Salome HOME
Documentation and reporting improvements
[modules/adao.git] / src / daComposant / daAlgorithms / ExtendedBlue.py
index 4752f141f9a144bf3d5d871c4f8bdd502f591807..5b1deee66f60ae0b436244e4c70ff1fc8ae2aa05 100644 (file)
@@ -1,6 +1,6 @@
-#-*-coding:iso-8859-1-*-
+# -*- coding: utf-8 -*-
 #
-# Copyright (C) 2008-2017 EDF R&D
+# Copyright (C) 2008-2021 EDF R&D
 #
 # This library is free software; you can redistribute it and/or
 # modify it under the terms of the GNU Lesser General Public
@@ -21,7 +21,7 @@
 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
 
 import logging
-from daCore import BasicObjects
+from daCore import BasicObjects, NumericObjects
 import numpy
 
 # ==============================================================================
@@ -32,14 +32,41 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             name     = "StoreInternalVariables",
             default  = False,
             typecast = bool,
-            message  = "Stockage des variables internes ou intermédiaires du calcul",
+            message  = "Stockage des variables internes ou intermédiaires du calcul",
             )
         self.defineRequiredParameter(
             name     = "StoreSupplementaryCalculations",
             default  = [],
             typecast = tuple,
-            message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
-            listval  = ["APosterioriCorrelations", "APosterioriCovariance", "APosterioriStandardDeviations", "APosterioriVariances", "BMA", "OMA", "OMB", "CurrentState", "CostFunctionJ", "CostFunctionJb", "CostFunctionJo", "Innovation", "SigmaBck2", "SigmaObs2", "MahalanobisConsistency", "SimulationQuantiles", "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentState", "SimulatedObservationAtOptimum"]
+            message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
+            listval  = [
+                "Analysis",
+                "APosterioriCorrelations",
+                "APosterioriCovariance",
+                "APosterioriStandardDeviations",
+                "APosterioriVariances",
+                "BMA",
+                "CostFunctionJ",
+                "CostFunctionJAtCurrentOptimum",
+                "CostFunctionJb",
+                "CostFunctionJbAtCurrentOptimum",
+                "CostFunctionJo",
+                "CostFunctionJoAtCurrentOptimum",
+                "CurrentOptimum",
+                "CurrentState",
+                "Innovation",
+                "MahalanobisConsistency",
+                "OMA",
+                "OMB",
+                "SampledStateForQuantiles",
+                "SigmaBck2",
+                "SigmaObs2",
+                "SimulatedObservationAtBackground",
+                "SimulatedObservationAtCurrentOptimum",
+                "SimulatedObservationAtCurrentState",
+                "SimulatedObservationAtOptimum",
+                "SimulationQuantiles",
+                ]
             )
         self.defineRequiredParameter(
             name     = "Quantiles",
@@ -52,25 +79,37 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         self.defineRequiredParameter(
             name     = "SetSeed",
             typecast = numpy.random.seed,
-            message  = "Graine fixée pour le générateur aléatoire",
+            message  = "Graine fixée pour le générateur aléatoire",
             )
         self.defineRequiredParameter(
             name     = "NumberOfSamplesForQuantiles",
             default  = 100,
             typecast = int,
-            message  = "Nombre d'échantillons simulés pour le calcul des quantiles",
+            message  = "Nombre d'échantillons simulés pour le calcul des quantiles",
             minval   = 1,
             )
         self.defineRequiredParameter(
             name     = "SimulationForQuantiles",
             default  = "Linear",
             typecast = str,
-            message  = "Type de simulation pour l'estimation des quantiles",
+            message  = "Type de simulation en estimation des quantiles",
             listval  = ["Linear", "NonLinear"]
             )
+        self.defineRequiredParameter( # Pas de type
+            name     = "StateBoundsForQuantiles",
+            message  = "Liste des paires de bornes pour les états utilisés en estimation des quantiles",
+            )
+        self.requireInputArguments(
+            mandatory= ("Xb", "Y", "HO", "R", "B"),
+            )
+        self.setAttributes(tags=(
+            "DataAssimilation",
+            "NonLinear",
+            "Filter",
+            ))
 
     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
-        self._pre_run(Parameters)
+        self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
         #
         Hm = HO["Tangent"].asMatrix(Xb)
         Hm = Hm.reshape(Y.size,Xb.size) # ADAO & check shape
@@ -78,67 +117,75 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         Ha = Ha.reshape(Xb.size,Y.size) # ADAO & check shape
         H  = HO["Direct"].appliedTo
         #
-        # Utilisation éventuelle d'un vecteur H(Xb) précalculé
