["Direct"].appliedControledFormTo
+    #
+    if selfA._parameters["EstimationOf"] == "State":
+        M = EM["Direct"].appliedControledFormTo
+    #
+    if CM is not None and "Tangent" in CM and U is not None:
+        Cm = CM["Tangent"].asMatrix(Xb)
+    else:
+        Cm = None
+    #
+    # Précalcul des inversions de B et R
+    RIdemi = R.sqrtmI()
+    #
+    LagL = selfA._parameters["SmootherLagL"]
+    if (not hasattr(Y,"store")) or (not hasattr(Y,"stepnumber")):
+        raise ValueError("Fixed-lag smoother requires a series of observation")
+    if Y.stepnumber() < LagL:
+        raise ValueError("Fixed-lag smoother requires a series of observation greater then the lag L")
+    duration = Y.stepnumber()
+    __p = numpy.cumprod(Y.shape())[-1]
+    __n = Xb.size
+    __m = selfA._parameters["NumberOfMembers"]
+    #
+    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
+    else:                         Pn = B
+    if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n)
+    else:                         Qn = Q
+    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+        selfA.StoredVariables["Analysis"].store( Xb )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+            covarianceXa = Pn
+    #
+    # Calcul direct initial (on privilégie la mémorisation au recalcul)
+    __seed = numpy.random.get_state()
+    selfB = copy.deepcopy(selfA)
+    selfB._parameters["StoreSupplementaryCalculations"] = ["CurrentEnsembleState"]
+    if VariantM == "EnKS16-KalmanFilterFormula":
+        etkf(selfB, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM = "KalmanFilterFormula")
+    else:
+        raise ValueError("VariantM has to be chosen in the authorized methods list.")
+    if LagL > 0:
+        EL  = selfB.StoredVariables["CurrentEnsembleState"][LagL-1]
+    else:
+        EL = EnsembleOfBackgroundPerturbations( Xb, None, __m ) # Cf. etkf
+    selfA._parameters["SetSeed"] = numpy.random.set_state(__seed)
+    #
+    for step in range(LagL,duration-1):
+        #
+        sEL = selfB.StoredVariables["CurrentEnsembleState"][step+1-LagL:step+1]
+        sEL.append(None)
+        #
+        if hasattr(Y,"store"):
+            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+        else:
+            Ynpu = numpy.ravel( Y ).reshape((__p,1))
+        #
+        if U is not None:
+            if hasattr(U,"store") and len(U)>1:
+                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
+            elif hasattr(U,"store") and len(U)==1:
+                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+            else:
+                Un = numpy.asmatrix(numpy.ravel( U )).T
+        else:
+            Un = None
+        #
+        #--------------------------
+        if VariantM == "EnKS16-KalmanFilterFormula":
+            if selfA._parameters["EstimationOf"] == "State": # Forecast
+                EL = M( [(EL[:,i], Un) for i in range(__m)],
+                    argsAsSerie = True,
+                    returnSerieAsArrayMatrix = True )
+                EL = EL + numpy.random.multivariate_normal(numpy.zeros(__n), Qn, size=__m).T
+                EZ = H( [(EL[:,i], Un) for i in range(__m)],
+                    argsAsSerie = True,
+                    returnSerieAsArrayMatrix = True )
+                if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+                    Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+                    EZ = EZ + Cm * Un
+            elif selfA._parameters["EstimationOf"] == "Parameters":
+                # --- > Par principe, M = Id, Q = 0
+                EZ = H( [(EL[:,i], Un) for i in range(__m)],
+                    argsAsSerie = True,
+                    returnSerieAsArrayMatrix = True )
+            #
+            vEm   = EL.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+            vZm   = EZ.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
+            #
+            mS    = RIdemi @ EnsembleOfAnomalies( EZ, vZm, 1./math.sqrt(__m-1) )
+            delta = RIdemi @ ( Ynpu - vZm )
+            mT    = numpy.linalg.inv( numpy.identity(__m) + mS.T @ mS )
+            vw    = mT @ mS.T @ delta
+            #
+            Tdemi = numpy.real(scipy.linalg.sqrtm(mT))
+            mU    = numpy.identity(__m)
+            wTU   = (vw.reshape((__m,1)) + math.sqrt(__m-1) * Tdemi @ mU)
+            #
+            EX    = EnsembleOfAnomalies( EL, vEm, 1./math.sqrt(__m-1) )
+            EL    = vEm + EX @ wTU
+            #
+            sEL[LagL] = EL
+            for irl in range(LagL): # Lissage des L précédentes analysis
+                vEm = sEL[irl].mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+                EX = EnsembleOfAnomalies( sEL[irl], vEm, 1./math.sqrt(__m-1) )
+                sEL[irl] = vEm + EX @ wTU
+            #
+            # Conservation de l'analyse retrospective d'ordre 0 avant rotation
+            Xa = sEL[0].mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+            if selfA._toStore("APosterioriCovariance"):
+                EXn = sEL[0]
+            #
+            for irl in range(LagL):
+                sEL[irl] = sEL[irl+1]
+            sEL[LagL] = None
+        #--------------------------
+        else:
+            raise ValueError("VariantM has to be chosen in the authorized methods list.")
+        #
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        selfA.StoredVariables["Analysis"].store( Xa )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(EXn) )
+    #
+    # Stockage des dernières analyses incomplètement remises à jour
+    for irl in range(LagL):
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        Xa = sEL[irl].mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+        selfA.StoredVariables["Analysis"].store( Xa )
+    #
+    return 0
+
+# ==============================================================================
+def etkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula"):
+    """
+    Ensemble-Transform EnKF
+    """
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        selfA._parameters["StoreInternalVariables"] = True
+    #
+    # Opérateurs
+    # ----------
+    H = HO["Direct"].appliedControledFormTo
+    #
+    if selfA._parameters["EstimationOf"] == "State":
+        M = EM["Direct"].appliedControledFormTo
+    #
+    if CM is not None and "Tangent" in CM and U is not None:
+        Cm = CM["Tangent"].asMatrix(Xb)
+    else:
+        Cm = None
+    #
+    # Nombre de pas identique au nombre de pas d'observations
+    # -------------------------------------------------------
+    if hasattr(Y,"stepnumber"):
+        duration = Y.stepnumber()
+        __p = numpy.cumprod(Y.shape())[-1]
+    else:
+        duration = 2
+        __p = numpy.array(Y).size
+    #
+    # Précalcul des inversions de B et R
+    # ----------------------------------
+    if selfA._parameters["StoreInternalVariables"] \
+        or selfA._toStore("CostFunctionJ") \
+        or selfA._toStore("CostFunctionJb") \
+        or selfA._toStore("CostFunctionJo") \
+        or selfA._toStore("CurrentOptimum") \
+        or selfA._toStore("APosterioriCovariance"):
+        BI = B.getI()
+        RI = R.getI()
+    elif VariantM != "KalmanFilterFormula":
+        RI = R.getI()
+    if VariantM == "KalmanFilterFormula":
+        RIdemi = R.sqrtmI()
+    #
+    # Initialisation
+    # --------------
+    __n = Xb.size
+    __m = selfA._parameters["NumberOfMembers"]
+    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
+    else:                         Pn = B
+    if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n)
+    else:                         Qn = Q
+    Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
+    #~ Xn = EnsembleOfBackgroundPerturbations( Xb, Pn, __m )
+    #
+    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+        selfA.StoredVariables["Analysis"].store( Xb )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+            covarianceXa = Pn
+    #
+    previousJMinimum = numpy.finfo(float).max
+    #
+    for step in range(duration-1):
+        if hasattr(Y,"store"):
+            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+        else:
+            Ynpu = numpy.ravel( Y ).reshape((__p,1))
+        #
+        if U is not None:
+            if hasattr(U,"store") and len(U)>1:
+                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
+            elif hasattr(U,"store") and len(U)==1:
+                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+            else:
+                Un = numpy.asmatrix(numpy.ravel( U )).T
+        else:
+            Un = None
+        #
+        if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
+            Xn = CovarianceInflation( Xn,
+                selfA._parameters["InflationType"],
+                selfA._parameters["InflationFactor"],
+                )
+        #
+        if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
+            EMX = M( [(Xn[:,i], Un) for i in range(__m)],
+                argsAsSerie = True,
+                returnSerieAsArrayMatrix = True )
+            qi = numpy.random.multivariate_normal(numpy.zeros(__n), Qn, size=__m).T
+            Xn_predicted = EMX + qi
+            HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
+                argsAsSerie = True,
+                returnSerieAsArrayMatrix = True )
+            if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+                Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+                Xn_predicted = Xn_predicted + Cm * Un
+        elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
+            # --- > Par principe, M = Id, Q = 0
+            Xn_predicted = Xn
+            HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
+                argsAsSerie = True,
+                returnSerieAsArrayMatrix = True )
+        #
+        # Mean of forecast and observation of forecast
+        Xfm  = Xn_predicted.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+        Hfm  = HX_predicted.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
+        #
+        # Anomalies
+        EaX   = EnsembleOfAnomalies( Xn_predicted, Xfm )
+        EaHX  = EnsembleOfAnomalies( HX_predicted, Hfm)
+        #
+        #--------------------------
+        if VariantM == "KalmanFilterFormula":
+            mS    = RIdemi * EaHX / math.sqrt(__m-1)
+            delta = RIdemi * ( Ynpu - Hfm )
+            mT    = numpy.linalg.inv( numpy.identity(__m) + mS.T @ mS )
+            vw    = mT @ mS.T @ delta
+            #
+            Tdemi = numpy.real(scipy.linalg.sqrtm(mT))
+            mU    = numpy.identity(__m)
+            #
+            EaX   = EaX / math.sqrt(__m-1)
+            Xn    = Xfm + EaX @ ( vw.reshape((__m,1)) + math.sqrt(__m-1) * Tdemi @ mU )
+        #--------------------------
+        elif VariantM == "Variational":
+            HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
+            def CostFunction(w):
+                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+                _Jo = 0.5 * _A.T @ (RI * _A)
+                _Jb = 0.5 * (__m-1) * w.T @ w
+                _J  = _Jo + _Jb
+                return float(_J)
+            def GradientOfCostFunction(w):
+                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+                _GardJo = - EaHX.T @ (RI * _A)
+                _GradJb = (__m-1) * w.reshape((__m,1))
+                _GradJ  = _GardJo + _GradJb
+                return numpy.ravel(_GradJ)
+            vw = scipy.optimize.fmin_cg(
+                f           = CostFunction,
+                x0          = numpy.zeros(__m),
+                fprime      = GradientOfCostFunction,
+                args        = (),
+                disp        = False,
+                )
+            #
+            Hto = EaHX.T @ (RI * EaHX)
+            Htb = (__m-1) * numpy.identity(__m)
+            Hta = Hto + Htb
+            #
+            Pta = numpy.linalg.inv( Hta )
+            EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
+            #
+            Xn  = Xfm + EaX @ (vw[:,None] + EWa)
+        #--------------------------
+        elif VariantM == "FiniteSize11": # Jauge Boc2011
+            HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
+            def CostFunction(w):
+                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+                _Jo = 0.5 * _A.T @ (RI * _A)
+                _Jb = 0.5 * __m * math.log(1 + 1/__m + w.T @ w)
+                _J  = _Jo + _Jb
+                return float(_J)
+            def GradientOfCostFunction(w):
+                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+                _GardJo = - EaHX.T @ (RI * _A)
+                _GradJb = __m * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w)
+                _GradJ  = _GardJo + _GradJb
+                return numpy.ravel(_GradJ)
+            vw = scipy.optimize.fmin_cg(
+                f           = CostFunction,
+                x0          = numpy.zeros(__m),
+                fprime      = GradientOfCostFunction,
+                args        = (),
+                disp        = False,
+                )
+            #
+            Hto = EaHX.T @ (RI * EaHX)
+            Htb = __m * \
+                ( (1 + 1/__m + vw.T @ vw) * numpy.identity(__m) - 2 * vw @ vw.T ) \
+                / (1 + 1/__m + vw.T @ vw)**2
+            Hta = Hto + Htb
+            #
+            Pta = numpy.linalg.inv( Hta )
+            EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
+            #
+            Xn  = Xfm + EaX @ (vw.reshape((__m,1)) + EWa)
+        #--------------------------
+        elif VariantM == "FiniteSize15": # Jauge Boc2015
+            HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
+            def CostFunction(w):
+                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+                _Jo = 0.5 * _A.T * RI * _A
+                _Jb = 0.5 * (__m+1) * math.log(1 + 1/__m + w.T @ w)
+                _J  = _Jo + _Jb
+                return float(_J)
+            def GradientOfCostFunction(w):
+                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+                _GardJo = - EaHX.T @ (RI * _A)
+                _GradJb = (__m+1) * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w)
+                _GradJ  = _GardJo + _GradJb
+                return numpy.ravel(_GradJ)
+            vw = scipy.optimize.fmin_cg(
+                f           = CostFunction,
+                x0          = numpy.zeros(__m),
+                fprime      = GradientOfCostFunction,
+                args        = (),
+                disp        = False,
+                )
+            #
+            Hto = EaHX.T @ (RI * EaHX)
+            Htb = (__m+1) * \
+                ( (1 + 1/__m + vw.T @ vw) * numpy.identity(__m) - 2 * vw @ vw.T ) \
+                / (1 + 1/__m + vw.T @ vw)**2
+            Hta = Hto + Htb
+            #
+            Pta = numpy.linalg.inv( Hta )
+            EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
+            #
+            Xn  = Xfm + EaX @ (vw.reshape((__m,1)) + EWa)
+        #--------------------------
+        elif VariantM == "FiniteSize16": # Jauge Boc2016
+            HXfm = H((Xfm[:,None], Un)) # Eventuellement Hfm
+            def CostFunction(w):
+                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+                _Jo = 0.5 * _A.T @ (RI * _A)
+                _Jb = 0.5 * (__m+1) * math.log(1 + 1/__m + w.T @ w / (__m-1))
+                _J  = _Jo + _Jb
+                return float(_J)
+            def GradientOfCostFunction(w):
+                _A  = Ynpu - HXfm.reshape((__p,1)) - (EaHX @ w).reshape((__p,1))
+                _GardJo = - EaHX.T @ (RI * _A)
+                _GradJb = ((__m+1) / (__m-1)) * w.reshape((__m,1)) / (1 + 1/__m + w.T @ w / (__m-1))
+                _GradJ  = _GardJo + _GradJb
+                return numpy.ravel(_GradJ)
+            vw = scipy.optimize.fmin_cg(
+                f           = CostFunction,
+                x0          = numpy.zeros(__m),
+                fprime      = GradientOfCostFunction,
+                args        = (),
+                disp        = False,
+                )
+            #
+            Hto = EaHX.T @ (RI * EaHX)
+            Htb = ((__m+1) / (__m-1)) * \
+                ( (1 + 1/__m + vw.T @ vw / (__m-1)) * numpy.identity(__m) - 2 * vw @ vw.T / (__m-1) ) \
+                / (1 + 1/__m + vw.T @ vw / (__m-1))**2
+            Hta = Hto + Htb
+            #
+            Pta = numpy.linalg.inv( Hta )
+            EWa = numpy.real(scipy.linalg.sqrtm((__m-1)*Pta)) # Partie imaginaire ~= 10^-18
+            #
+            Xn  = Xfm + EaX @ (vw[:,None] + EWa)
+        #--------------------------
+        else:
+            raise ValueError("VariantM has to be chosen in the authorized methods list.")
