Salome HOME
Documentation and reporting improvements
[modules/adao.git] / src / daComposant / daAlgorithms / DerivativeFreeOptimization.py
index 19812760b7d12be22b80174ccfe196b2b21a0672..78e2a3068b523be0d209d628dc0ec5e656ce6547 100644 (file)
@@ -1,6 +1,6 @@
-#-*-coding:iso-8859-1-*-
+# -*- coding: utf-8 -*-
 #
-# Copyright (C) 2008-2016 EDF R&D
+# Copyright (C) 2008-2021 EDF R&D
 #
 # This library is free software; you can redistribute it and/or
 # modify it under the terms of the GNU Lesser General Public
@@ -21,7 +21,7 @@
 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
 
 import logging
-from daCore import BasicObjects
+from daCore import BasicObjects, PlatformInfo
 import numpy, scipy.optimize
 
 # ==============================================================================
@@ -30,10 +30,17 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         BasicObjects.Algorithm.__init__(self, "DERIVATIVEFREEOPTIMIZATION")
         self.defineRequiredParameter(
             name     = "Minimizer",
-            default  = "POWELL",
+            default  = "BOBYQA",
             typecast = str,
-            message  = "Minimiseur utilisé",
-            listval  = ["POWELL", "SIMPLEX"],
+            message  = "Minimiseur utilisé",
+            listval  = [
+                "BOBYQA",
+                "COBYLA",
+                "NEWUOA",
+                "POWELL",
+                "SIMPLEX",
+                "SUBPLEX",
+                ],
             )
         self.defineRequiredParameter(
             name     = "MaximumNumberOfSteps",
@@ -46,26 +53,26 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             name     = "MaximumNumberOfFunctionEvaluations",
             default  = 15000,
             typecast = int,
-            message  = "Nombre maximal de d'évaluations de la function",
+            message  = "Nombre maximal d'évaluations de la fonction",
             minval   = -1,
             )
         self.defineRequiredParameter(
             name     = "StateVariationTolerance",
             default  = 1.e-4,
             typecast = float,
-            message  = "Variation relative maximale de l'état lors de l'arrêt",
+            message  = "Variation relative maximale de l'état lors de l'arrêt",
             )
         self.defineRequiredParameter(
             name     = "CostDecrementTolerance",
             default  = 1.e-7,
             typecast = float,
-            message  = "Diminution relative minimale du cout lors de l'arrêt",
+            message  = "Diminution relative minimale du cout lors de l'arrêt",
             )
         self.defineRequiredParameter(
             name     = "QualityCriterion",
             default  = "AugmentedWeightedLeastSquares",
             typecast = str,
-            message  = "Critère de qualité utilisé",
+            message  = "Critère de qualité utilisé",
             listval  = ["AugmentedWeightedLeastSquares","AWLS","DA",
                         "WeightedLeastSquares","WLS",
                         "LeastSquares","LS","L2",
@@ -76,37 +83,66 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             name     = "StoreInternalVariables",
             default  = False,
             typecast = bool,
-            message  = "Stockage des variables internes ou intermédiaires du calcul",
+            message  = "Stockage des variables internes ou intermédiaires du calcul",
             )
         self.defineRequiredParameter(
             name     = "StoreSupplementaryCalculations",
             default  = [],
             typecast = tuple,
-            message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
-            listval  = ["CurrentState", "CostFunctionJ", "CostFunctionJAtCurrentOptimum", "CurrentOptimum", "IndexOfOptimum", "InnovationAtCurrentState", "BMA", "OMA", "OMB", "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentOptimum", "SimulatedObservationAtCurrentState", "SimulatedObservationAtOptimum"]
+            message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
+            listval  = [
+                "Analysis",
+                "BMA",
+                "CostFunctionJ",
+                "CostFunctionJb",
+                "CostFunctionJo",
+                "CostFunctionJAtCurrentOptimum",
+                "CostFunctionJbAtCurrentOptimum",
+                "CostFunctionJoAtCurrentOptimum",
+                "CurrentIterationNumber",
+                "CurrentOptimum",
+                "CurrentState",
+                "IndexOfOptimum",
+                "Innovation",
+                "InnovationAtCurrentState",
+                "OMA",
+                "OMB",
+                "SimulatedObservationAtBackground",
+                "SimulatedObservationAtCurrentOptimum",
+                "SimulatedObservationAtCurrentState",
+                "SimulatedObservationAtOptimum",
+                ]
             )
+        self.defineRequiredParameter( # Pas de type
+            name     = "Bounds",
+            message  = "Liste des valeurs de bornes",
+            )
+        self.requireInputArguments(
+            mandatory= ("Xb", "Y", "HO", "R", "B" ),
+            )
+        self.setAttributes(tags=(
+            "Optimization",
+            "NonLinear",
+            "MetaHeuristic",
+            ))
 
     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
-        self._pre_run()
-        if logging.getLogger().level < logging.WARNING:
-            self.__disp = 1
-        else:
-            self.__disp = 0
+        self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
         #
-        # Paramètres de pilotage
-        # ----------------------
-        self.setParameters(Parameters)
+        if not PlatformInfo.has_nlopt and not self._parameters["Minimizer"] in ["COBYLA", "POWELL", "SIMPLEX"]:
+            logging.warning("%s Minimization by SIMPLEX is forced because %s is unavailable (COBYLA, POWELL are also available)"%(self._name,self._parameters["Minimizer"]))
