Salome HOME
Updating copyright date information (1)
[modules/adao.git] / src / daComposant / daAlgorithms / ExtendedKalmanFilter.py
index b662b185828d36d971bddd880c1da2315f5fbc3f..4efab27000575e4230ed6fffd38be43416cafbb9 100644 (file)
-#-*-coding:iso-8859-1-*-
+# -*- coding: utf-8 -*-
 #
-#  Copyright (C) 2008-2013 EDF R&D
+# Copyright (C) 2008-2018 EDF R&D
 #
-#  This library is free software; you can redistribute it and/or
-#  modify it under the terms of the GNU Lesser General Public
-#  License as published by the Free Software Foundation; either
-#  version 2.1 of the License.
+# This library is free software; you can redistribute it and/or
+# modify it under the terms of the GNU Lesser General Public
+# License as published by the Free Software Foundation; either
+# version 2.1 of the License.
 #
-#  This library is distributed in the hope that it will be useful,
-#  but WITHOUT ANY WARRANTY; without even the implied warranty of
-#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
-#  Lesser General Public License for more details.
+# This library is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+# Lesser General Public License for more details.
 #
-#  You should have received a copy of the GNU Lesser General Public
-#  License along with this library; if not, write to the Free Software
-#  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
+# You should have received a copy of the GNU Lesser General Public
+# License along with this library; if not, write to the Free Software
+# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 #
-#  See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
 #
-#  Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
+# Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
 
 import logging
-from daCore import BasicObjects, PlatformInfo
-m = PlatformInfo.SystemUsage()
+from daCore import BasicObjects
 import numpy
 
 # ==============================================================================
 class ElementaryAlgorithm(BasicObjects.Algorithm):
     def __init__(self):
         BasicObjects.Algorithm.__init__(self, "EXTENDEDKALMANFILTER")
+        self.defineRequiredParameter(
+            name     = "ConstrainedBy",
+            default  = "EstimateProjection",
+            typecast = str,
+            message  = "Prise en compte des contraintes",
+            listval  = ["EstimateProjection"],
+            )
+        self.defineRequiredParameter(
+            name     = "EstimationOf",
+            default  = "State",
+            typecast = str,
+            message  = "Estimation d'etat ou de parametres",
+            listval  = ["State", "Parameters"],
+            )
+        self.defineRequiredParameter(
+            name     = "StoreInternalVariables",
+            default  = False,
+            typecast = bool,
+            message  = "Stockage des variables internes ou intermédiaires du calcul",
+            )
         self.defineRequiredParameter(
             name     = "StoreSupplementaryCalculations",
             default  = [],
             typecast = tuple,
-            message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
-            listval  = ["APosterioriCovariance", "Innovation"]
+            message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
+            listval  = ["APosterioriCorrelations", "APosterioriCovariance", "APosterioriStandardDeviations", "APosterioriVariances", "BMA", "CurrentState", "CostFunctionJ", "CostFunctionJb", "CostFunctionJo", "Innovation"]
+            )
+        self.defineRequiredParameter( # Pas de type
+            name     = "Bounds",
+            message  = "Liste des valeurs de bornes",
+            )
+        self.requireInputArguments(
+            mandatory= ("Xb", "Y", "HO", "R", "B" ),
+            optional = ("U", "EM", "CM", "Q"),
             )
 
     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
-        logging.debug("%s Lancement"%self._name)
-        logging.debug("%s Taille mémoire utilisée de %.1f Mo"%(self._name, m.getUsedMemory("M")))
+        self._pre_run(Parameters, Xb, Y, R, B, Q)
         #
-        # Paramètres de pilotage
-        # ----------------------
-        self.setParameters(Parameters)
+        if self._parameters["EstimationOf"] == "Parameters":
+            self._parameters["StoreInternalVariables"] = True
         #
-        # Opérateurs
+        # Opérateurs
         # ----------
         if B is None:
             raise ValueError("Background error covariance matrix has to be properly defined!")
         if R is None:
             raise ValueError("Observation error covariance matrix has to be properly defined!")