+        #
+        if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
+            Xn = CovarianceInflation( Xn,
+                selfA._parameters["InflationType"],
+                selfA._parameters["InflationFactor"],
+                )
+        #
+        Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+        #--------------------------
+        #
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CostFunctionJ") \
+            or selfA._toStore("CostFunctionJb") \
+            or selfA._toStore("CostFunctionJo") \
+            or selfA._toStore("APosterioriCovariance") \
+            or selfA._toStore("InnovationAtCurrentAnalysis") \
+            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
+            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
+            _Innovation = Ynpu - _HXa
+        #
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        # ---> avec analysis
+        selfA.StoredVariables["Analysis"].store( Xa )
+        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
+        if selfA._toStore("InnovationAtCurrentAnalysis"):
+            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+        # ---> avec current state
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CurrentState"):
+            selfA.StoredVariables["CurrentState"].store( Xn )
+        if selfA._toStore("ForecastState"):
+            selfA.StoredVariables["ForecastState"].store( EMX )
+        if selfA._toStore("BMA"):
+            selfA.StoredVariables["BMA"].store( EMX - Xa.reshape((__n,1)) )
+        if selfA._toStore("InnovationAtCurrentState"):
+            selfA.StoredVariables["InnovationAtCurrentState"].store( - HX_predicted + Ynpu )
+        if selfA._toStore("SimulatedObservationAtCurrentState") \
+            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
+        # ---> autres
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CostFunctionJ") \
+            or selfA._toStore("CostFunctionJb") \
+            or selfA._toStore("CostFunctionJo") \
+            or selfA._toStore("CurrentOptimum") \
+            or selfA._toStore("APosterioriCovariance"):
+            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
+            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
+            J   = Jb + Jo
+            selfA.StoredVariables["CostFunctionJb"].store( Jb )
+            selfA.StoredVariables["CostFunctionJo"].store( Jo )
+            selfA.StoredVariables["CostFunctionJ" ].store( J )
+            #
+            if selfA._toStore("IndexOfOptimum") \
+                or selfA._toStore("CurrentOptimum") \
+                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+            if selfA._toStore("IndexOfOptimum"):
+                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+            if selfA._toStore("CurrentOptimum"):
+                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
+        if selfA._parameters["EstimationOf"] == "Parameters" \
+            and J < previousJMinimum:
+            previousJMinimum    = J
+            XaMin               = Xa
+            if selfA._toStore("APosterioriCovariance"):
+                covarianceXaMin = Pn
+        # ---> Pour les smoothers
+        if selfA._toStore("CurrentEnsembleState"):
+            selfA.StoredVariables["CurrentEnsembleState"].store( Xn )
+    #
+    # Stockage final supplémentaire de l'optimum en estimation de paramètres
+    # ----------------------------------------------------------------------
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        selfA.StoredVariables["Analysis"].store( XaMin )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+        if selfA._toStore("BMA"):
+            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+    #
+    return 0
+
+# ==============================================================================
+def ienkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="IEnKF12",
+    BnotT=False, _epsilon=1.e-3, _e=1.e-7, _jmax=15000):
+    """
+    Iterative EnKF
+    """
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        selfA._parameters["StoreInternalVariables"] = True
+    #
+    # Opérateurs
+    # ----------
+    H = HO["Direct"].appliedControledFormTo
+    #
+    if selfA._parameters["EstimationOf"] == "State":
+        M = EM["Direct"].appliedControledFormTo
+    #
+    if CM is not None and "Tangent" in CM and U is not None:
+        Cm = CM["Tangent"].asMatrix(Xb)
+    else:
+        Cm = None
+    #
+    # Nombre de pas identique au nombre de pas d'observations
+    # -------------------------------------------------------
+    if hasattr(Y,"stepnumber"):
+        duration = Y.stepnumber()
+        __p = numpy.cumprod(Y.shape())[-1]
+    else:
+        duration = 2
+        __p = numpy.array(Y).size
+    #
+    # Précalcul des inversions de B et R
+    # ----------------------------------
+    if selfA._parameters["StoreInternalVariables"] \
+        or selfA._toStore("CostFunctionJ") \
+        or selfA._toStore("CostFunctionJb") \
+        or selfA._toStore("CostFunctionJo") \
+        or selfA._toStore("CurrentOptimum") \
+        or selfA._toStore("APosterioriCovariance"):
+        BI = B.getI()
+    RI = R.getI()
+    #
+    # Initialisation
+    # --------------
+    __n = Xb.size
+    __m = selfA._parameters["NumberOfMembers"]
+    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
+    else:                         Pn = B
+    if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
+    else:                         Rn = R
+    if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n)
+    else:                         Qn = Q
+    Xn = EnsembleOfBackgroundPerturbations( Xb, Pn, __m )
+    #
+    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+        selfA.StoredVariables["Analysis"].store( Xb )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+            covarianceXa = Pn
+    #
+    previousJMinimum = numpy.finfo(float).max
+    #
+    for step in range(duration-1):
+        if hasattr(Y,"store"):
+            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+        else:
+            Ynpu = numpy.ravel( Y ).reshape((__p,1))
+        #
+        if U is not None:
+            if hasattr(U,"store") and len(U)>1:
+                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
+            elif hasattr(U,"store") and len(U)==1:
+                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+            else:
+                Un = numpy.asmatrix(numpy.ravel( U )).T
+        else:
+            Un = None
+        #
+        if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
+            Xn = CovarianceInflation( Xn,
+                selfA._parameters["InflationType"],
+                selfA._parameters["InflationFactor"],
+                )
+        #
+        #--------------------------
+        if VariantM == "IEnKF12":
+            Xfm = numpy.ravel(Xn.mean(axis=1, dtype=mfp).astype('float'))
+            EaX = EnsembleOfAnomalies( Xn ) / math.sqrt(__m-1)
+            __j = 0
+            Deltaw = 1
+            if not BnotT:
+                Ta  = numpy.identity(__m)
+            vw  = numpy.zeros(__m)
+            while numpy.linalg.norm(Deltaw) >= _e and __j <= _jmax:
+                vx1 = (Xfm + EaX @ vw).reshape((__n,1))
+                #
+                if BnotT:
+                    E1 = vx1 + _epsilon * EaX
+                else:
+                    E1 = vx1 + math.sqrt(__m-1) * EaX @ Ta
+                #
+                if selfA._parameters["EstimationOf"] == "State": # Forecast + Q
+                    E2 = M( [(E1[:,i,numpy.newaxis], Un) for i in range(__m)],
+                        argsAsSerie = True,
+                        returnSerieAsArrayMatrix = True )
+                elif selfA._parameters["EstimationOf"] == "Parameters":
+                    # --- > Par principe, M = Id
+                    E2 = Xn
+                vx2 = E2.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+                vy1 = H((vx2, Un)).reshape((__p,1))
+                #
+                HE2 = H( [(E2[:,i,numpy.newaxis], Un) for i in range(__m)],
+                    argsAsSerie = True,
+                    returnSerieAsArrayMatrix = True )
+                vy2 = HE2.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
+                #
+                if BnotT:
+                    EaY = (HE2 - vy2) / _epsilon
+                else:
+                    EaY = ( (HE2 - vy2) @ numpy.linalg.inv(Ta) ) / math.sqrt(__m-1)
+                #
+                GradJ = numpy.ravel(vw[:,None] - EaY.transpose() @ (RI * ( Ynpu - vy1 )))
+                mH = numpy.identity(__m) + EaY.transpose() @ (RI * EaY)
+                Deltaw = - numpy.linalg.solve(mH,GradJ)
+                #
+                vw = vw + Deltaw
+                #
+                if not BnotT:
+                    Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
+                #
+                __j = __j + 1
+            #
+            A2 = EnsembleOfAnomalies( E2 )
+            #
+            if BnotT:
+                Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
+                A2 = math.sqrt(__m-1) * A2 @ Ta / _epsilon
+            #
+            Xn = vx2 + A2
+        #--------------------------
+        else:
+            raise ValueError("VariantM has to be chosen in the authorized methods list.")
+        #
+        if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
+            Xn = CovarianceInflation( Xn,
+                selfA._parameters["InflationType"],
+                selfA._parameters["InflationFactor"],
+                )
+        #
+        Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+        #--------------------------
+        #
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CostFunctionJ") \
+            or selfA._toStore("CostFunctionJb") \
+            or selfA._toStore("CostFunctionJo") \
+            or selfA._toStore("APosterioriCovariance") \
+            or selfA._toStore("InnovationAtCurrentAnalysis") \
+            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
+            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
+            _Innovation = Ynpu - _HXa
+        #
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        # ---> avec analysis
+        selfA.StoredVariables["Analysis"].store( Xa )
+        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
+        if selfA._toStore("InnovationAtCurrentAnalysis"):
+            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+        # ---> avec current state
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CurrentState"):
+            selfA.StoredVariables["CurrentState"].store( Xn )
+        if selfA._toStore("ForecastState"):
+            selfA.StoredVariables["ForecastState"].store( E2 )
+        if selfA._toStore("BMA"):
+            selfA.StoredVariables["BMA"].store( E2 - Xa )
+        if selfA._toStore("InnovationAtCurrentState"):
+            selfA.StoredVariables["InnovationAtCurrentState"].store( - HE2 + Ynpu )
+        if selfA._toStore("SimulatedObservationAtCurrentState") \
+            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HE2 )
+        # ---> autres
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CostFunctionJ") \
+            or selfA._toStore("CostFunctionJb") \
+            or selfA._toStore("CostFunctionJo") \
+            or selfA._toStore("CurrentOptimum") \
+            or selfA._toStore("APosterioriCovariance"):
+            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
+            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
+            J   = Jb + Jo
+            selfA.StoredVariables["CostFunctionJb"].store( Jb )
+            selfA.StoredVariables["CostFunctionJo"].store( Jo )
+            selfA.StoredVariables["CostFunctionJ" ].store( J )
+            #
+            if selfA._toStore("IndexOfOptimum") \
+                or selfA._toStore("CurrentOptimum") \
+                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+            if selfA._toStore("IndexOfOptimum"):
+                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+            if selfA._toStore("CurrentOptimum"):
+                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
+        if selfA._parameters["EstimationOf"] == "Parameters" \
+            and J < previousJMinimum:
+            previousJMinimum    = J
+            XaMin               = Xa
+            if selfA._toStore("APosterioriCovariance"):
+                covarianceXaMin = Pn
+    #
+    # Stockage final supplémentaire de l'optimum en estimation de paramètres
+    # ----------------------------------------------------------------------
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        selfA.StoredVariables["Analysis"].store( XaMin )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+        if selfA._toStore("BMA"):
+            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+    #
+    return 0
+
+# ==============================================================================
+def incr3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+    """
+    3DVAR incrémental
+    """
+    #
+    # Initialisations
+    # ---------------
+    #
+    # Opérateur non-linéaire pour la boucle externe
+    Hm = HO["Direct"].appliedTo
+    #
+    # Précalcul des inversions de B et R
+    BI = B.getI()
+    RI = R.getI()
+    #
+    # Point de démarrage de l'optimisation
+    Xini = selfA._parameters["InitializationPoint"]
+    #
+    HXb = numpy.asmatrix(numpy.ravel( Hm( Xb ) )).T
+    Innovation = Y - HXb
+    #
+    # Outer Loop
+    # ----------
+    iOuter = 0
+    J      = 1./mpr
+    DeltaJ = 1./mpr
+    Xr     = Xini.reshape((-1,1))
+    while abs(DeltaJ) >= selfA._parameters["CostDecrementTolerance"] and iOuter <= selfA._parameters["MaximumNumberOfSteps"]:
+        #
+        # Inner Loop
+        # ----------
+        Ht = HO["Tangent"].asMatrix(Xr)
+        Ht = Ht.reshape(Y.size,Xr.size) # ADAO & check shape
+        #
+        # Définition de la fonction-coût
+        # ------------------------------
+        def CostFunction(dx):
+            _dX  = numpy.asmatrix(numpy.ravel( dx )).T
+            if selfA._parameters["StoreInternalVariables"] or \
+                selfA._toStore("CurrentState") or \
+                selfA._toStore("CurrentOptimum"):
+                selfA.StoredVariables["CurrentState"].store( Xb + _dX )
+            _HdX = Ht * _dX
+            _HdX = numpy.asmatrix(numpy.ravel( _HdX )).T
+            _dInnovation = Innovation - _HdX
+            if selfA._toStore("SimulatedObservationAtCurrentState") or \
+                selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HXb + _HdX )
+            if selfA._toStore("InnovationAtCurrentState"):
+                selfA.StoredVariables["InnovationAtCurrentState"].store( _dInnovation )
+            #
+            Jb  = float( 0.5 * _dX.T * BI * _dX )
+            Jo  = float( 0.5 * _dInnovation.T * RI * _dInnovation )
+            J   = Jb + Jo
+            #
+            selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
+            selfA.StoredVariables["CostFunctionJb"].store( Jb )
+            selfA.StoredVariables["CostFunctionJo"].store( Jo )
+            selfA.StoredVariables["CostFunctionJ" ].store( J )
+            if selfA._toStore("IndexOfOptimum") or \
+                selfA._toStore("CurrentOptimum") or \
+                selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+                selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+                selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+                selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+            if selfA._toStore("IndexOfOptimum"):
+                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+            if selfA._toStore("CurrentOptimum"):