+            self._parameters["Minimizer"] = "SIMPLEX"
         #
-        # Opérateurs
+        # Opérateurs
         # ----------
         Hm = HO["Direct"].appliedTo
         #
-        # Précalcul des inversions de B et R
+        # Précalcul des inversions de B et R
         # ----------------------------------
         BI = B.getI()
         RI = R.getI()
         #
-        # Définition de la fonction-coût
+        # Définition de la fonction-coût
         # ------------------------------
         def CostFunction(x, QualityMeasure="AugmentedWeightedLeastSquares"):
             _X  = numpy.asmatrix(numpy.ravel( x )).T
@@ -114,10 +150,10 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             _HX = Hm( _X )
             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
             _Innovation = Y - _HX
-            if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"] or \
-               "SimulatedObservationAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            if self._toStore("SimulatedObservationAtCurrentState") or \
+                self._toStore("SimulatedObservationAtCurrentOptimum"):
                 self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
-            if "InnovationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+            if self._toStore("InnovationAtCurrentState"):
                 self.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
             #
             if QualityMeasure in ["AugmentedWeightedLeastSquares","AWLS","DA"]:
@@ -142,29 +178,36 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             #
             J   = float( Jb ) + float( Jo )
             #
+            self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
             self.StoredVariables["CostFunctionJb"].store( Jb )
             self.StoredVariables["CostFunctionJo"].store( Jo )
             self.StoredVariables["CostFunctionJ" ].store( J )
-            if "IndexOfOptimum" in self._parameters["StoreSupplementaryCalculations"] or \
-               "CurrentOptimum" in self._parameters["StoreSupplementaryCalculations"] or \
-               "CostFunctionJAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"] or \
-               "SimulatedObservationAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            if self._toStore("IndexOfOptimum") or \
+                self._toStore("CurrentOptimum") or \
+                self._toStore("CostFunctionJAtCurrentOptimum") or \
+                self._toStore("CostFunctionJbAtCurrentOptimum") or \
+                self._toStore("CostFunctionJoAtCurrentOptimum") or \
+                self._toStore("SimulatedObservationAtCurrentOptimum"):
                 IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-            if "IndexOfOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            if self._toStore("IndexOfOptimum"):
                 self.StoredVariables["IndexOfOptimum"].store( IndexMin )
-            if "CurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            if self._toStore("CurrentOptimum"):
                 self.StoredVariables["CurrentOptimum"].store( self.StoredVariables["CurrentState"][IndexMin] )
-            if "SimulatedObservationAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            if self._toStore("SimulatedObservationAtCurrentOptimum"):
                 self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
-            if "CostFunctionJAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            if self._toStore("CostFunctionJAtCurrentOptimum"):
+                self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
+            if self._toStore("CostFunctionJbAtCurrentOptimum"):
                 self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJb"][IndexMin] )
+            if self._toStore("CostFunctionJoAtCurrentOptimum"):
                 self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJo"][IndexMin] )
-                self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
             return J
         #
-        # Point de démarrage de l'optimisation : Xini = Xb
+        # Point de démarrage de l'optimisation : Xini = Xb
         # ------------------------------------
         Xini = numpy.ravel(Xb)
+        if len(Xini) < 2 and self._parameters["Minimizer"] == "NEWUOA":
+            raise ValueError("The minimizer %s can not be used when the optimisation state dimension is 1. Please choose another minimizer."%self._parameters["Minimizer"])
         #
         # Minimisation de la fonctionnelle
         # --------------------------------
@@ -176,24 +219,166 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
                 x0          = Xini,
                 args        = (self._parameters["QualityCriterion"],),
                 maxiter     = self._parameters["MaximumNumberOfSteps"]-1,
-                maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"]-1,
+                maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"],
                 xtol        = self._parameters["StateVariationTolerance"],
                 ftol        = self._parameters["CostDecrementTolerance"],
                 full_output = True,
-                disp        = self.__disp,
+                disp        = self._parameters["optdisp"],
                 )
-        elif self._parameters["Minimizer"] == "SIMPLEX":
+        elif self._parameters["Minimizer"] == "COBYLA" and not PlatformInfo.has_nlopt:
+            def make_constraints(bounds):
+                constraints = []
+                for (i,(a,b)) in enumerate(bounds):
+                    lower = lambda x: x[i] - a
+                    upper = lambda x: b - x[i]
+                    constraints = constraints + [lower] + [upper]
+                return constraints
+            if self._parameters["Bounds"] is None:
+                raise ValueError("Bounds have to be given for all axes as a list of lower/upper pairs!")
