Salome HOME
Compatibility correction for multiple numpy versions (REX [#25041])
[modules/adao.git] / src / daComposant / daAlgorithms / TangentTest.py
index e643c7d989b751209fe4a4163c8dcf2ca13231bf..e9ecad0854cf36160e92487cb6ea3a17be827d0f 100644 (file)
@@ -1,6 +1,6 @@
 # -*- coding: utf-8 -*-
 #
-# Copyright (C) 2008-2019 EDF R&D
+# Copyright (C) 2008-2022 EDF R&D
 #
 # This library is free software; you can redistribute it and/or
 # modify it under the terms of the GNU Lesser General Public
 #
 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
 
-import sys, logging
-from daCore import BasicObjects, PlatformInfo
-import numpy, math
+import numpy
+from daCore import BasicObjects, NumericObjects, PlatformInfo
 mpr = PlatformInfo.PlatformInfo().MachinePrecision()
-if sys.version_info.major > 2:
-    unicode = str
 
 # ==============================================================================
 class ElementaryAlgorithm(BasicObjects.Algorithm):
@@ -82,14 +79,21 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             default  = [],
             typecast = tuple,
             message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
-            listval  = ["CurrentState", "Residu", "SimulatedObservationAtCurrentState"]
+            listval  = [
+                "CurrentState",
+                "Residu",
+                "SimulatedObservationAtCurrentState",
+                ]
             )
         self.requireInputArguments(
             mandatory= ("Xb", "HO"),
             )
+        self.setAttributes(tags=(
+            "Checking",
+            ))
 
     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
-        self._pre_run(Parameters, Xb, Y, R, B, Q)
+        self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
         #
         Hm = HO["Direct"].appliedTo
         Ht = HO["Tangent"].appliedInXTo
@@ -101,37 +105,30 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         #
         # Calcul du point courant
         # -----------------------
-        Xn      = numpy.asmatrix(numpy.ravel( Xb )).T
-        FX      = numpy.asmatrix(numpy.ravel( Hm( Xn ) )).T
+        Xn      = numpy.ravel( Xb ).reshape((-1,1))
+        FX      = numpy.ravel( Hm( Xn ) ).reshape((-1,1))
         NormeX  = numpy.linalg.norm( Xn )
         NormeFX = numpy.linalg.norm( FX )
         if self._toStore("CurrentState"):
-            self.StoredVariables["CurrentState"].store( numpy.ravel(Xn) )
+            self.StoredVariables["CurrentState"].store( Xn )
         if self._toStore("SimulatedObservationAtCurrentState"):
-            self.StoredVariables["SimulatedObservationAtCurrentState"].store( numpy.ravel(FX) )
+            self.StoredVariables["SimulatedObservationAtCurrentState"].store( FX )
         #
-        # Fabrication de la direction de l'increment dX
-        # ---------------------------------------------
-        if len(self._parameters["InitialDirection"]) == 0:
-            dX0 = []
-            for v in Xn.A1:
-                if abs(v) > 1.e-8:
-                    dX0.append( numpy.random.normal(0.,abs(v)) )
-                else:
-                    dX0.append( numpy.random.normal(0.,Xn.mean()) )
-        else:
-            dX0 = numpy.ravel( self._parameters["InitialDirection"] )
-        #
-        dX0 = float(self._parameters["AmplitudeOfInitialDirection"]) * numpy.matrix( dX0 ).T
+        dX0 = NumericObjects.SetInitialDirection(
+            self._parameters["InitialDirection"],
+            self._parameters["AmplitudeOfInitialDirection"],
+            Xn,
+            )
         #
         # Calcul du gradient au point courant X pour l'increment dX
         # qui est le tangent en X multiplie par dX
         # ---------------------------------------------------------
         dX1      = float(self._parameters["AmplitudeOfTangentPerturbation"]) * dX0
         GradFxdX = Ht( (Xn, dX1) )
-        GradFxdX = numpy.asmatrix(numpy.ravel( GradFxdX )).T
+        GradFxdX = numpy.ravel( GradFxdX ).reshape((-1,1))
         GradFxdX = float(1./self._parameters["AmplitudeOfTangentPerturbation"]) * GradFxdX
         NormeGX  = numpy.linalg.norm( GradFxdX )
+        if NormeGX < mpr: NormeGX = mpr
         #
         # Entete des resultats
         # --------------------
@@ -163,7 +160,7 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             On prend dX0 = Normal(0,X) et dX = Alpha*dX0. F est le code de calcul.\n""" + __precision
         #
         if len(self._parameters["ResultTitle"]) > 0:
-            __rt = unicode(self._parameters["ResultTitle"])
+            __rt = str(self._parameters["ResultTitle"])
             msgs  = u"\n"
             msgs += __marge + "====" + "="*len(__rt) + "====\n"
             msgs += __marge + "    " + __rt + "\n"
@@ -180,10 +177,10 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         # Boucle sur les perturbations
         # ----------------------------
         for i,amplitude in enumerate(Perturbations):
-            dX      = amplitude * dX0
+            dX      = amplitude * dX0.reshape((-1,1))
             #
             if self._parameters["ResiduFormula"] == "Taylor":
-                FX_plus_dX  = numpy.asmatrix(numpy.ravel( Hm( Xn + dX ) )).T
+                FX_plus_dX  = numpy.ravel( Hm( Xn + dX ) ).reshape((-1,1))
                 #
                 Residu = numpy.linalg.norm( FX_plus_dX - FX ) / (amplitude * NormeGX)
                 #
@@ -204,4 +201,4 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
 
 # ==============================================================================
 if __name__ == "__main__":
-    print('\n AUTODIAGNOSTIC \n')
+    print('\n AUTODIAGNOSTIC\n')