+                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
+            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
+            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+            return J
+        #
+        def GradientOfCostFunction(dx):
+            _dX          = numpy.asmatrix(numpy.ravel( dx )).T
+            _HdX         = Ht * _dX
+            _HdX         = numpy.asmatrix(numpy.ravel( _HdX )).T
+            _dInnovation = Innovation - _HdX
+            GradJb       = BI * _dX
+            GradJo       = - Ht.T @ (RI * _dInnovation)
+            GradJ        = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
+            return GradJ
+        #
+        # Minimisation de la fonctionnelle
+        # --------------------------------
+        nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+        #
+        if selfA._parameters["Minimizer"] == "LBFGSB":
+            # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
+            if "0.19" <= scipy.version.version <= "1.1.0":
+                import lbfgsbhlt as optimiseur
+            else:
+                import scipy.optimize as optimiseur
+            Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
+                func        = CostFunction,
+                x0          = numpy.zeros(Xini.size),
+                fprime      = GradientOfCostFunction,
+                args        = (),
+                bounds      = selfA._parameters["Bounds"],
+                maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
+                factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
+                pgtol       = selfA._parameters["ProjectedGradientTolerance"],
+                iprint      = selfA._parameters["optiprint"],
+                )
+            nfeval = Informations['funcalls']
+            rc     = Informations['warnflag']
+        elif selfA._parameters["Minimizer"] == "TNC":
+            Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
+                func        = CostFunction,
+                x0          = numpy.zeros(Xini.size),
+                fprime      = GradientOfCostFunction,
+                args        = (),
+                bounds      = selfA._parameters["Bounds"],
+                maxfun      = selfA._parameters["MaximumNumberOfSteps"],
+                pgtol       = selfA._parameters["ProjectedGradientTolerance"],
+                ftol        = selfA._parameters["CostDecrementTolerance"],
+                messages    = selfA._parameters["optmessages"],
+                )
+        elif selfA._parameters["Minimizer"] == "CG":
+            Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
+                f           = CostFunction,
+                x0          = numpy.zeros(Xini.size),
+                fprime      = GradientOfCostFunction,
+                args        = (),
+                maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+                gtol        = selfA._parameters["GradientNormTolerance"],
+                disp        = selfA._parameters["optdisp"],
+                full_output = True,
+                )
+        elif selfA._parameters["Minimizer"] == "NCG":
+            Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
+                f           = CostFunction,
+                x0          = numpy.zeros(Xini.size),
+                fprime      = GradientOfCostFunction,
+                args        = (),
+                maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+                avextol     = selfA._parameters["CostDecrementTolerance"],
+                disp        = selfA._parameters["optdisp"],
+                full_output = True,
+                )
+        elif selfA._parameters["Minimizer"] == "BFGS":
+            Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
+                f           = CostFunction,
+                x0          = numpy.zeros(Xini.size),
+                fprime      = GradientOfCostFunction,
+                args        = (),
+                maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+                gtol        = selfA._parameters["GradientNormTolerance"],
+                disp        = selfA._parameters["optdisp"],
+                full_output = True,
+                )
+        else:
+            raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+        #
+        IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+        MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
+        #
+        if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+            Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
+            Minimum = numpy.asmatrix(numpy.ravel( Minimum )).T
+        else:
+            Minimum = Xb + numpy.asmatrix(numpy.ravel( Minimum )).T
+        #
+        Xr     = Minimum
+        DeltaJ = selfA.StoredVariables["CostFunctionJ" ][-1] - J
+        iOuter = selfA.StoredVariables["CurrentIterationNumber"][-1]
+    #
+    # Obtention de l'analyse
+    # ----------------------
+    Xa = Xr
+    #
+    selfA.StoredVariables["Analysis"].store( Xa )
+    #
+    if selfA._toStore("OMA") or \
+        selfA._toStore("SigmaObs2") or \
+        selfA._toStore("SimulationQuantiles") or \
+        selfA._toStore("SimulatedObservationAtOptimum"):
+        if selfA._toStore("SimulatedObservationAtCurrentState"):
+            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
+        elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
+        else:
+            HXa = Hm( Xa )
+    #
+    # Calcul de la covariance d'analyse
+    # ---------------------------------
+    if selfA._toStore("APosterioriCovariance") or \
+        selfA._toStore("SimulationQuantiles") or \
+        selfA._toStore("JacobianMatrixAtOptimum") or \
+        selfA._toStore("KalmanGainAtOptimum"):
+        HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
+        HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
+    if selfA._toStore("APosterioriCovariance") or \
+        selfA._toStore("SimulationQuantiles") or \
+        selfA._toStore("KalmanGainAtOptimum"):
+        HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
+        HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
+    if selfA._toStore("APosterioriCovariance") or \
+        selfA._toStore("SimulationQuantiles"):
+        HessienneI = []
+        nb = Xa.size
+        for i in range(nb):
+            _ee    = numpy.matrix(numpy.zeros(nb)).T
+            _ee[i] = 1.
+            _HtEE  = numpy.dot(HtM,_ee)
+            _HtEE  = numpy.asmatrix(numpy.ravel( _HtEE )).T
+            HessienneI.append( numpy.ravel( BI*_ee + HaM * (RI * _HtEE) ) )
+        HessienneI = numpy.matrix( HessienneI )
+        A = HessienneI.I
+        if min(A.shape) != max(A.shape):
+            raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
+        if (numpy.diag(A) < 0).any():
+            raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
+        if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
+            try:
+                L = numpy.linalg.cholesky( A )
+            except:
+                raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
+    if selfA._toStore("APosterioriCovariance"):
+        selfA.StoredVariables["APosterioriCovariance"].store( A )
+    if selfA._toStore("JacobianMatrixAtOptimum"):
+        selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
+    if selfA._toStore("KalmanGainAtOptimum"):
+        if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
+        elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
+        selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
+    #
+    # Calculs et/ou stockages supplémentaires
+    # ---------------------------------------
+    if selfA._toStore("Innovation") or \
+        selfA._toStore("SigmaObs2") or \
+        selfA._toStore("MahalanobisConsistency") or \
+        selfA._toStore("OMB"):
+        d  = Y - HXb
+    if selfA._toStore("Innovation"):
+        selfA.StoredVariables["Innovation"].store( numpy.ravel(d) )
+    if selfA._toStore("BMA"):
+        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+    if selfA._toStore("OMA"):
+        selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
+    if selfA._toStore("OMB"):
+        selfA.StoredVariables["OMB"].store( numpy.ravel(d) )
+    if selfA._toStore("SigmaObs2"):
+        TraceR = R.trace(Y.size)
+        selfA.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
+    if selfA._toStore("MahalanobisConsistency"):
+        selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
+    if selfA._toStore("SimulationQuantiles"):
+        nech = selfA._parameters["NumberOfSamplesForQuantiles"]
+        HXa  = numpy.matrix(numpy.ravel( HXa )).T
+        YfQ  = None
+        for i in range(nech):
+            if selfA._parameters["SimulationForQuantiles"] == "Linear":
+                dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
+                dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
+                Yr = HXa + dYr
+            elif selfA._parameters["SimulationForQuantiles"] == "NonLinear":
+                Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
+                Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
+            if YfQ is None:
+                YfQ = Yr
+            else:
+                YfQ = numpy.hstack((YfQ,Yr))
+        YfQ.sort(axis=-1)
+        YQ = None
+        for quantile in selfA._parameters["Quantiles"]:
+            if not (0. <= float(quantile) <= 1.): continue
+            indice = int(nech * float(quantile) - 1./nech)
+            if YQ is None: YQ = YfQ[:,indice]
+            else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
+        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
+    if selfA._toStore("SimulatedObservationAtBackground"):
+        selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
+    if selfA._toStore("SimulatedObservationAtOptimum"):
+        selfA.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
+    #
+    return 0
+
+# ==============================================================================
+def mlef(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="MLEF13",
+    BnotT=False, _epsilon=1.e-3, _e=1.e-7, _jmax=15000):
+    """
+    Maximum Likelihood Ensemble Filter
+    """
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        selfA._parameters["StoreInternalVariables"] = True
+    #
+    # Opérateurs
+    # ----------
+    H = HO["Direct"].appliedControledFormTo
+    #
+    if selfA._parameters["EstimationOf"] == "State":
+        M = EM["Direct"].appliedControledFormTo
+    #
+    if CM is not None and "Tangent" in CM and U is not None:
+        Cm = CM["Tangent"].asMatrix(Xb)
+    else:
+        Cm = None
+    #
+    # Nombre de pas identique au nombre de pas d'observations
+    # -------------------------------------------------------
+    if hasattr(Y,"stepnumber"):
+        duration = Y.stepnumber()
+        __p = numpy.cumprod(Y.shape())[-1]
+    else:
+        duration = 2
+        __p = numpy.array(Y).size
+    #
+    # Précalcul des inversions de B et R
+    # ----------------------------------
+    if selfA._parameters["StoreInternalVariables"] \
+        or selfA._toStore("CostFunctionJ") \
+        or selfA._toStore("CostFunctionJb") \
+        or selfA._toStore("CostFunctionJo") \
+        or selfA._toStore("CurrentOptimum") \
+        or selfA._toStore("APosterioriCovariance"):
+        BI = B.getI()
+    RI = R.getI()
+    #
+    # Initialisation
+    # --------------
+    __n = Xb.size
+    __m = selfA._parameters["NumberOfMembers"]
+    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
+    else:                         Pn = B
+    if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
+    else:                         Rn = R
+    if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n)
+    else:                         Qn = Q
+    Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
+    #
+    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+        selfA.StoredVariables["Analysis"].store( Xb )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+            covarianceXa = Pn
+    #
+    previousJMinimum = numpy.finfo(float).max
+    #
+    for step in range(duration-1):
+        if hasattr(Y,"store"):
+            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+        else:
+            Ynpu = numpy.ravel( Y ).reshape((__p,1))
+        #
+        if U is not None:
+            if hasattr(U,"store") and len(U)>1:
+                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
+            elif hasattr(U,"store") and len(U)==1:
+                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+            else:
+                Un = numpy.asmatrix(numpy.ravel( U )).T
+        else:
+            Un = None
+        #
+        if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
+            Xn = CovarianceInflation( Xn,
+                selfA._parameters["InflationType"],
+                selfA._parameters["InflationFactor"],
+                )
+        #
+        if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
+            EMX = M( [(Xn[:,i], Un) for i in range(__m)],
+                argsAsSerie = True,
+                returnSerieAsArrayMatrix = True )
+            qi = numpy.random.multivariate_normal(numpy.zeros(__n), Qn, size=__m).T
+            Xn_predicted = EMX + qi
+            if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+                Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+                Xn_predicted = Xn_predicted + Cm * Un
+        elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
+            # --- > Par principe, M = Id, Q = 0
+            Xn_predicted = Xn
+        #
+        #--------------------------
+        if VariantM == "MLEF13":
+            Xfm = numpy.ravel(Xn_predicted.mean(axis=1, dtype=mfp).astype('float'))
+            EaX = EnsembleOfAnomalies( Xn_predicted, Xfm, 1./math.sqrt(__m-1) )
+            Ua  = numpy.identity(__m)
+            __j = 0
+            Deltaw = 1
+            if not BnotT:
+                Ta  = numpy.identity(__m)
+            vw  = numpy.zeros(__m)
+            while numpy.linalg.norm(Deltaw) >= _e and __j <= _jmax:
+                vx1 = (Xfm + EaX @ vw).reshape((__n,1))
+                #
+                if BnotT:
+                    E1 = vx1 + _epsilon * EaX
+                else:
+                    E1 = vx1 + math.sqrt(__m-1) * EaX @ Ta
+                #
+                HE2 = H( [(E1[:,i,numpy.newaxis], Un) for i in range(__m)],
+                    argsAsSerie = True,
+                    returnSerieAsArrayMatrix = True )
+                vy2 = HE2.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
+                #
+                if BnotT:
+                    EaY = (HE2 - vy2) / _epsilon
+                else:
+                    EaY = ( (HE2 - vy2) @ numpy.linalg.inv(Ta) ) / math.sqrt(__m-1)
+                #
+                GradJ = numpy.ravel(vw[:,None] - EaY.transpose() @ (RI * ( Ynpu - vy2 )))
+                mH = numpy.identity(__m) + EaY.transpose() @ (RI * EaY)
+                Deltaw = - numpy.linalg.solve(mH,GradJ)
+                #
+                vw = vw + Deltaw
+                #
+                if not BnotT:
+                    Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
+                #
+                __j = __j + 1
+            #
+            if BnotT:
+                Ta = numpy.real(scipy.linalg.sqrtm(numpy.linalg.inv( mH )))
+            #
+            Xn = vx1 + math.sqrt(__m-1) * EaX @ Ta @ Ua
+        #--------------------------
+        else:
+            raise ValueError("VariantM has to be chosen in the authorized methods list.")