+        # Utilisation éventuelle d'un vecteur H(Xb) précalculé
         # ----------------------------------------------------
-        if HO["AppliedToX"] is not None and "HXb" in HO["AppliedToX"]:
-            HXb = H( Xb, HO["AppliedToX"]["HXb"])
+        if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
+            HXb = H( Xb, HO["AppliedInX"]["HXb"])
         else:
             HXb = H( Xb )
         HXb = numpy.asmatrix(numpy.ravel( HXb )).T
+        if Y.size != HXb.size:
+            raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
+        if max(Y.shape) != max(HXb.shape):
+            raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
         #
-        # Précalcul des inversions de B et R
+        # Précalcul des inversions de B et R
         # ----------------------------------
         BI = B.getI()
         RI = R.getI()
         #
         # Calcul de l'innovation
         # ----------------------
-        if Y.size != HXb.size:
-            raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
-        if max(Y.shape) != max(HXb.shape):
-            raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
         d  = Y - HXb
         #
         # Calcul de la matrice de gain et de l'analyse
         # --------------------------------------------
         if Y.size <= Xb.size:
-            _A = R + Hm * B * Ha
+            _A = R + numpy.dot(Hm, B * Ha)
             _u = numpy.linalg.solve( _A , d )
             Xa = Xb + B * Ha * _u
         else:
-            _A = BI + Ha * RI * Hm
-            _u = numpy.linalg.solve( _A , Ha * RI * d )
+            _A = BI + numpy.dot(Ha, RI * Hm)
+            _u = numpy.linalg.solve( _A , numpy.dot(Ha, RI * d) )
             Xa = Xb + _u
         self.StoredVariables["Analysis"].store( Xa.A1 )
         #
-        # Calcul de la fonction coût
+        # Calcul de la fonction coût
         # --------------------------
         if self._parameters["StoreInternalVariables"] or \
-           "CostFunctionJ"                      in self._parameters["StoreSupplementaryCalculations"] or \
-           "OMA"                                in self._parameters["StoreSupplementaryCalculations"] or \
-           "SigmaObs2"                          in self._parameters["StoreSupplementaryCalculations"] or \
-           "MahalanobisConsistency"             in self._parameters["StoreSupplementaryCalculations"] or \
-           "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"] or \
-           "SimulatedObservationAtOptimum"      in self._parameters["StoreSupplementaryCalculations"] or \
-           "SimulationQuantiles"                in self._parameters["StoreSupplementaryCalculations"]:
+            self._toStore("CostFunctionJ")  or self._toStore("CostFunctionJAtCurrentOptimum") or \
+            self._toStore("CostFunctionJb") or self._toStore("CostFunctionJbAtCurrentOptimum") or \
+            self._toStore("CostFunctionJo") or self._toStore("CostFunctionJoAtCurrentOptimum") or \
+            self._toStore("OMA") or \
+            self._toStore("SigmaObs2") or \
+            self._toStore("MahalanobisConsistency") or \
+            self._toStore("SimulatedObservationAtCurrentOptimum") or \
+            self._toStore("SimulatedObservationAtCurrentState") or \
+            self._toStore("SimulatedObservationAtOptimum") or \
+            self._toStore("SimulationQuantiles"):
             HXa  = numpy.matrix(numpy.ravel( H( Xa ) )).T
             oma = Y - HXa
         if self._parameters["StoreInternalVariables"] or \
-           "CostFunctionJ"                 in self._parameters["StoreSupplementaryCalculations"] or \
-           "MahalanobisConsistency"        in self._parameters["StoreSupplementaryCalculations"]:
+            self._toStore("CostFunctionJ")  or self._toStore("CostFunctionJAtCurrentOptimum") or \
+            self._toStore("CostFunctionJb") or self._toStore("CostFunctionJbAtCurrentOptimum") or \
+            self._toStore("CostFunctionJo") or self._toStore("CostFunctionJoAtCurrentOptimum") or \
+            self._toStore("MahalanobisConsistency"):
             Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
             Jo  = float( 0.5 * oma.T * RI * oma )
             J   = Jb + Jo
             self.StoredVariables["CostFunctionJb"].store( Jb )
             self.StoredVariables["CostFunctionJo"].store( Jo )
             self.StoredVariables["CostFunctionJ" ].store( J )
+            self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( Jb )
+            self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( Jo )
+            self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( J )
         #
         # Calcul de la covariance d'analyse
         # ---------------------------------
-        if "APosterioriCovariance" in self._parameters["StoreSupplementaryCalculations"] or \
-           "SimulationQuantiles"   in self._parameters["StoreSupplementaryCalculations"]:
-            if   (Y.size <= Xb.size): K  = B * Ha * (R + Hm * B * Ha).I
