Salome HOME
Adding linear independant control and bounds possibilities
[modules/adao.git] / src / daComposant / daAlgorithms / KalmanFilter.py
index 237f2da10de164eb8c693c79c13dbf4a7b161c22..88fdb7b420f4cc9a894dbb1d223cba6788312a29 100644 (file)
@@ -34,7 +34,20 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             default  = [],
             typecast = tuple,
             message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
-            listval  = ["APosterioriCovariance", "Innovation"]
+            listval  = ["APosterioriCovariance", "BMA", "Innovation"]
+            )
+        self.defineRequiredParameter(
+            name     = "EstimationType",
+            default  = "State",
+            typecast = str,
+            message  = "Estimation d'etat ou de parametres",
+            listval  = ["State", "Parameters"],
+            )
+        self.defineRequiredParameter(
+            name     = "StoreInternalVariables",
+            default  = False,
+            typecast = bool,
+            message  = "Stockage des variables internes ou intermédiaires du calcul",
             )
 
     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
@@ -45,6 +58,9 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         # ----------------------
         self.setParameters(Parameters)
         #
+        if self._parameters["EstimationType"] == "Parameters":
+            self._parameters["StoreInternalVariables"] = True
+        #
         # Opérateurs
         # ----------
         if B is None:
@@ -52,57 +68,119 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         if R is None:
             raise ValueError("Observation error covariance matrix has to be properly defined!")
         #
-        Ht = HO["Tangent"].asMatrix(None)
-        Ha = HO["Adjoint"].asMatrix(None)
+        Ht = HO["Tangent"].asMatrix(Xb)
+        Ha = HO["Adjoint"].asMatrix(Xb)
         #
-        Mt = EM["Tangent"].asMatrix(None)
-        Ma = EM["Adjoint"].asMatrix(None)
+        if self._parameters["EstimationType"] == "State":
+            Mt = EM["Tangent"].asMatrix(Xb)
+            Ma = EM["Adjoint"].asMatrix(Xb)
         #
         if CM is not None and CM.has_key("Tangent") and U is not None:
-            Cm = CM["Tangent"].asMatrix(None)
+            Cm = CM["Tangent"].asMatrix(Xb)
         else:
             Cm = None
         #
         # Nombre de pas du Kalman identique au nombre de pas d'observations
         # -----------------------------------------------------------------
-        duration = Y.stepnumber()
+        if hasattr(Y,"stepnumber"):
+            duration = Y.stepnumber()
+        else:
+            duration = 2
+        #
+        # Précalcul des inversions de B et R
+        # ----------------------------------
+        if self._parameters["StoreInternalVariables"]:
+            if B is not None:
+                BI = B.I
+            elif self._parameters["B_scalar"] is not None:
+                BI = 1.0 / self._parameters["B_scalar"]
+            #
+            if R is not None:
+                RI = R.I
+            elif self._parameters["R_scalar"] is not None:
+                RI = 1.0 / self._parameters["R_scalar"]
         #
         # Initialisation
         # --------------
         Xn = Xb
         Pn = B
+        #
         self.StoredVariables["Analysis"].store( Xn.A1 )
         if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
             self.StoredVariables["APosterioriCovariance"].store( Pn )
+            covarianceXa = Pn
+        Xa               = Xn
+        previousJMinimum = numpy.finfo(float).max
         #
         for step in range(duration-1):
-            Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T
+            if hasattr(Y,"store"):
+                Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T
+            else:
+                Ynpu = numpy.asmatrix(numpy.ravel( Y )).T
             #
-            if Cm is not None:
+            if U is not None:
                 if hasattr(U,"store") and len(U)>1:
                     Un = numpy.asmatrix(numpy.ravel( U[step] )).T
                 elif hasattr(U,"store") and len(U)==1:
                     Un = numpy.asmatrix(numpy.ravel( U[0] )).T
                 else:
                     Un = numpy.asmatrix(numpy.ravel( U )).T
-                #
-                Xn_predicted = Mt * Xn + Cm * Un
             else:
                 Un = None
-                #
+            #
+            if self._parameters["EstimationType"] == "State" and Cm is not None and Un is not None:
+                Xn_predicted = Mt * Xn + Cm * Un
+                Pn_predicted = Mt * Pn * Ma + Q
+            elif self._parameters["EstimationType"] == "State" and (Cm is None or Un is None):
                 Xn_predicted = Mt * Xn
-            Pn_predicted = Mt * Pn * Ma + Q
+                Pn_predicted = Mt * Pn * Ma + Q
+            elif self._parameters["EstimationType"] == "Parameters":
+                # Xn_predicted = Mt * Xn
+                # Pn_predicted = Mt * Pn * Ma + Q
+                # --- > Par principe, M = Id, Q = 0
+                Xn_predicted = Xn
+                Pn_predicted = Pn
+            #
+            if self._parameters["EstimationType"] == "Parameters" and Cm is not None and Un is not None:
+                d  = Ynpu - Ht * Xn_predicted - Cm * Un
+            else:
+                d  = Ynpu - Ht * Xn_predicted
             #
-            d  = Ynpu - Ht * Xn_predicted
             K  = Pn_predicted * Ha * (Ht * Pn_predicted * Ha + R).I
             Xn = Xn_predicted + K * d
             Pn = Pn_predicted - K * Ht * Pn_predicted
             #
             self.StoredVariables["Analysis"].store( Xn.A1 )
+            if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["APosterioriCovariance"].store( Pn )
             if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
                 self.StoredVariables["Innovation"].store( numpy.ravel( d.A1 ) )
+            if self._parameters["StoreInternalVariables"]:
+                Jb  = 0.5 * (Xn - Xb).T * BI * (Xn - Xb)
+                Jo  = 0.5 * d.T * RI * d
+                J   = float( Jb ) + float( Jo )
+                self.StoredVariables["CurrentState"].store( Xn.A1 )
+                self.StoredVariables["CostFunctionJb"].store( Jb )
+                self.StoredVariables["CostFunctionJo"].store( Jo )
+                self.StoredVariables["CostFunctionJ" ].store( J )
+                if J < previousJMinimum:
+                    previousJMinimum  = J
+                    Xa                = Xn
+                    if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+                        covarianceXa  = Pn
+            else:
+                Xa = Xn
+            #
+        #
+        # Stockage supplementaire de l'optimum en estimation de parametres
+        # ----------------------------------------------------------------
+        if self._parameters["EstimationType"] == "Parameters":
+            self.StoredVariables["Analysis"].store( Xa.A1 )
             if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
-                self.StoredVariables["APosterioriCovariance"].store( Pn )
+                self.StoredVariables["APosterioriCovariance"].store( covarianceXa )
+        #
+        if "BMA" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
         #
         logging.debug("%s Taille mémoire utilisée de %.1f Mo"%(self._name, m.getUsedMemory("M")))
         logging.debug("%s Terminé"%self._name)