+        #
+        if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
+            Xn = CovarianceInflation( Xn,
+                selfA._parameters["InflationType"],
+                selfA._parameters["InflationFactor"],
+                )
+        #
+        Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+        #--------------------------
+        #
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CostFunctionJ") \
+            or selfA._toStore("CostFunctionJb") \
+            or selfA._toStore("CostFunctionJo") \
+            or selfA._toStore("APosterioriCovariance") \
+            or selfA._toStore("InnovationAtCurrentAnalysis") \
+            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
+            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
+            _Innovation = Ynpu - _HXa
+        #
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        # ---> avec analysis
+        selfA.StoredVariables["Analysis"].store( Xa )
+        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
+        if selfA._toStore("InnovationAtCurrentAnalysis"):
+            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+        # ---> avec current state
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CurrentState"):
+            selfA.StoredVariables["CurrentState"].store( Xn )
+        if selfA._toStore("ForecastState"):
+            selfA.StoredVariables["ForecastState"].store( EMX )
+        if selfA._toStore("BMA"):
+            selfA.StoredVariables["BMA"].store( EMX - Xa )
+        if selfA._toStore("InnovationAtCurrentState"):
+            selfA.StoredVariables["InnovationAtCurrentState"].store( - HE2 + Ynpu )
+        if selfA._toStore("SimulatedObservationAtCurrentState") \
+            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HE2 )
+        # ---> autres
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CostFunctionJ") \
+            or selfA._toStore("CostFunctionJb") \
+            or selfA._toStore("CostFunctionJo") \
+            or selfA._toStore("CurrentOptimum") \
+            or selfA._toStore("APosterioriCovariance"):
+            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
+            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
+            J   = Jb + Jo
+            selfA.StoredVariables["CostFunctionJb"].store( Jb )
+            selfA.StoredVariables["CostFunctionJo"].store( Jo )
+            selfA.StoredVariables["CostFunctionJ" ].store( J )
+            #
+            if selfA._toStore("IndexOfOptimum") \
+                or selfA._toStore("CurrentOptimum") \
+                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+            if selfA._toStore("IndexOfOptimum"):
+                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+            if selfA._toStore("CurrentOptimum"):
+                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
+        if selfA._parameters["EstimationOf"] == "Parameters" \
+            and J < previousJMinimum:
+            previousJMinimum    = J
+            XaMin               = Xa
+            if selfA._toStore("APosterioriCovariance"):
+                covarianceXaMin = Pn
+    #
+    # Stockage final supplémentaire de l'optimum en estimation de paramètres
+    # ----------------------------------------------------------------------
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        selfA.StoredVariables["Analysis"].store( XaMin )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+        if selfA._toStore("BMA"):
+            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+    #
+    return 0
+
 # ==============================================================================
 def mmqr(
         func     = None,
@@ -483,6 +1903,7 @@ def mmqr(
         #
         variables = variables + step
         if bounds is not None:
+            # Attention : boucle infinie à éviter si un intervalle est trop petit
             while( (variables < numpy.ravel(numpy.asmatrix(bounds)[:,0])).any() or (variables > numpy.ravel(numpy.asmatrix(bounds)[:,1])).any() ):
                 step      = step/2.
                 variables = variables - step
@@ -507,409 +1928,1348 @@ def mmqr(
     return variables, Ecart, [n,p,iteration,increment,0]
 
 # ==============================================================================
+def multi3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, oneCycle):
+    """
+    3DVAR multi-pas et multi-méthodes
+    """
+    #
+    # Initialisation
+    # --------------
+    Xn = numpy.ravel(Xb).reshape((-1,1))
+    #
+    if selfA._parameters["EstimationOf"] == "State":
+        M = EM["Direct"].appliedTo
+        #
+        if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+            selfA.StoredVariables["Analysis"].store( Xn )
+            if selfA._toStore("APosterioriCovariance"):
+                if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(Xn.size)
+                else:                         Pn = B
+                selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+            if selfA._toStore("ForecastState"):
+                selfA.StoredVariables["ForecastState"].store( Xn )
+    #
+    if hasattr(Y,"stepnumber"):
+        duration = Y.stepnumber()
+    else:
+        duration = 2
+    #
+    # Multi-pas
+    # ---------
+    for step in range(duration-1):
+        if hasattr(Y,"store"):
+            Ynpu = numpy.ravel( Y[step+1] ).reshape((-1,1))
+        else:
+            Ynpu = numpy.ravel( Y ).reshape((-1,1))
+        #
+        if selfA._parameters["EstimationOf"] == "State": # Forecast
+            Xn = selfA.StoredVariables["Analysis"][-1]
+            Xn_predicted = M( Xn )
+            if selfA._toStore("ForecastState"):
+                selfA.StoredVariables["ForecastState"].store( Xn_predicted )
+        elif selfA._parameters["EstimationOf"] == "Parameters": # No forecast
+            # --- > Par principe, M = Id, Q = 0
+            Xn_predicted = Xn
+        Xn_predicted = numpy.ravel(Xn_predicted).reshape((-1,1))
+        #
+        oneCycle(selfA, Xn_predicted, Ynpu, U, HO, None, None, R, B, None)
+    #
+    return 0
 
-def _BackgroundEnsembleGeneration( _bgcenter, _bgcovariance, _nbmembers, _withSVD = True):
-    "Génération d'un ensemble d'ébauche de taille _nbmembers-1"
-    # ~ numpy.random.seed(1234567)
-    if _nbmembers < 1:
-        raise ValueError("Number of members has to be strictly more than 1 (given number: %s)."%(str(_nbmembers),))
-    if _withSVD:
-        U, s, V = numpy.linalg.svd(_bgcovariance, full_matrices=False)
-        _nbctl = len(_bgcenter)
-        if _nbmembers > _nbctl:
-            _Z = numpy.concatenate((numpy.dot(
-                numpy.diag(numpy.sqrt(s[:_nbctl])), V[:_nbctl]),
-                numpy.random.multivariate_normal(numpy.zeros(_nbctl),_bgcovariance,_nbmembers-1-_nbctl)), axis = 0)
-        else:
-            _Z = numpy.dot(numpy.diag(numpy.sqrt(s[:_nbmembers-1])), V[:_nbmembers-1])
-        _Zca = _CenteredAnomalies(_Z, _nbmembers)
-        BackgroundEnsemble = (_bgcenter + _Zca.T).T
+# ==============================================================================
+def psas3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+    """
+    3DVAR PSAS
+    """
+    #
+    # Initialisations
+    # ---------------
+    #
+    # Opérateurs
+    Hm = HO["Direct"].appliedTo
+    #
+    # Utilisation éventuelle d'un vecteur H(Xb) précalculé
+    if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
+        HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
     else:
-        if max(abs(_bgcovariance.flatten())) > 0:
-            _nbctl = len(_bgcenter)
-            _Z = numpy.random.multivariate_normal(numpy.zeros(_nbctl),_bgcovariance,_nbmembers-1)
-            _Zca = _CenteredAnomalies(_Z, _nbmembers)
-            BackgroundEnsemble = (_bgcenter + _Zca.T).T
+        HXb = Hm( Xb )
+    HXb = numpy.asmatrix(numpy.ravel( HXb )).T
+    if Y.size != HXb.size:
+        raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
+    if max(Y.shape) != max(HXb.shape):
+        raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
+    #
+    if selfA._toStore("JacobianMatrixAtBackground"):
+        HtMb = HO["Tangent"].asMatrix(ValueForMethodForm = Xb)
+        HtMb = HtMb.reshape(Y.size,Xb.size) # ADAO & check shape
+        selfA.StoredVariables["JacobianMatrixAtBackground"].store( HtMb )
+    #
+    Ht = HO["Tangent"].asMatrix(Xb)
+    BHT = B * Ht.T
+    HBHTpR = R + Ht * BHT
+    Innovation = Y - HXb
+    #
+    # Point de démarrage de l'optimisation
+    Xini = numpy.zeros(Xb.shape)
+    #
+    # Définition de la fonction-coût
+    # ------------------------------
+    def CostFunction(w):
+        _W = numpy.asmatrix(numpy.ravel( w )).T
+        if selfA._parameters["StoreInternalVariables"] or \
+            selfA._toStore("CurrentState") or \
+            selfA._toStore("CurrentOptimum"):
+            selfA.StoredVariables["CurrentState"].store( Xb + BHT * _W )
+        if selfA._toStore("SimulatedObservationAtCurrentState") or \
+            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( Hm( Xb + BHT * _W ) )
+        if selfA._toStore("InnovationAtCurrentState"):
+            selfA.StoredVariables["InnovationAtCurrentState"].store( Innovation )
+        #
+        Jb  = float( 0.5 * _W.T * HBHTpR * _W )
+        Jo  = float( - _W.T * Innovation )
+        J   = Jb + Jo
+        #
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
+        selfA.StoredVariables["CostFunctionJb"].store( Jb )
+        selfA.StoredVariables["CostFunctionJo"].store( Jo )
+        selfA.StoredVariables["CostFunctionJ" ].store( J )
+        if selfA._toStore("IndexOfOptimum") or \
+            selfA._toStore("CurrentOptimum") or \
+            selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+            selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+            selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+        if selfA._toStore("IndexOfOptimum"):
+            selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+        if selfA._toStore("CurrentOptimum"):
+            selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
+        if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
+        if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+            selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+        if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+            selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+        if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+            selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+        return J
+    #
+    def GradientOfCostFunction(w):
+        _W = numpy.asmatrix(numpy.ravel( w )).T
+        GradJb  = HBHTpR * _W
+        GradJo  = - Innovation
+        GradJ   = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
+        return GradJ
+    #
+    # Minimisation de la fonctionnelle
+    # --------------------------------
+    nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+    #
+    if selfA._parameters["Minimizer"] == "LBFGSB":
+        if "0.19" <= scipy.version.version <= "1.1.0":
+            import lbfgsbhlt as optimiseur
         else:
-            BackgroundEnsemble = numpy.tile([_bgcenter],(_nbmembers,1)).T
-    return BackgroundEnsemble
+            import scipy.optimize as optimiseur
+        Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
+            func        = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            bounds      = selfA._parameters["Bounds"],
+            maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
+            factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
+            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
+            iprint      = selfA._parameters["optiprint"],
+            )
+        nfeval = Informations['funcalls']
+        rc     = Informations['warnflag']
+    elif selfA._parameters["Minimizer"] == "TNC":
+        Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
+            func        = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            bounds      = selfA._parameters["Bounds"],
+            maxfun      = selfA._parameters["MaximumNumberOfSteps"],
+            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
+            ftol        = selfA._parameters["CostDecrementTolerance"],
+            messages    = selfA._parameters["optmessages"],
+            )
+    elif selfA._parameters["Minimizer"] == "CG":
+        Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
+            f           = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+            gtol        = selfA._parameters["GradientNormTolerance"],
+            disp        = selfA._parameters["optdisp"],
+            full_output = True,
+            )
+    elif selfA._parameters["Minimizer"] == "NCG":
+        Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
+            f           = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+            avextol     = selfA._parameters["CostDecrementTolerance"],
+            disp        = selfA._parameters["optdisp"],
+            full_output = True,
+            )
+    elif selfA._parameters["Minimizer"] == "BFGS":
+        Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
+            f           = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+            gtol        = selfA._parameters["GradientNormTolerance"],
+            disp        = selfA._parameters["optdisp"],
+            full_output = True,
+            )
+    else:
+        raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+    #
+    IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+    MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
+    #
+    # Correction pour pallier a un bug de TNC sur le retour du Minimum
+    # ----------------------------------------------------------------
+    if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+        Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
+        Minimum = numpy.asmatrix(numpy.ravel( Minimum )).T
+    else:
+        Minimum = Xb + BHT * numpy.asmatrix(numpy.ravel( Minimum )).T
+    #
+    # Obtention de l'analyse
+    # ----------------------
+    Xa = Minimum
+    #
+    selfA.StoredVariables["Analysis"].store( Xa )
+    #
+    if selfA._toStore("OMA") or \
+        selfA._toStore("SigmaObs2") or \
+        selfA._toStore("SimulationQuantiles") or \
+        selfA._toStore("SimulatedObservationAtOptimum"):
+        if selfA._toStore("SimulatedObservationAtCurrentState"):
+            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
+        elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
+        else:
+            HXa = Hm( Xa )
+    #
+    # Calcul de la covariance d'analyse
+    # ---------------------------------
+    if selfA._toStore("APosterioriCovariance") or \
+        selfA._toStore("SimulationQuantiles") or \
+        selfA._toStore("JacobianMatrixAtOptimum") or \
+        selfA._toStore("KalmanGainAtOptimum"):
+        HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
+        HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
+    if selfA._toStore("APosterioriCovariance") or \
+        selfA._toStore("SimulationQuantiles") or \
+        selfA._toStore("KalmanGainAtOptimum"):
+        HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
+        HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
+    if selfA._toStore("APosterioriCovariance") or \
+        selfA._toStore("SimulationQuantiles"):
+        BI = B.getI()
+        RI = R.getI()
+        HessienneI = []
+        nb = Xa.size
+        for i in range(nb):
+            _ee    = numpy.matrix(numpy.zeros(nb)).T
+            _ee[i] = 1.