         #
-        H = HO["Direct"].appliedTo
+        H = HO["Direct"].appliedControledFormTo
+        #
+        if self._parameters["EstimationOf"] == "State":
+            M = EM["Direct"].appliedControledFormTo
+        #
+        if CM is not None and "Tangent" in CM and U is not None:
+            Cm = CM["Tangent"].asMatrix(Xb)
+        else:
+            Cm = None
         #
-        M = EM["Direct"].appliedTo
+        # Nombre de pas identique au nombre de pas d'observations
+        # -------------------------------------------------------
+        if hasattr(Y,"stepnumber"):
+            duration = Y.stepnumber()
+        else:
+            duration = 2
         #
-        # Nombre de pas du Kalman identique au nombre de pas d'observations
-        # -----------------------------------------------------------------
-        duration = Y.stepnumber()
+        # Précalcul des inversions de B et R
+        # ----------------------------------
+        if self._parameters["StoreInternalVariables"]:
+            BI = B.getI()
+            RI = R.getI()
         #
         # Initialisation
         # --------------
         Xn = Xb
         Pn = B
+        #
         self.StoredVariables["Analysis"].store( Xn.A1 )
         if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
-            self.StoredVariables["APosterioriCovariance"].store( Pn )
+            self.StoredVariables["APosterioriCovariance"].store( Pn.asfullmatrix(Xn.size) )
+            covarianceXa = Pn
+        Xa               = Xn
+        previousJMinimum = numpy.finfo(float).max
         #
         for step in range(duration-1):
-            Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T
+            if hasattr(Y,"store"):
+                Ynpu = numpy.asmatrix(numpy.ravel( Y[step+1] )).T
+            else:
+                Ynpu = numpy.asmatrix(numpy.ravel( Y )).T
             #
             Ht = HO["Tangent"].asMatrix(ValueForMethodForm = Xn)
             Ht = Ht.reshape(Ynpu.size,Xn.size) # ADAO & check shape
             Ha = HO["Adjoint"].asMatrix(ValueForMethodForm = Xn)
             Ha = Ha.reshape(Xn.size,Ynpu.size) # ADAO & check shape
             #
-            Mt = EM["Tangent"].asMatrix(ValueForMethodForm = Xn)
-            Mt = Mt.reshape(Xn.size,Xn.size) # ADAO & check shape
-            Ma = EM["Adjoint"].asMatrix(ValueForMethodForm = Xn)
-            Ma = Ma.reshape(Xn.size,Xn.size) # ADAO & check shape
+            if self._parameters["EstimationOf"] == "State":
+                Mt = EM["Tangent"].asMatrix(ValueForMethodForm = Xn)
+                Mt = Mt.reshape(Xn.size,Xn.size) # ADAO & check shape
+                Ma = EM["Adjoint"].asMatrix(ValueForMethodForm = Xn)
+                Ma = Ma.reshape(Xn.size,Xn.size) # ADAO & check shape
             #
             if U is not None:
                 if hasattr(U,"store") and len(U)>1:
@@ -91,25 +139,73 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             else:
                 Un = None
             #
-            Xn_predicted = M( (Xn, Un) )
-            Pn_predicted = Mt * Pn * Ma + Q
+            if self._parameters["EstimationOf"] == "State":
+                Xn_predicted = numpy.asmatrix(numpy.ravel( M( (Xn, Un) ) )).T
+                if Cm is not None and Un is not None: # Attention : si Cm est aussi dans M, doublon !
