Salome HOME
Documentation corrections for outputs
[modules/adao.git] / src / daComposant / daAlgorithms / ExtendedBlue.py
index c4085c5e70d82dc088462d7f65a834e3d59c8f8b..ea93f62c7465c34a16a7d8cec7d3ee5bdf9dd396 100644 (file)
@@ -1,6 +1,6 @@
 #-*-coding:iso-8859-1-*-
 #
-#  Copyright (C) 2008-2013 EDF R&D
+#  Copyright (C) 2008-2015 EDF R&D
 #
 #  This library is free software; you can redistribute it and/or
 #  modify it under the terms of the GNU Lesser General Public
@@ -21,9 +21,7 @@
 #  Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
 
 import logging
-from daCore import BasicObjects, PlatformInfo
-m = PlatformInfo.SystemUsage()
-
+from daCore import BasicObjects
 import numpy
 
 # ==============================================================================
@@ -41,12 +39,38 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             default  = [],
             typecast = tuple,
             message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
-            listval  = ["APosterioriCovariance", "BMA", "OMA", "OMB", "Innovation", "SigmaBck2", "SigmaObs2", "MahalanobisConsistency"]
+            listval  = ["APosterioriCovariance", "BMA", "OMA", "OMB", "CostFunctionJ", "Innovation", "SigmaBck2", "SigmaObs2", "MahalanobisConsistency", "SimulationQuantiles", "SimulatedObservationAtBackground", "SimulatedObservationAtOptimum"]
+            )
+        self.defineRequiredParameter(
+            name     = "Quantiles",
+            default  = [],
+            typecast = tuple,
+            message  = "Liste des valeurs de quantiles",
+            minval   = 0.,
+            maxval   = 1.,
+            )
+        self.defineRequiredParameter(
+            name     = "SetSeed",
+            typecast = numpy.random.seed,
+            message  = "Graine fixée pour le générateur aléatoire",
+            )
+        self.defineRequiredParameter(
+            name     = "NumberOfSamplesForQuantiles",
+            default  = 100,
+            typecast = int,
+            message  = "Nombre d'échantillons simulés pour le calcul des quantiles",
+            minval   = 1,
+            )
+        self.defineRequiredParameter(
+            name     = "SimulationForQuantiles",
+            default  = "Linear",
+            typecast = str,
+            message  = "Type de simulation pour l'estimation des quantiles",
+            listval  = ["Linear", "NonLinear"]
             )
 
     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
-        logging.debug("%s Lancement"%self._name)
-        logging.debug("%s Taille mémoire utilisée de %.1f Mo"%(self._name, m.getUsedMemory("M")))
+        self._pre_run()
         #
         # Paramètres de pilotage
         # ----------------------
@@ -54,11 +78,11 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         #
         # Opérateur d'observation
         # -----------------------
-        H  = HO["Direct"].appliedTo
         Hm = HO["Tangent"].asMatrix(Xb)
         Hm = Hm.reshape(Y.size,Xb.size) # ADAO & check shape
         Ha = HO["Adjoint"].asMatrix(Xb)
         Ha = Ha.reshape(Xb.size,Y.size) # ADAO & check shape
+        H  = HO["Direct"].appliedTo
         #
         # Utilisation éventuelle d'un vecteur H(Xb) précalculé
         # ----------------------------------------------------
@@ -103,9 +127,18 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         #
         # Calcul de la fonction coût
         # --------------------------
-        if self._parameters["StoreInternalVariables"] or "OMA" in self._parameters["StoreSupplementaryCalculations"] or "SigmaObs2" in self._parameters["StoreSupplementaryCalculations"] or "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
-            oma = Y - Hm * Xa
-        if self._parameters["StoreInternalVariables"] or "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._parameters["StoreInternalVariables"] or \
+           "CostFunctionJ"                 in self._parameters["StoreSupplementaryCalculations"] or \
+           "OMA"                           in self._parameters["StoreSupplementaryCalculations"] or \
+           "SigmaObs2"                     in self._parameters["StoreSupplementaryCalculations"] or \
+           "MahalanobisConsistency"        in self._parameters["StoreSupplementaryCalculations"] or \
+           "SimulatedObservationAtOptimum" in self._parameters["StoreSupplementaryCalculations"] or \
+           "SimulationQuantiles"           in self._parameters["StoreSupplementaryCalculations"]:
+            HXa  = numpy.matrix(numpy.ravel( H( Xa ) )).T
+            oma = Y - HXa
+        if self._parameters["StoreInternalVariables"] or \
+           "CostFunctionJ"                 in self._parameters["StoreSupplementaryCalculations"] or \
+           "MahalanobisConsistency"        in self._parameters["StoreSupplementaryCalculations"]:
             Jb  = 0.5 * (Xa - Xb).T * BI * (Xa - Xb)
             Jo  = 0.5 * oma.T * RI * oma
             J   = float( Jb ) + float( Jo )
@@ -115,7 +148,11 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         #
         # Calcul de la covariance d'analyse
         # ---------------------------------
-        if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"]:
+        if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"] or \
+           "SimulationQuantiles" in self._parameters["StoreSupplementaryCalculations"]:
+            if   (Y.size <= Xb.size) and (Y.size > 100): K  = B * Ha * (R + Hm * B * Ha).I
+            elif (Y.size >  Xb.size) and (Y.size > 100): K = (BI + Ha * RI * Hm).I * Ha * RI
+            else:                                        pass # K deja calcule
             A = B - K * Hm * B
             if min(A.shape) != max(A.shape):
                 raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(self._name,str(A.shape)))
@@ -145,10 +182,38 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             self.StoredVariables["SigmaBck2"].store( float( (d.T * Hm * (Xa - Xb))/(Hm * B * Hm.T).trace() ) )
         if "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
             self.StoredVariables["MahalanobisConsistency"].store( float( 2.*J/d.size ) )
+        if "SimulationQuantiles" in self._parameters["StoreSupplementaryCalculations"]:
+            Qtls = self._parameters["Quantiles"]
+            nech = self._parameters["NumberOfSamplesForQuantiles"]
+            HtM  = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
+            HtM  = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
+            YfQ  = None
+            for i in range(nech):
+                if self._parameters["SimulationForQuantiles"] == "Linear":
+                    dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
+                    dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
+                    Yr = HXa + dYr
+                elif self._parameters["SimulationForQuantiles"] == "NonLinear":
+                    Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
+                    Yr = numpy.matrix(numpy.ravel( H( Xr ) )).T
+                if YfQ is None:
+                    YfQ = Yr
+                else:
+                    YfQ = numpy.hstack((YfQ,Yr))
+            YfQ.sort(axis=-1)
+            YQ = None
+            for quantile in Qtls:
+                if not (0. <= quantile <= 1.): continue
+                indice = int(nech * quantile - 1./nech)
+                if YQ is None: YQ = YfQ[:,indice]
+                else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
+            self.StoredVariables["SimulationQuantiles"].store( YQ )
+        if "SimulatedObservationAtBackground" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
+        if "SimulatedObservationAtOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
         #
-        logging.debug("%s Taille mémoire utilisée de %.1f Mo"%(self._name, m.getUsedMemory("M")))
-        logging.debug("%s Terminé"%self._name)
-        #
+        self._post_run(HO)
         return 0
 
 # ==============================================================================