+            _HtEE  = numpy.dot(HtM,_ee)
+            _HtEE  = numpy.asmatrix(numpy.ravel( _HtEE )).T
+            HessienneI.append( numpy.ravel( BI*_ee + HaM * (RI * _HtEE) ) )
+        HessienneI = numpy.matrix( HessienneI )
+        A = HessienneI.I
+        if min(A.shape) != max(A.shape):
+            raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
+        if (numpy.diag(A) < 0).any():
+            raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
+        if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
+            try:
+                L = numpy.linalg.cholesky( A )
+            except:
+                raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
+    if selfA._toStore("APosterioriCovariance"):
+        selfA.StoredVariables["APosterioriCovariance"].store( A )
+    if selfA._toStore("JacobianMatrixAtOptimum"):
+        selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
+    if selfA._toStore("KalmanGainAtOptimum"):
+        if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
+        elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
+        selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
+    #
+    # Calculs et/ou stockages supplémentaires
+    # ---------------------------------------
+    if selfA._toStore("Innovation") or \
+        selfA._toStore("SigmaObs2") or \
+        selfA._toStore("MahalanobisConsistency") or \
+        selfA._toStore("OMB"):
+        d  = Y - HXb
+    if selfA._toStore("Innovation"):
+        selfA.StoredVariables["Innovation"].store( numpy.ravel(d) )
+    if selfA._toStore("BMA"):
+        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+    if selfA._toStore("OMA"):
+        selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
+    if selfA._toStore("OMB"):
+        selfA.StoredVariables["OMB"].store( numpy.ravel(d) )
+    if selfA._toStore("SigmaObs2"):
+        TraceR = R.trace(Y.size)
+        selfA.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
+    if selfA._toStore("MahalanobisConsistency"):
+        selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
+    if selfA._toStore("SimulationQuantiles"):
+        nech = selfA._parameters["NumberOfSamplesForQuantiles"]
+        HXa  = numpy.matrix(numpy.ravel( HXa )).T
+        YfQ  = None
+        for i in range(nech):
+            if selfA._parameters["SimulationForQuantiles"] == "Linear":
+                dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
+                dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
+                Yr = HXa + dYr
+            elif selfA._parameters["SimulationForQuantiles"] == "NonLinear":
+                Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
+                Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
+            if YfQ is None:
+                YfQ = Yr
+            else:
+                YfQ = numpy.hstack((YfQ,Yr))
+        YfQ.sort(axis=-1)
+        YQ = None
+        for quantile in selfA._parameters["Quantiles"]:
+            if not (0. <= float(quantile) <= 1.): continue
+            indice = int(nech * float(quantile) - 1./nech)
+            if YQ is None: YQ = YfQ[:,indice]
+            else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
+        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
+    if selfA._toStore("SimulatedObservationAtBackground"):
+        selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
+    if selfA._toStore("SimulatedObservationAtOptimum"):
+        selfA.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
+    #
+    return 0
 
-def _CenteredAnomalies(Zr, N):
+# ==============================================================================
+def senkf(selfA, Xb, Y, U, HO, EM, CM, R, B, Q, VariantM="KalmanFilterFormula"):
     """
-    Génère une matrice d'anomalies centrées selon les notes manuscrites de MB
-    et conforme au code de PS avec eps = -1
+    Stochastic EnKF
     """
-    eps = -1
-    Q = numpy.eye(N-1)-numpy.ones((N-1,N-1))/numpy.sqrt(N)/(numpy.sqrt(N)-eps)
-    Q = numpy.concatenate((Q, [eps*numpy.ones(N-1)/numpy.sqrt(N)]), axis=0)
-    R, _ = numpy.linalg.qr(numpy.random.normal(size = (N-1,N-1)))
-    Q = numpy.dot(Q,R)
-    Zr = numpy.dot(Q,Zr)
-    return Zr.T
-
-def _IEnKF_cycle_Lag_1_SDA_GN(
-        E0         = None,
-        yObs       = None,
-        RIdemi     = None,
-        Mnnpu      = None,
-        Hn         = None,
-        variant    = "IEnKF", # IEnKF or IEKF
-        iMaximum   = 15000,
-        sTolerance = mfp,
-        jTolerance = mfp,
-        epsilonE   = 1e-5,
-        nbPS       = 0,  # nbPreviousSteps
-        ):
-    # 201206
-    if logging.getLogger().level < logging.WARNING:
-        assert len(E0.shape) == 2, "Ensemble E0 is not well formed: not of shape 2!"
-        assert len(RIdemi.shape) == 2, "R^{-1/2} is not well formed: not of shape 2!"
-        assert variant in ("IEnKF", "IEKF"), "Variant has to be IEnKF or IEKF"
-    #
-    nbCtl, nbMbr = E0.shape
-    nbObs = yObs.size
-    #
-    if logging.getLogger().level < logging.WARNING:
-        assert RIdemi.shape[0] == RIdemi.shape[1] == nbObs, "R^{-1} not of good size: not of size nbObs!"
-    #
-    yo  = yObs.reshape((nbObs,1))
-    IN  = numpy.identity(nbMbr)
-    if variant == "IEnKF":
-        T    = numpy.identity(nbMbr)
-        Tinv = numpy.identity(nbMbr)
-    x00 = numpy.mean(E0, axis = 1)
-    Ah0 = E0 - x00
-    Ap0 = numpy.linalg.pinv( Ah0.T.dot(Ah0) )
-    if logging.getLogger().level < logging.WARNING:
-        assert len(Ah0.shape) == 2, "Ensemble A0 is not well formed, of shape 2!"
-        assert Ah0.shape[0] == nbCtl and Ah0.shape[1] == nbMbr, "Ensemble A0 is not well shaped!"
-        assert abs(max(numpy.mean(Ah0, axis = 1))) < nbMbr*mpr, "Ensemble A0 seems not to be centered!"
-    #
-    def _convergence_condition(j, dx, JCurr, JPrev):
-        if j > iMaximum:
-            logging.debug("Convergence on maximum number of iterations per cycle, that reach the limit of %i."%iMaximum)
-            return True
-        #---------
-        if j == 1:
-            _deltaOnJ = 1.
-        else:
-            _deltaOnJ = abs(JCurr - JPrev) / JPrev
-        if _deltaOnJ <= jTolerance:
-            logging.debug("Convergence on cost decrement tolerance, that is below the threshold of %.1e."%jTolerance)
-            return True
-        #---------
-        _deltaOnX = numpy.linalg.norm(dx)
-        if _deltaOnX <= sTolerance:
-            logging.debug("Convergence on norm of state correction, that is below the threshold of %.1e."%sTolerance)
-            return True # En correction de l'état
-        #---------
-        return False
-    #
-    St = dict([(k,[]) for k in [
-        "CurrentState", "CurrentEnsemble",
-        "CostFunctionJb", "CostFunctionJo", "CostFunctionJ",
-        ]])
-    #
-    j, convergence, JPrev = 1, False, numpy.nan
-    x1 = x00
-    while not convergence:
-        logging.debug("Internal IEnKS step number %i"%j)
-        St["CurrentState"].append( x1.squeeze() )
-        if variant == "IEnKF": # Transform
-            E1 = x1 + Ah0.dot(T)
-        else: # IEKF
-            E1 = x1 + epsilonE * Ah0
-        St["CurrentEnsemble"].append( E1 )
-        E2  = numpy.array([Mnnpu(_x) for _x in E1.T]).reshape((nbCtl, nbMbr)) # Evolution 1->2
-        HEL = numpy.array([Hn(_x) for _x in E2.T]).T     # Observation à 2
-        yLm = numpy.mean( HEL, axis = 1).reshape((nbObs,1))
-        HA2 = HEL - yLm
-        if variant == "IEnKF":
-            HA2 = HA2.dot(Tinv)
-        else:
-            HA2 = HA2 / epsilonE
-        RIdemidy = RIdemi.dot(yo - yLm)
-        xs = RIdemidy / math.sqrt(nbMbr-1)
-        ES = RIdemi.dot(HA2) / math.sqrt(nbMbr-1)
-        G  = numpy.linalg.inv(IN + ES.T.dot(ES))
-        xb = G.dot(ES.T.dot(xs))
-        dx = Ah0.dot(xb) + Ah0.dot(G.dot(Ap0.dot(Ah0.T.dot(x00 - x1))))
-        #
-        Jb = float(dx.T.dot(dx))
-        Jo = float(RIdemidy.T.dot(RIdemidy))
-        J  = Jo + Jb
-        logging.debug("Values for cost functions are: J = %.5e  Jo = %.5e  Jb = %.5e"%(J,Jo,Jb))
-        St["CostFunctionJb"].append( Jb )
-        St["CostFunctionJo"].append( Jo )
-        St["CostFunctionJ"].append( J )
-        #
-        x1 = x1 + dx
-        j = j + 1
-        convergence = _convergence_condition(j, dx, J, JPrev)
-        JPrev = J
-        #
-        if variant == "IEnKF":
-            T    = numpy.real_if_close(scipy.linalg.sqrtm(G))
-            Tinv = numpy.linalg.inv(T)
-    #
-    # Stocke le dernier pas
-    x2 = numpy.mean( E2, axis = 1)
-    if variant == "IEKF":
-        A2 = E2 - x2
-        A2 = A2.dot(numpy.linalg.cholesky(G)) / epsilonE
-        E2 = x2 + A2
-    St["CurrentState"].append( x2.squeeze() )
-    St["CurrentEnsemble"].append( E2 )
-    #
-    IndexMin = numpy.argmin( St["CostFunctionJ"][nbPS:] ) + nbPS
-    xa = St["CurrentState"][IndexMin]
-    Ea = St["CurrentEnsemble"][IndexMin]
-    #
-    return (xa, Ea, St)
-
-def ienkf(
-        xb         = None,          # Background (None si E0)
-        E0         = None,          # Background ensemble (None si xb)
-        yObs       = None,          # Observation (série)
-        B          = None,          # B
-        RIdemi     = None,          # R^(-1/2)
-        Mnnpu      = None,          # Evolution operator
-        Hn         = None,          # Observation operator
-        variant    = "IEnKF",       # IEnKF or IEKF
-        nMembers   = 5,             # Number of members
-        sMaximum   = 0,             # Number of spinup steps
-        cMaximum   = 15000,         # Number of steps or cycles
-        iMaximum   = 15000,         # Number of iterations per cycle
-        sTolerance = mfp,           # State correction tolerance
-        jTolerance = mfp,           # Cost decrement tolerance
-        epsilon    = 1e-5,
-        inflation  = 1.,
-        nbPS       = 0,             # Number of previous steps
-        setSeed    = None,
-        ):
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        selfA._parameters["StoreInternalVariables"] = True
+    #
+    # Opérateurs
+    # ----------
+    H = HO["Direct"].appliedControledFormTo
+    #
+    if selfA._parameters["EstimationOf"] == "State":
+        M = EM["Direct"].appliedControledFormTo
     #
-    # Initial
-    if setSeed is not None: numpy.random.seed(setSeed)
-    if E0 is None: E0 = _BackgroundEnsembleGeneration( xb, B, nMembers)
-    #
-    # Spinup
-    # ------
-    #
-    # Cycles
-    # ------
-    xa, Ea, Sa = [xb,], [E0,], [{}]
-    for step in range(cMaximum):
-        if hasattr(yObs,"store"):         Ynpu = numpy.ravel( yObs[step+1] )
-        elif type(yObs) in [list, tuple]: Ynpu = numpy.ravel( yObs[step+1] )
-        else:                             Ynpu = numpy.ravel( yObs )
-        #
-        (xa_c, Ea_c, Sa_c) = _IEnKF_cycle_Lag_1_SDA_GN(
-            E0,
-            Ynpu,
-            RIdemi,
-            Mnnpu,
-            Hn,
-            variant,
-            iMaximum,
-            sTolerance,
-            jTolerance,
-            epsilon,
-            nbPS,
+    if CM is not None and "Tangent" in CM and U is not None:
+        Cm = CM["Tangent"].asMatrix(Xb)
+    else:
+        Cm = None
+    #
+    # Nombre de pas identique au nombre de pas d'observations
+    # -------------------------------------------------------
+    if hasattr(Y,"stepnumber"):
+        duration = Y.stepnumber()
+        __p = numpy.cumprod(Y.shape())[-1]
+    else:
+        duration = 2
+        __p = numpy.array(Y).size
+    #
+    # Précalcul des inversions de B et R
+    # ----------------------------------
+    if selfA._parameters["StoreInternalVariables"] \
+        or selfA._toStore("CostFunctionJ") \
+        or selfA._toStore("CostFunctionJb") \
+        or selfA._toStore("CostFunctionJo") \
+        or selfA._toStore("CurrentOptimum") \
+        or selfA._toStore("APosterioriCovariance"):
+        BI = B.getI()
+        RI = R.getI()
+    #
+    # Initialisation
+    # --------------
+    __n = Xb.size
+    __m = selfA._parameters["NumberOfMembers"]
+    if hasattr(B,"asfullmatrix"): Pn = B.asfullmatrix(__n)
+    else:                         Pn = B
+    if hasattr(R,"asfullmatrix"): Rn = R.asfullmatrix(__p)
+    else:                         Rn = R
+    if hasattr(Q,"asfullmatrix"): Qn = Q.asfullmatrix(__n)
+    else:                         Qn = Q
+    Xn = EnsembleOfBackgroundPerturbations( Xb, None, __m )
+    #
+    if len(selfA.StoredVariables["Analysis"])==0 or not selfA._parameters["nextStep"]:
+        selfA.StoredVariables["Analysis"].store( Xb )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( Pn )
+            covarianceXa = Pn
+    #
+    previousJMinimum = numpy.finfo(float).max
+    #
+    for step in range(duration-1):
+        if hasattr(Y,"store"):
+            Ynpu = numpy.ravel( Y[step+1] ).reshape((__p,1))
+        else:
+            Ynpu = numpy.ravel( Y ).reshape((__p,1))
+        #
+        if U is not None:
+            if hasattr(U,"store") and len(U)>1:
+                Un = numpy.asmatrix(numpy.ravel( U[step] )).T
+            elif hasattr(U,"store") and len(U)==1:
+                Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+            else:
+                Un = numpy.asmatrix(numpy.ravel( U )).T
+        else:
+            Un = None
+        #
+        if selfA._parameters["InflationType"] == "MultiplicativeOnBackgroundAnomalies":
+            Xn = CovarianceInflation( Xn,
+                selfA._parameters["InflationType"],
+                selfA._parameters["InflationFactor"],
+                )
+        #
+        if selfA._parameters["EstimationOf"] == "State": # Forecast + Q and observation of forecast
+            EMX = M( [(Xn[:,i], Un) for i in range(__m)],
+                argsAsSerie = True,
+                returnSerieAsArrayMatrix = True )
+            qi = numpy.random.multivariate_normal(numpy.zeros(__n), Qn, size=__m).T
+            Xn_predicted = EMX + qi
+            HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
+                argsAsSerie = True,
+                returnSerieAsArrayMatrix = True )
+            if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+                Cm = Cm.reshape(__n,Un.size) # ADAO & check shape
+                Xn_predicted = Xn_predicted + Cm * Un
+        elif selfA._parameters["EstimationOf"] == "Parameters": # Observation of forecast
+            # --- > Par principe, M = Id, Q = 0
+            Xn_predicted = Xn
+            HX_predicted = H( [(Xn_predicted[:,i], Un) for i in range(__m)],
+                argsAsSerie = True,
+                returnSerieAsArrayMatrix = True )
+        #
+        # Mean of forecast and observation of forecast
+        Xfm  = Xn_predicted.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+        Hfm  = HX_predicted.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
+        #
+        #--------------------------
+        if VariantM == "KalmanFilterFormula05":
+            PfHT, HPfHT = 0., 0.