+                    Cm = Cm.reshape(Xn.size,Un.size) # ADAO & check shape
+                    Xn_predicted = Xn_predicted + Cm * Un
+                Pn_predicted = Q + Mt * Pn * Ma
+            elif self._parameters["EstimationOf"] == "Parameters":
+                # --- > Par principe, M = Id, Q = 0
+                Xn_predicted = Xn
+                Pn_predicted = Pn
+            #
+            if self._parameters["Bounds"] is not None and self._parameters["ConstrainedBy"] == "EstimateProjection":
+                Xn_predicted = numpy.max(numpy.hstack((Xn_predicted,numpy.asmatrix(self._parameters["Bounds"])[:,0])),axis=1)
+                Xn_predicted = numpy.min(numpy.hstack((Xn_predicted,numpy.asmatrix(self._parameters["Bounds"])[:,1])),axis=1)
             #
-            d  = Ynpu - H( Xn_predicted )
-            K  = Pn_predicted * Ha * (Ht * Pn_predicted * Ha + R).I
-            Xn = Xn_predicted + K * d
-            Pn = Pn_predicted - K * Ht * Pn_predicted
+            if self._parameters["EstimationOf"] == "State":
+                d  = Ynpu - numpy.asmatrix(numpy.ravel( H( (Xn_predicted, None) ) )).T
+            elif self._parameters["EstimationOf"] == "Parameters":
+                d  = Ynpu - numpy.asmatrix(numpy.ravel( H( (Xn_predicted, Un) ) )).T
+                if Cm is not None and Un is not None: # Attention : si Cm est aussi dans H, doublon !
+                    d = d - Cm * Un
+            #
+            _A = R + Ht * Pn_predicted * Ha
+            _u = numpy.linalg.solve( _A , d )
+            Xn = Xn_predicted + Pn_predicted * Ha * _u
+            Kn = Pn_predicted * Ha * (R + Ht * Pn_predicted * Ha).I
+            Pn = Pn_predicted - Kn * Ht * Pn_predicted
             #
             self.StoredVariables["Analysis"].store( Xn.A1 )
+            if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["APosterioriCovariance"].store( Pn )
             if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
                 self.StoredVariables["Innovation"].store( numpy.ravel( d.A1 ) )
+            if self._parameters["StoreInternalVariables"] or "CurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+                self.StoredVariables["CurrentState"].store( Xn )
+            if self._parameters["StoreInternalVariables"] \
+                or "CostFunctionJ" in self._parameters["StoreSupplementaryCalculations"] \
+                or "CostFunctionJb" in self._parameters["StoreSupplementaryCalculations"] \
+                or "CostFunctionJo" in self._parameters["StoreSupplementaryCalculations"]:
+                Jb  = 0.5 * (Xn - Xb).T * BI * (Xn - Xb)
+                Jo  = 0.5 * d.T * RI * d
+                J   = float( Jb ) + float( Jo )
+                self.StoredVariables["CostFunctionJb"].store( Jb )
+                self.StoredVariables["CostFunctionJo"].store( Jo )
+                self.StoredVariables["CostFunctionJ" ].store( J )
+                if J < previousJMinimum:
+                    previousJMinimum  = J
+                    Xa                = Xn
+                    if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+                        covarianceXa  = Pn
+            else:
+                Xa = Xn
+            #
+        #
+        # Stockage supplementaire de l'optimum en estimation de parametres
+        # ----------------------------------------------------------------
+        if self._parameters["EstimationOf"] == "Parameters":
+            self.StoredVariables["Analysis"].store( Xa.A1 )
             if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
-                self.StoredVariables["APosterioriCovariance"].store( Pn )
+                self.StoredVariables["APosterioriCovariance"].store( covarianceXa )
         #
-        logging.debug("%s Taille mémoire utilisée de %.1f Mo"%(self._name, m.getUsedMemory("M")))
-        logging.debug("%s Terminé"%self._name)
+        if "BMA" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
         #
+        self._post_run(HO)
         return 0
 
 # ==============================================================================
 if __name__ == "__main__":
-    print '\n AUTODIAGNOSTIC \n'
+    print('\n AUTODIAGNOSTIC \n')