-            elif (Y.size >  Xb.size): K = (BI + Ha * RI * Hm).I * Ha * RI
+        if self._toStore("APosterioriCovariance") or \
+            self._toStore("SimulationQuantiles"):
+            if   (Y.size <= Xb.size): K  = B * Ha * (R + numpy.dot(Hm, B * Ha)).I
+            elif (Y.size >  Xb.size): K = (BI + numpy.dot(Ha, RI * Hm)).I * Ha * RI
             A = B - K * Hm * B
             if min(A.shape) != max(A.shape):
                 raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(self._name,str(A.shape)))
@@ -151,56 +198,38 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
                     raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(self._name,))
             self.StoredVariables["APosterioriCovariance"].store( A )
         #
-        # Calculs et/ou stockages supplémentaires
+        # Calculs et/ou stockages supplémentaires
         # ---------------------------------------
-        if self._parameters["StoreInternalVariables"] or "CurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
             self.StoredVariables["CurrentState"].store( numpy.ravel(Xa) )
-        if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("CurrentOptimum"):
+            self.StoredVariables["CurrentOptimum"].store( numpy.ravel(Xa) )
+        if self._toStore("Innovation"):
             self.StoredVariables["Innovation"].store( numpy.ravel(d) )
-        if "BMA" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("BMA"):
             self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
-        if "OMA" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("OMA"):
             self.StoredVariables["OMA"].store( numpy.ravel(oma) )
-        if "OMB" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("OMB"):
             self.StoredVariables["OMB"].store( numpy.ravel(d) )
-        if "SigmaObs2" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("SigmaObs2"):
             TraceR = R.trace(Y.size)
             self.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(oma)).T)) ) / TraceR )
-        if "SigmaBck2" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("SigmaBck2"):
             self.StoredVariables["SigmaBck2"].store( float( (d.T * Hm * (Xa - Xb))/(Hm * B * Hm.T).trace() ) )
-        if "MahalanobisConsistency" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("MahalanobisConsistency"):
             self.StoredVariables["MahalanobisConsistency"].store( float( 2.*J/d.size ) )
-        if "SimulationQuantiles" in self._parameters["StoreSupplementaryCalculations"]:
-            Qtls = map(float, self._parameters["Quantiles"])
-            nech = self._parameters["NumberOfSamplesForQuantiles"]
+        if self._toStore("SimulationQuantiles"):
             HtM  = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
             HtM  = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
-            YfQ  = None
-            for i in range(nech):
-                if self._parameters["SimulationForQuantiles"] == "Linear":
-                    dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
-                    dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
-                    Yr = HXa + dYr
-                elif self._parameters["SimulationForQuantiles"] == "NonLinear":
-                    Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
-                    Yr = numpy.matrix(numpy.ravel( H( Xr ) )).T
-                if YfQ is None:
-                    YfQ = Yr
-                else:
-                    YfQ = numpy.hstack((YfQ,Yr))
-            YfQ.sort(axis=-1)
-            YQ = None
-            for quantile in Qtls:
-                if not (0. <= quantile <= 1.): continue
-                indice = int(nech * quantile - 1./nech)
-                if YQ is None: YQ = YfQ[:,indice]
-                else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
-            self.StoredVariables["SimulationQuantiles"].store( YQ )
-        if "SimulatedObservationAtBackground" in self._parameters["StoreSupplementaryCalculations"]:
+            NumericObjects.QuantilesEstimations(self, A, Xa, HXa, H, HtM)
+        if self._toStore("SimulatedObservationAtBackground"):
             self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
-        if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("SimulatedObservationAtCurrentState"):
             self.StoredVariables["SimulatedObservationAtCurrentState"].store( numpy.ravel(HXa) )
-        if "SimulatedObservationAtOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("SimulatedObservationAtCurrentOptimum"):
+            self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( numpy.ravel(HXa) )
+        if self._toStore("SimulatedObservationAtOptimum"):
             self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
         #
         self._post_run(HO)
@@ -208,4 +237,4 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
 
 # ==============================================================================
 if __name__ == "__main__":
-    print('\n AUTODIAGNOSTIC \n')
+    print('\n AUTODIAGNOSTIC\n')