+            for i in range(__m):
+                Exfi = Xn_predicted[:,i].reshape((__n,1)) - Xfm
+                Eyfi = HX_predicted[:,i].reshape((__p,1)) - Hfm
+                PfHT  += Exfi * Eyfi.T
+                HPfHT += Eyfi * Eyfi.T
+            PfHT  = (1./(__m-1)) * PfHT
+            HPfHT = (1./(__m-1)) * HPfHT
+            Kn     = PfHT * ( R + HPfHT ).I
+            del PfHT, HPfHT
+            #
+            for i in range(__m):
+                ri = numpy.random.multivariate_normal(numpy.zeros(__p), Rn)
+                Xn[:,i] = numpy.ravel(Xn_predicted[:,i]) + Kn @ (numpy.ravel(Ynpu) + ri - HX_predicted[:,i])
+        #--------------------------
+        elif VariantM == "KalmanFilterFormula16":
+            EpY   = EnsembleOfCenteredPerturbations(Ynpu, Rn, __m)
+            EpYm  = EpY.mean(axis=1, dtype=mfp).astype('float').reshape((__p,1))
+            #
+            EaX   = EnsembleOfAnomalies( Xn_predicted ) / math.sqrt(__m-1)
+            EaY = (HX_predicted - Hfm - EpY + EpYm) / math.sqrt(__m-1)
+            #
+            Kn = EaX @ EaY.T @ numpy.linalg.inv( EaY @ EaY.T)
+            #
+            for i in range(__m):
+                Xn[:,i] = numpy.ravel(Xn_predicted[:,i]) + Kn @ (numpy.ravel(EpY[:,i]) - HX_predicted[:,i])
+        #--------------------------
+        else:
+            raise ValueError("VariantM has to be chosen in the authorized methods list.")
+        #
+        if selfA._parameters["InflationType"] == "MultiplicativeOnAnalysisAnomalies":
+            Xn = CovarianceInflation( Xn,
+                selfA._parameters["InflationType"],
+                selfA._parameters["InflationFactor"],
+                )
+        #
+        Xa = Xn.mean(axis=1, dtype=mfp).astype('float').reshape((__n,1))
+        #--------------------------
+        #
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CostFunctionJ") \
+            or selfA._toStore("CostFunctionJb") \
+            or selfA._toStore("CostFunctionJo") \
+            or selfA._toStore("APosterioriCovariance") \
+            or selfA._toStore("InnovationAtCurrentAnalysis") \
+            or selfA._toStore("SimulatedObservationAtCurrentAnalysis") \
+            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            _HXa = numpy.asmatrix(numpy.ravel( H((Xa, Un)) )).T
+            _Innovation = Ynpu - _HXa
+        #
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        # ---> avec analysis
+        selfA.StoredVariables["Analysis"].store( Xa )
+        if selfA._toStore("SimulatedObservationAtCurrentAnalysis"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"].store( _HXa )
+        if selfA._toStore("InnovationAtCurrentAnalysis"):
+            selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( _Innovation )
+        # ---> avec current state
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CurrentState"):
+            selfA.StoredVariables["CurrentState"].store( Xn )
+        if selfA._toStore("ForecastState"):
+            selfA.StoredVariables["ForecastState"].store( EMX )
+        if selfA._toStore("BMA"):
+            selfA.StoredVariables["BMA"].store( EMX - Xa )
+        if selfA._toStore("InnovationAtCurrentState"):
+            selfA.StoredVariables["InnovationAtCurrentState"].store( - HX_predicted + Ynpu )
+        if selfA._toStore("SimulatedObservationAtCurrentState") \
+            or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( HX_predicted )
+        # ---> autres
+        if selfA._parameters["StoreInternalVariables"] \
+            or selfA._toStore("CostFunctionJ") \
+            or selfA._toStore("CostFunctionJb") \
+            or selfA._toStore("CostFunctionJo") \
+            or selfA._toStore("CurrentOptimum") \
+            or selfA._toStore("APosterioriCovariance"):
+            Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
+            Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
+            J   = Jb + Jo
+            selfA.StoredVariables["CostFunctionJb"].store( Jb )
+            selfA.StoredVariables["CostFunctionJo"].store( Jo )
+            selfA.StoredVariables["CostFunctionJ" ].store( J )
+            #
+            if selfA._toStore("IndexOfOptimum") \
+                or selfA._toStore("CurrentOptimum") \
+                or selfA._toStore("CostFunctionJAtCurrentOptimum") \
+                or selfA._toStore("CostFunctionJbAtCurrentOptimum") \
+                or selfA._toStore("CostFunctionJoAtCurrentOptimum") \
+                or selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+            if selfA._toStore("IndexOfOptimum"):
+                selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+            if selfA._toStore("CurrentOptimum"):
+                selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["Analysis"][IndexMin] )
+            if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+                selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentAnalysis"][IndexMin] )
+            if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+            if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+            if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+                selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( EnsembleErrorCovariance(Xn) )
+        if selfA._parameters["EstimationOf"] == "Parameters" \
+            and J < previousJMinimum:
+            previousJMinimum    = J
+            XaMin               = Xa
+            if selfA._toStore("APosterioriCovariance"):
+                covarianceXaMin = Pn
+    #
+    # Stockage final supplémentaire de l'optimum en estimation de paramètres
+    # ----------------------------------------------------------------------
+    if selfA._parameters["EstimationOf"] == "Parameters":
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["Analysis"]) )
+        selfA.StoredVariables["Analysis"].store( XaMin )
+        if selfA._toStore("APosterioriCovariance"):
+            selfA.StoredVariables["APosterioriCovariance"].store( covarianceXaMin )
+        if selfA._toStore("BMA"):
+            selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(XaMin) )
+    #
+    return 0
+
+# ==============================================================================
+def std3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+    """
+    3DVAR
+    """
+    #
+    # Initialisations
+    # ---------------
+    #
+    # Opérateurs
+    Hm = HO["Direct"].appliedTo
+    Ha = HO["Adjoint"].appliedInXTo
+    #
+    # Utilisation éventuelle d'un vecteur H(Xb) précalculé
+    if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
+        HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
+    else:
+        HXb = Hm( Xb )
+    HXb = numpy.asmatrix(numpy.ravel( HXb )).T
+    if Y.size != HXb.size:
+        raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
+    if max(Y.shape) != max(HXb.shape):
+        raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
+    #
+    if selfA._toStore("JacobianMatrixAtBackground"):
+        HtMb = HO["Tangent"].asMatrix(ValueForMethodForm = Xb)
+        HtMb = HtMb.reshape(Y.size,Xb.size) # ADAO & check shape
+        selfA.StoredVariables["JacobianMatrixAtBackground"].store( HtMb )
+    #
+    # Précalcul des inversions de B et R
+    BI = B.getI()
+    RI = R.getI()
+    #
+    # Point de démarrage de l'optimisation
+    Xini = selfA._parameters["InitializationPoint"]
+    #
+    # Définition de la fonction-coût
+    # ------------------------------
+    def CostFunction(x):
+        _X  = numpy.asmatrix(numpy.ravel( x )).T
+        if selfA._parameters["StoreInternalVariables"] or \
+            selfA._toStore("CurrentState") or \
+            selfA._toStore("CurrentOptimum"):
+            selfA.StoredVariables["CurrentState"].store( _X )
+        _HX = Hm( _X )
+        _HX = numpy.asmatrix(numpy.ravel( _HX )).T
+        _Innovation = Y - _HX
+        if selfA._toStore("SimulatedObservationAtCurrentState") or \
+            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
+        if selfA._toStore("InnovationAtCurrentState"):
+            selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
+        #
+        Jb  = float( 0.5 * (_X - Xb).T * BI * (_X - Xb) )
+        Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
+        J   = Jb + Jo
+        #
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
+        selfA.StoredVariables["CostFunctionJb"].store( Jb )
+        selfA.StoredVariables["CostFunctionJo"].store( Jo )
+        selfA.StoredVariables["CostFunctionJ" ].store( J )
+        if selfA._toStore("IndexOfOptimum") or \
+            selfA._toStore("CurrentOptimum") or \
+            selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+            selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+            selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+        if selfA._toStore("IndexOfOptimum"):
+            selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+        if selfA._toStore("CurrentOptimum"):
+            selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
+        if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
+        if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+            selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+        if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+            selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+        if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+            selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+        return J
+    #
+    def GradientOfCostFunction(x):
+        _X      = numpy.asmatrix(numpy.ravel( x )).T
+        _HX     = Hm( _X )
+        _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
+        GradJb  = BI * (_X - Xb)
+        GradJo  = - Ha( (_X, RI * (Y - _HX)) )
+        GradJ   = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
+        return GradJ
+    #
+    # Minimisation de la fonctionnelle
+    # --------------------------------
+    nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+    #
+    if selfA._parameters["Minimizer"] == "LBFGSB":
+        if "0.19" <= scipy.version.version <= "1.1.0":
+            import lbfgsbhlt as optimiseur
+        else:
+            import scipy.optimize as optimiseur
+        Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
+            func        = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            bounds      = selfA._parameters["Bounds"],
+            maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
+            factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
+            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
+            iprint      = selfA._parameters["optiprint"],
             )
-        xa.append( xa_c )
-        Ea.append( Ea_c )
-        Sa.append( Sa_c )
-        #
-        # Inflation for next cycle
-        E0 = xa_c + inflation * (Ea_c - xa_c)
-    #
-    return (xa, Ea, Sa)
-
-def _IEnKS_cycle_Lag_L_SDA_GN(
-        E0         = None,
-        yObs       = None,
-        RIdemi     = None,
-        Mnnpu      = None,
-        Hn         = None,
-        method     = "Transform",
-        iMaximum   = 15000,
-        sTolerance = mfp,
-        jTolerance = mfp,
-        Lag        = 1,
-        epsilon    = -1.,
-        nbPS       = 0,
-        ):
-    # 201407 & 201905
-    if logging.getLogger().level < logging.WARNING:
-        assert len(E0.shape) == 2, "Ensemble E0 is not well formed: not of shape 2!"
-        assert len(RIdemi.shape) == 2, "R^{-1/2} is not well formed: not of shape 2!"
-        assert method in ("Transform", "Bundle"), "Method has to be Transform or Bundle"
-    #
-    nbCtl, nbMbr = E0.shape
-    nbObs = yObs.size
-    #
-    if logging.getLogger().level < logging.WARNING:
-        assert RIdemi.shape[0] == RIdemi.shape[1] == nbObs, "R^{-1} not of good size: not of size nbObs!"
-    #
-    yo  = yObs.reshape((nbObs,1))
-    IN  = numpy.identity(nbMbr)
-    if method == "Transform":
-        T    = numpy.identity(nbMbr)
-        Tinv = numpy.identity(nbMbr)
-    x00 = numpy.mean(E0, axis = 1)
-    Ah0 = E0 - x00
-    Am0  = (1/math.sqrt(nbMbr - 1)) * Ah0
-    w   = numpy.zeros((nbMbr,1))
-    if logging.getLogger().level < logging.WARNING:
-        assert len(Ah0.shape) == 2, "Ensemble A0 is not well formed, of shape 2!"
-        assert Ah0.shape[0] == nbCtl and Ah0.shape[1] == nbMbr, "Ensemble A0 is not well shaped!"
-        assert abs(max(numpy.mean(Ah0, axis = 1))) < nbMbr*mpr, "Ensemble A0 seems not to be centered!"
-    #
-    def _convergence_condition(j, dw, JCurr, JPrev):
-        if j > iMaximum:
-            logging.debug("Convergence on maximum number of iterations per cycle, that reach the limit of %i."%iMaximum)
-            return True
-        #---------
-        if j == 1:
-            _deltaOnJ = 1.
-        else:
-            _deltaOnJ = abs(JCurr - JPrev) / JPrev
-        if _deltaOnJ <= jTolerance:
-            logging.debug("Convergence on cost decrement tolerance, that is below the threshold of %.1e."%jTolerance)
-            return True
-        #---------
-        _deltaOnW = numpy.sqrt(numpy.mean(dw.squeeze()**2))
-        if _deltaOnW <= sTolerance:
-            logging.debug("Convergence on norm of weights correction, that is below the threshold of %.1e."%sTolerance)
-            return True # En correction des poids
-        #---------
-        return False
-    #
-    St = dict([(k,[]) for k in [
-        "CurrentState", "CurrentEnsemble", "CurrentWeights",
-        "CostFunctionJb", "CostFunctionJo", "CostFunctionJ",
-        ]])
-    #
-    j, convergence, JPrev = 1, False, numpy.nan
-    while not convergence:
-        logging.debug("Internal IEnKS step number %i"%j)
-        x0 = x00 + Am0.dot( w )
-        St["CurrentState"].append( x0.squeeze() )
-        if method == "Transform":
-            E0 = x0 + Ah0.dot(T)
-        else:
-            E0 = x0 + epsilon * Am0
-        St["CurrentEnsemble"].append( E0 )
-        Ek = E0
-        yHmean = numpy.mean(E0, axis = 1)
-        for k in range(1, Lag+1):
-            Ek  = numpy.array([Mnnpu(_x) for _x in Ek.T]).reshape((nbCtl, nbMbr)) # Evolution 0->L
-            if method == "Transform":
-                yHmean = Mnnpu(yHmean)
-        HEL = numpy.array([Hn(_x) for _x in Ek.T]).T     # Observation à L
-        #
-        if method == "Transform":
-            yLm = Hn( yHmean ).reshape((nbObs,1))
-            YL = RIdemi.dot( (HEL - numpy.mean( HEL, axis = 1).reshape((nbObs,1))).dot(Tinv) ) / math.sqrt(nbMbr-1)
-        else:
-            yLm = numpy.mean( HEL, axis = 1).reshape((nbObs,1))
-            YL = RIdemi.dot(HEL - yLm) / epsilon
-        dy = RIdemi.dot(yo - yLm)
-        #
-        Jb = float(w.T.dot(w))
-        Jo = float(dy.T.dot(dy))
-        J  = Jo + Jb
-        logging.debug("Values for cost functions are: J = %.5e  Jo = %.5e  Jb = %.5e"%(J,Jo,Jb))
-        St["CurrentWeights"].append( w.squeeze() )
-        St["CostFunctionJb"].append( Jb )
-        St["CostFunctionJo"].append( Jo )
-        St["CostFunctionJ"].append( J )
-        if method == "Transform":
-            GradJ = w - YL.T.dot(dy)
-            HTild = IN + YL.T.dot(YL)
-        else:
-            GradJ = (nbMbr - 1)*w - YL.T.dot(RIdemi.dot(dy))
-            HTild = (nbMbr - 1)*IN + YL.T.dot(RIdemi.dot(YL))
-        HTild = numpy.array(HTild, dtype=float)
-        dw = numpy.linalg.solve( HTild, numpy.array(GradJ, dtype=float) )
-        w = w - dw
-        j = j + 1
-        convergence = _convergence_condition(j, dw, J, JPrev)
-        JPrev = J
-        #
-        if method == "Transform":
-            (U, s, _) = numpy.linalg.svd(HTild, full_matrices=False) # Hess = U s V
-            T    = U.dot(numpy.diag(numpy.sqrt(1./s)).dot(U.T))   # T = Hess^(-1/2)
-            Tinv = U.dot(numpy.diag(numpy.sqrt(s)).dot(U.T))      # Tinv = T^(-1)
-    #
-    # Stocke le dernier pas
-    St["CurrentState"].append( numpy.mean( Ek, axis = 1).squeeze() )
-    St["CurrentEnsemble"].append( Ek )
-    #
-    IndexMin = numpy.argmin( St["CostFunctionJ"][nbPS:] ) + nbPS
-    xa = St["CurrentState"][IndexMin]
-    Ea = St["CurrentEnsemble"][IndexMin]
-    #
-    return (xa, Ea, St)
-
-def ienks(
-        xb         = None,          # Background
-        yObs       = None,          # Observation (série)
-        E0         = None,          # Background ensemble
-        B          = None,          # B
-        RIdemi     = None,          # R^(-1/2)
-        Mnnpu      = None,          # Evolution operator
-        Hn         = None,          # Observation operator
-        method     = "Transform",   # Bundle ou Transform
-        nMembers   = 5,             # Number of members
-        cMaximum   = 15000,         # Number of steps or cycles
-        iMaximum   = 15000,         # Number of iterations per cycle
-        sTolerance = mfp,           # Weights correction tolerance
-        jTolerance = mfp,           # Cost decrement tolerance
-        Lag        = 1,             # Lenght of smoothing window
-        epsilon    = -1.,
-        inflation  = 1.,
-        nbPS       = 0,             # Number of previous steps
-        setSeed    = None,
-        ):
+        nfeval = Informations['funcalls']
+        rc     = Informations['warnflag']
+    elif selfA._parameters["Minimizer"] == "TNC":
+        Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
+            func        = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            bounds      = selfA._parameters["Bounds"],
+            maxfun      = selfA._parameters["MaximumNumberOfSteps"],
+            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
+            ftol        = selfA._parameters["CostDecrementTolerance"],
+            messages    = selfA._parameters["optmessages"],
+            )
+    elif selfA._parameters["Minimizer"] == "CG":
+        Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
+            f           = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+            gtol        = selfA._parameters["GradientNormTolerance"],
+            disp        = selfA._parameters["optdisp"],
+            full_output = True,
+            )
+    elif selfA._parameters["Minimizer"] == "NCG":
+        Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
+            f           = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+            avextol     = selfA._parameters["CostDecrementTolerance"],
+            disp        = selfA._parameters["optdisp"],
+            full_output = True,
+            )
+    elif selfA._parameters["Minimizer"] == "BFGS":
+        Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
+            f           = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+            gtol        = selfA._parameters["GradientNormTolerance"],
+            disp        = selfA._parameters["optdisp"],
+            full_output = True,
+            )
+    else:
+        raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+    #
+    IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+    MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
+    #
+    # Correction pour pallier a un bug de TNC sur le retour du Minimum
+    # ----------------------------------------------------------------
+    if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+        Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
+    #
+    # Obtention de l'analyse
+    # ----------------------
+    Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
+    #
+    selfA.StoredVariables["Analysis"].store( Xa )
+    #
+    if selfA._toStore("OMA") or \
+        selfA._toStore("SigmaObs2") or \
+        selfA._toStore("SimulationQuantiles") or \
+        selfA._toStore("SimulatedObservationAtOptimum"):
+        if selfA._toStore("SimulatedObservationAtCurrentState"):
+            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
+        elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
+        else:
+            HXa = Hm( Xa )
+    #
+    # Calcul de la covariance d'analyse
+    # ---------------------------------
+    if selfA._toStore("APosterioriCovariance") or \
+        selfA._toStore("SimulationQuantiles") or \
+        selfA._toStore("JacobianMatrixAtOptimum") or \
+        selfA._toStore("KalmanGainAtOptimum"):
+        HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
+        HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
+    if selfA._toStore("APosterioriCovariance") or \
+        selfA._toStore("SimulationQuantiles") or \
+        selfA._toStore("KalmanGainAtOptimum"):
+        HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
+        HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
+    if selfA._toStore("APosterioriCovariance") or \
+        selfA._toStore("SimulationQuantiles"):
+        HessienneI = []
+        nb = Xa.size
+        for i in range(nb):
+            _ee    = numpy.matrix(numpy.zeros(nb)).T
+            _ee[i] = 1.
+            _HtEE  = numpy.dot(HtM,_ee)
+            _HtEE  = numpy.asmatrix(numpy.ravel( _HtEE )).T
+            HessienneI.append( numpy.ravel( BI*_ee + HaM * (RI * _HtEE) ) )
+        HessienneI = numpy.matrix( HessienneI )
+        A = HessienneI.I
+        if min(A.shape) != max(A.shape):
+            raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
+        if (numpy.diag(A) < 0).any():
+            raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
+        if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
+            try:
+                L = numpy.linalg.cholesky( A )
+            except:
+                raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
+    if selfA._toStore("APosterioriCovariance"):
+        selfA.StoredVariables["APosterioriCovariance"].store( A )
+    if selfA._toStore("JacobianMatrixAtOptimum"):
+        selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
+    if selfA._toStore("KalmanGainAtOptimum"):
+        if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
+        elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
+        selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
+    #
+    # Calculs et/ou stockages supplémentaires
+    # ---------------------------------------
+    if selfA._toStore("Innovation") or \
+        selfA._toStore("SigmaObs2") or \
+        selfA._toStore("MahalanobisConsistency") or \
+        selfA._toStore("OMB"):
+        d  = Y - HXb
+    if selfA._toStore("Innovation"):
+        selfA.StoredVariables["Innovation"].store( numpy.ravel(d) )
+    if selfA._toStore("BMA"):
+        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+    if selfA._toStore("OMA"):
+        selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
+    if selfA._toStore("OMB"):
+        selfA.StoredVariables["OMB"].store( numpy.ravel(d) )
+    if selfA._toStore("SigmaObs2"):
+        TraceR = R.trace(Y.size)
+        selfA.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
+    if selfA._toStore("MahalanobisConsistency"):
+        selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
+    if selfA._toStore("SimulationQuantiles"):
+        nech = selfA._parameters["NumberOfSamplesForQuantiles"]
+        HXa  = numpy.matrix(numpy.ravel( HXa )).T
+        YfQ  = None
+        for i in range(nech):
+            if selfA._parameters["SimulationForQuantiles"] == "Linear":
+                dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
+                dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
+                Yr = HXa + dYr
+            elif selfA._parameters["SimulationForQuantiles"] == "NonLinear":
+                Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
+                Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
+            if YfQ is None:
+                YfQ = Yr
+            else:
+                YfQ = numpy.hstack((YfQ,Yr))
+        YfQ.sort(axis=-1)
+        YQ = None
+        for quantile in selfA._parameters["Quantiles"]:
+            if not (0. <= float(quantile) <= 1.): continue
+            indice = int(nech * float(quantile) - 1./nech)
+            if YQ is None: YQ = YfQ[:,indice]
+            else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
+        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
+    if selfA._toStore("SimulatedObservationAtBackground"):
+        selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
+    if selfA._toStore("SimulatedObservationAtOptimum"):
+        selfA.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
+    #
+    return 0
+
+# ==============================================================================
+def std4dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+    """
+    4DVAR
+    """
+    #
+    # Initialisations
+    # ---------------
+    #
+    # Opérateurs
+    Hm = HO["Direct"].appliedControledFormTo
+    Mm = EM["Direct"].appliedControledFormTo
+    #
+    if CM is not None and "Tangent" in CM and U is not None:
+        Cm = CM["Tangent"].asMatrix(Xb)
+    else:
+        Cm = None
+    #
+    def Un(_step):
+        if U is not None:
+            if hasattr(U,"store") and 1<=_step<len(U) :
+                _Un = numpy.asmatrix(numpy.ravel( U[_step] )).T
+            elif hasattr(U,"store") and len(U)==1:
+                _Un = numpy.asmatrix(numpy.ravel( U[0] )).T
+            else:
+                _Un = numpy.asmatrix(numpy.ravel( U )).T
+        else:
+            _Un = None
+        return _Un
+    def CmUn(_xn,_un):
+        if Cm is not None and _un is not None: # Attention : si Cm est aussi dans M, doublon !
+            _Cm   = Cm.reshape(_xn.size,_un.size) # ADAO & check shape
+            _CmUn = _Cm * _un
+        else:
+            _CmUn = 0.
+        return _CmUn
+    #
+    # Remarque : les observations sont exploitées à partir du pas de temps
+    # numéro 1, et sont utilisées dans Yo comme rangées selon ces indices.
+    # Donc le pas 0 n'est pas utilisé puisque la première étape commence
+    # avec l'observation du pas 1.
+    #
+    # Nombre de pas identique au nombre de pas d'observations
+    if hasattr(Y,"stepnumber"):
+        duration = Y.stepnumber()
+    else:
+        duration = 2
+    #
+    # Précalcul des inversions de B et R
+    BI = B.getI()
+    RI = R.getI()
     #
-    # Initial
-    if setSeed is not None: numpy.random.seed(setSeed)
-    if E0 is None: E0 = _BackgroundEnsembleGeneration( xb, B, nMembers)
-    #
-    # Spinup
-    # ------
-    #
-    # Cycles
-    # ------
-    xa, Ea, Sa = [], [], []
-    for i in range(Lag): # Lag void results
-        xa.append([])
-        Ea.append([])
-        Sa.append([])
-    for i in range(Lag,cMaximum):
-        (xa_c, Ea_c, Sa_c) = _IEnKS_cycle_Lag_L_SDA_GN(
-            E0,
-            yObs[i-Lag:i],
-            RIdemi,
-            Mnnpu,
-            Hn,
-            method,
-            iMaximum,
-            sTolerance,
-            jTolerance,
-            Lag,
-            epsilon,
-            nbPS,
+    # Point de démarrage de l'optimisation
+    Xini = selfA._parameters["InitializationPoint"]
+    #
+    # Définition de la fonction-coût
+    # ------------------------------
+    selfA.DirectCalculation = [None,] # Le pas 0 n'est pas observé
+    selfA.DirectInnovation  = [None,] # Le pas 0 n'est pas observé
+    def CostFunction(x):
+        _X  = numpy.asmatrix(numpy.ravel( x )).T
+        if selfA._parameters["StoreInternalVariables"] or \
+            selfA._toStore("CurrentState") or \
+            selfA._toStore("CurrentOptimum"):
+            selfA.StoredVariables["CurrentState"].store( _X )
+        Jb  = float( 0.5 * (_X - Xb).T * BI * (_X - Xb) )
+        selfA.DirectCalculation = [None,]
+        selfA.DirectInnovation  = [None,]
+        Jo  = 0.
+        _Xn = _X
+        for step in range(0,duration-1):
+            if hasattr(Y,"store"):
+                _Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T
+            else:
+                _Ynpu = numpy.asmatrix(numpy.ravel( Y )).T
+            _Un = Un(step)
+            #
+            # Etape d'évolution
+            if selfA._parameters["EstimationOf"] == "State":
+                _Xn = Mm( (_Xn, _Un) ) + CmUn(_Xn, _Un)
+            elif selfA._parameters["EstimationOf"] == "Parameters":
+                pass
+            #
+            if selfA._parameters["Bounds"] is not None and selfA._parameters["ConstrainedBy"] == "EstimateProjection":
+                _Xn = numpy.max(numpy.hstack((_Xn,numpy.asmatrix(selfA._parameters["Bounds"])[:,0])),axis=1)
+                _Xn = numpy.min(numpy.hstack((_Xn,numpy.asmatrix(selfA._parameters["Bounds"])[:,1])),axis=1)
+            #
+            # Etape de différence aux observations
+            if selfA._parameters["EstimationOf"] == "State":
+                _YmHMX = _Ynpu - numpy.asmatrix(numpy.ravel( Hm( (_Xn, None) ) )).T
+            elif selfA._parameters["EstimationOf"] == "Parameters":
+                _YmHMX = _Ynpu - numpy.asmatrix(numpy.ravel( Hm( (_Xn, _Un) ) )).T - CmUn(_Xn, _Un)
+            #
+            # Stockage de l'état
+            selfA.DirectCalculation.append( _Xn )
+            selfA.DirectInnovation.append( _YmHMX )
+            #
+            # Ajout dans la fonctionnelle d'observation
+            Jo = Jo + 0.5 * float( _YmHMX.T * RI * _YmHMX )
+        J = Jb + Jo
+        #
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
+        selfA.StoredVariables["CostFunctionJb"].store( Jb )
+        selfA.StoredVariables["CostFunctionJo"].store( Jo )
+        selfA.StoredVariables["CostFunctionJ" ].store( J )
+        if selfA._toStore("IndexOfOptimum") or \
+            selfA._toStore("CurrentOptimum") or \
+            selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+            selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+            selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+            IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+        if selfA._toStore("IndexOfOptimum"):
+            selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+        if selfA._toStore("CurrentOptimum"):
+            selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
+        if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+            selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+        if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+            selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+        if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+            selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+        return J
+    #
+    def GradientOfCostFunction(x):
+        _X      = numpy.asmatrix(numpy.ravel( x )).T
+        GradJb  = BI * (_X - Xb)
+        GradJo  = 0.
+        for step in range(duration-1,0,-1):
+            # Étape de récupération du dernier stockage de l'évolution
+            _Xn = selfA.DirectCalculation.pop()
+            # Étape de récupération du dernier stockage de l'innovation
+            _YmHMX = selfA.DirectInnovation.pop()
+            # Calcul des adjoints
+            Ha = HO["Adjoint"].asMatrix(ValueForMethodForm = _Xn)
+            Ha = Ha.reshape(_Xn.size,_YmHMX.size) # ADAO & check shape
+            Ma = EM["Adjoint"].asMatrix(ValueForMethodForm = _Xn)
+            Ma = Ma.reshape(_Xn.size,_Xn.size) # ADAO & check shape
+            # Calcul du gradient par état adjoint
+            GradJo = GradJo + Ha * RI * _YmHMX # Équivaut pour Ha linéaire à : Ha( (_Xn, RI * _YmHMX) )
+            GradJo = Ma * GradJo               # Équivaut pour Ma linéaire à : Ma( (_Xn, GradJo) )
+        GradJ = numpy.ravel( GradJb ) - numpy.ravel( GradJo )
+        return GradJ
+    #
+    # Minimisation de la fonctionnelle
+    # --------------------------------
+    nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+    #
+    if selfA._parameters["Minimizer"] == "LBFGSB":
+        if "0.19" <= scipy.version.version <= "1.1.0":
+            import lbfgsbhlt as optimiseur
+        else:
+            import scipy.optimize as optimiseur
+        Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
+            func        = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            bounds      = selfA._parameters["Bounds"],
+            maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
+            factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
+            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
+            iprint      = selfA._parameters["optiprint"],
+            )
+        nfeval = Informations['funcalls']
+        rc     = Informations['warnflag']
+    elif selfA._parameters["Minimizer"] == "TNC":
+        Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
+            func        = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            bounds      = selfA._parameters["Bounds"],
+            maxfun      = selfA._parameters["MaximumNumberOfSteps"],
+            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
+            ftol        = selfA._parameters["CostDecrementTolerance"],
+            messages    = selfA._parameters["optmessages"],
+            )
+    elif selfA._parameters["Minimizer"] == "CG":
+        Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
+            f           = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+            gtol        = selfA._parameters["GradientNormTolerance"],
+            disp        = selfA._parameters["optdisp"],
+            full_output = True,
             )
-        xa.append( xa_c )
-        Ea.append( Ea_c )
-        Sa.append( Sa_c )
+    elif selfA._parameters["Minimizer"] == "NCG":
+        Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
+            f           = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+            avextol     = selfA._parameters["CostDecrementTolerance"],
+            disp        = selfA._parameters["optdisp"],
+            full_output = True,
+            )
+    elif selfA._parameters["Minimizer"] == "BFGS":
+        Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
+            f           = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+            gtol        = selfA._parameters["GradientNormTolerance"],
+            disp        = selfA._parameters["optdisp"],
+            full_output = True,
+            )
+    else:
+        raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+    #
+    IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+    MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
+    #
+    # Correction pour pallier a un bug de TNC sur le retour du Minimum
+    # ----------------------------------------------------------------
+    if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+        Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
+    #
+    # Obtention de l'analyse
+    # ----------------------
+    Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
+    #
+    selfA.StoredVariables["Analysis"].store( Xa )
+    #
+    # Calculs et/ou stockages supplémentaires
+    # ---------------------------------------
+    if selfA._toStore("BMA"):
+        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+    #
+    return 0
+
+# ==============================================================================
+def van3dvar(selfA, Xb, Y, U, HO, EM, CM, R, B, Q):
+    """
+    3DVAR variational analysis with no inversion of B
+    """
+    #
+    # Initialisations
+    # ---------------
+    #
+    # Opérateurs
+    Hm = HO["Direct"].appliedTo
+    Ha = HO["Adjoint"].appliedInXTo
+    #
+    # Précalcul des inversions de B et R
+    BT = B.getT()
+    RI = R.getI()
+    #
+    # Point de démarrage de l'optimisation
+    Xini = numpy.zeros(Xb.shape)
+    #
+    # Définition de la fonction-coût
+    # ------------------------------
+    def CostFunction(v):
+        _V = numpy.asmatrix(numpy.ravel( v )).T
+        _X = Xb + B * _V
+        if selfA._parameters["StoreInternalVariables"] or \
+            selfA._toStore("CurrentState") or \
+            selfA._toStore("CurrentOptimum"):
+            selfA.StoredVariables["CurrentState"].store( _X )
+        _HX = Hm( _X )
+        _HX = numpy.asmatrix(numpy.ravel( _HX )).T
+        _Innovation = Y - _HX
+        if selfA._toStore("SimulatedObservationAtCurrentState") or \
+            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
+        if selfA._toStore("InnovationAtCurrentState"):
+            selfA.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
+        #
+        Jb  = float( 0.5 * _V.T * BT * _V )
+        Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
+        J   = Jb + Jo
         #
-        # Inflation for next cycle
-        E0 = xa_c + inflation * (Ea_c - xa_c)
+        selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
+        selfA.StoredVariables["CostFunctionJb"].store( Jb )
+        selfA.StoredVariables["CostFunctionJo"].store( Jo )
+        selfA.StoredVariables["CostFunctionJ" ].store( J )
+        if selfA._toStore("IndexOfOptimum") or \
+            selfA._toStore("CurrentOptimum") or \
+            selfA._toStore("CostFunctionJAtCurrentOptimum") or \
+            selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
+            selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
+            selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+        if selfA._toStore("IndexOfOptimum"):
+            selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
+        if selfA._toStore("CurrentOptimum"):
+            selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
+        if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
+        if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
+            selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
+        if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
+            selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
+        if selfA._toStore("CostFunctionJAtCurrentOptimum"):
+            selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
+        return J
+    #
+    def GradientOfCostFunction(v):
+        _V = numpy.asmatrix(numpy.ravel( v )).T
+        _X = Xb + B * _V
+        _HX     = Hm( _X )
+        _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
+        GradJb  = BT * _V
+        GradJo  = - Ha( (_X, RI * (Y - _HX)) )
+        GradJ   = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
+        return GradJ
+    #
+    # Minimisation de la fonctionnelle
+    # --------------------------------
+    nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
+    #
+    if selfA._parameters["Minimizer"] == "LBFGSB":
+        if "0.19" <= scipy.version.version <= "1.1.0":
+            import lbfgsbhlt as optimiseur
+        else:
+            import scipy.optimize as optimiseur
+        Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
+            func        = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            bounds      = selfA._parameters["Bounds"],
+            maxfun      = selfA._parameters["MaximumNumberOfSteps"]-1,
+            factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
+            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
+            iprint      = selfA._parameters["optiprint"],
+            )
+        nfeval = Informations['funcalls']
+        rc     = Informations['warnflag']
+    elif selfA._parameters["Minimizer"] == "TNC":
+        Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
+            func        = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            bounds      = selfA._parameters["Bounds"],
+            maxfun      = selfA._parameters["MaximumNumberOfSteps"],
+            pgtol       = selfA._parameters["ProjectedGradientTolerance"],
+            ftol        = selfA._parameters["CostDecrementTolerance"],
+            messages    = selfA._parameters["optmessages"],
+            )
+    elif selfA._parameters["Minimizer"] == "CG":
+        Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
+            f           = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+            gtol        = selfA._parameters["GradientNormTolerance"],
+            disp        = selfA._parameters["optdisp"],
+            full_output = True,
+            )
+    elif selfA._parameters["Minimizer"] == "NCG":
+        Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
+            f           = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+            avextol     = selfA._parameters["CostDecrementTolerance"],
+            disp        = selfA._parameters["optdisp"],
+            full_output = True,
+            )
+    elif selfA._parameters["Minimizer"] == "BFGS":
+        Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
+            f           = CostFunction,
+            x0          = Xini,
+            fprime      = GradientOfCostFunction,
+            args        = (),
+            maxiter     = selfA._parameters["MaximumNumberOfSteps"],
+            gtol        = selfA._parameters["GradientNormTolerance"],
+            disp        = selfA._parameters["optdisp"],
+            full_output = True,
+            )
+    else:
+        raise ValueError("Error in Minimizer name: %s"%selfA._parameters["Minimizer"])
+    #
+    IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
+    MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
+    #
+    # Correction pour pallier a un bug de TNC sur le retour du Minimum
+    # ----------------------------------------------------------------
+    if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
+        Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
+        Minimum = numpy.asmatrix(numpy.ravel( Minimum )).T
+    else:
+        Minimum = Xb + B * numpy.asmatrix(numpy.ravel( Minimum )).T
+    #
+    # Obtention de l'analyse
+    # ----------------------
+    Xa = Minimum
+    #
+    selfA.StoredVariables["Analysis"].store( Xa )
+    #
+    if selfA._toStore("OMA") or \
+        selfA._toStore("SigmaObs2") or \
+        selfA._toStore("SimulationQuantiles") or \
+        selfA._toStore("SimulatedObservationAtOptimum"):
+        if selfA._toStore("SimulatedObservationAtCurrentState"):
+            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
+        elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
+            HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
+        else:
+            HXa = Hm( Xa )
+    #
+    # Calcul de la covariance d'analyse
+    # ---------------------------------
+    if selfA._toStore("APosterioriCovariance") or \
+        selfA._toStore("SimulationQuantiles") or \
+        selfA._toStore("JacobianMatrixAtOptimum") or \
+        selfA._toStore("KalmanGainAtOptimum"):
+        HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
+        HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
+    if selfA._toStore("APosterioriCovariance") or \
+        selfA._toStore("SimulationQuantiles") or \
+        selfA._toStore("KalmanGainAtOptimum"):
+        HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
+        HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
+    if selfA._toStore("APosterioriCovariance") or \
+        selfA._toStore("SimulationQuantiles"):
+        BI = B.getI()
+        HessienneI = []
+        nb = Xa.size
+        for i in range(nb):
+            _ee    = numpy.matrix(numpy.zeros(nb)).T
+            _ee[i] = 1.
+            _HtEE  = numpy.dot(HtM,_ee)
+            _HtEE  = numpy.asmatrix(numpy.ravel( _HtEE )).T
+            HessienneI.append( numpy.ravel( BI*_ee + HaM * (RI * _HtEE) ) )
+        HessienneI = numpy.matrix( HessienneI )
+        A = HessienneI.I
+        if min(A.shape) != max(A.shape):
+            raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(selfA._name,str(A.shape)))
+        if (numpy.diag(A) < 0).any():
+            raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(selfA._name,))
+        if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
+            try:
+                L = numpy.linalg.cholesky( A )
+            except:
+                raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(selfA._name,))
+    if selfA._toStore("APosterioriCovariance"):
+        selfA.StoredVariables["APosterioriCovariance"].store( A )
+    if selfA._toStore("JacobianMatrixAtOptimum"):
+        selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
+    if selfA._toStore("KalmanGainAtOptimum"):
+        if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
+        elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
+        selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
+    #
+    # Calculs et/ou stockages supplémentaires
+    # ---------------------------------------
+    if selfA._toStore("Innovation") or \
+        selfA._toStore("SigmaObs2") or \
+        selfA._toStore("MahalanobisConsistency") or \
+        selfA._toStore("OMB"):
+        d  = Y - HXb
+    if selfA._toStore("Innovation"):
+        selfA.StoredVariables["Innovation"].store( numpy.ravel(d) )
+    if selfA._toStore("BMA"):
+        selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
+    if selfA._toStore("OMA"):
+        selfA.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
+    if selfA._toStore("OMB"):
+        selfA.StoredVariables["OMB"].store( numpy.ravel(d) )
+    if selfA._toStore("SigmaObs2"):
+        TraceR = R.trace(Y.size)
+        selfA.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(Y)).T-numpy.asmatrix(numpy.ravel(HXa)).T)) ) / TraceR )
+    if selfA._toStore("MahalanobisConsistency"):
+        selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/d.size ) )
+    if selfA._toStore("SimulationQuantiles"):
+        nech = selfA._parameters["NumberOfSamplesForQuantiles"]
+        HXa  = numpy.matrix(numpy.ravel( HXa )).T
+        YfQ  = None
+        for i in range(nech):
+            if selfA._parameters["SimulationForQuantiles"] == "Linear":
+                dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
+                dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
+                Yr = HXa + dYr
+            elif selfA._parameters["SimulationForQuantiles"] == "NonLinear":
+                Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
+                Yr = numpy.matrix(numpy.ravel( Hm( Xr ) )).T
+            if YfQ is None:
+                YfQ = Yr
+            else:
+                YfQ = numpy.hstack((YfQ,Yr))
+        YfQ.sort(axis=-1)
+        YQ = None
+        for quantile in selfA._parameters["Quantiles"]:
+            if not (0. <= float(quantile) <= 1.): continue
+            indice = int(nech * float(quantile) - 1./nech)
+            if YQ is None: YQ = YfQ[:,indice]
+            else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
+        selfA.StoredVariables["SimulationQuantiles"].store( YQ )
+    if selfA._toStore("SimulatedObservationAtBackground"):
+        selfA.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
+    if selfA._toStore("SimulatedObservationAtOptimum"):
+        selfA.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
     #
-    return (xa, Ea, Sa)
+    return 0
 
 # ==============================================================================
 if __name__ == "__main__":