+            Minimum = scipy.optimize.fmin_cobyla(
+                func        = CostFunction,
+                x0          = Xini,
+                cons        = make_constraints( self._parameters["Bounds"] ),
+                args        = (self._parameters["QualityCriterion"],),
+                consargs    = (), # To avoid extra-args
+                maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"],
+                rhobeg      = 1.0,
+                rhoend      = self._parameters["StateVariationTolerance"],
+                catol       = 2.*self._parameters["StateVariationTolerance"],
+                disp        = self._parameters["optdisp"],
+                )
+        elif self._parameters["Minimizer"] == "COBYLA" and PlatformInfo.has_nlopt:
+            import nlopt
+            opt = nlopt.opt(nlopt.LN_COBYLA, Xini.size)
+            def _f(_Xx, Grad):
+                # DFO, so no gradient
+                return CostFunction(_Xx, self._parameters["QualityCriterion"])
+            opt.set_min_objective(_f)
+            if self._parameters["Bounds"] is not None:
+                lub = numpy.array(self._parameters["Bounds"],dtype=float).reshape((Xini.size,2))
+                lb = lub[:,0] ; lb[numpy.isnan(lb)] = -float('inf')
+                ub = lub[:,1] ; ub[numpy.isnan(ub)] = +float('inf')
+                if self._parameters["optdisp"]:
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                opt.set_upper_bounds(ub)
+                opt.set_lower_bounds(lb)
+            opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
+            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
+            Minimum = opt.optimize( Xini )
+            if self._parameters["optdisp"]:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
+        elif self._parameters["Minimizer"] == "SIMPLEX" and not PlatformInfo.has_nlopt:
             Minimum, J_optimal, niter, nfeval, rc = scipy.optimize.fmin(
                 func        = CostFunction,
                 x0          = Xini,
                 args        = (self._parameters["QualityCriterion"],),
                 maxiter     = self._parameters["MaximumNumberOfSteps"]-1,
-                maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"]-1,
+                maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"],
                 xtol        = self._parameters["StateVariationTolerance"],
                 ftol        = self._parameters["CostDecrementTolerance"],
                 full_output = True,
-                disp        = self.__disp,
+                disp        = self._parameters["optdisp"],
                 )
+        elif self._parameters["Minimizer"] == "SIMPLEX" and PlatformInfo.has_nlopt:
+            import nlopt
+            opt = nlopt.opt(nlopt.LN_NELDERMEAD, Xini.size)
+            def _f(_Xx, Grad):
+                # DFO, so no gradient
+                return CostFunction(_Xx, self._parameters["QualityCriterion"])
+            opt.set_min_objective(_f)
+            if self._parameters["Bounds"] is not None:
+                lub = numpy.array(self._parameters["Bounds"],dtype=float).reshape((Xini.size,2))
+                lb = lub[:,0] ; lb[numpy.isnan(lb)] = -float('inf')
+                ub = lub[:,1] ; ub[numpy.isnan(ub)] = +float('inf')
+                if self._parameters["optdisp"]:
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                opt.set_upper_bounds(ub)
+                opt.set_lower_bounds(lb)
+            opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
+            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
+            Minimum = opt.optimize( Xini )
+            if self._parameters["optdisp"]:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
+        elif self._parameters["Minimizer"] == "BOBYQA" and PlatformInfo.has_nlopt:
+            import nlopt
+            opt = nlopt.opt(nlopt.LN_BOBYQA, Xini.size)
+            def _f(_Xx, Grad):
+                # DFO, so no gradient
+                return CostFunction(_Xx, self._parameters["QualityCriterion"])
+            opt.set_min_objective(_f)
+            if self._parameters["Bounds"] is not None:
+                lub = numpy.array(self._parameters["Bounds"],dtype=float).reshape((Xini.size,2))
+                lb = lub[:,0] ; lb[numpy.isnan(lb)] = -float('inf')
+                ub = lub[:,1] ; ub[numpy.isnan(ub)] = +float('inf')
+                if self._parameters["optdisp"]:
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                opt.set_upper_bounds(ub)
+                opt.set_lower_bounds(lb)
+            opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
+            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
+            Minimum = opt.optimize( Xini )
+            if self._parameters["optdisp"]:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
+        elif self._parameters["Minimizer"] == "NEWUOA" and PlatformInfo.has_nlopt:
+            import nlopt
+            opt = nlopt.opt(nlopt.LN_NEWUOA, Xini.size)
+            def _f(_Xx, Grad):
+                # DFO, so no gradient
+                return CostFunction(_Xx, self._parameters["QualityCriterion"])
+            opt.set_min_objective(_f)
+            if self._parameters["Bounds"] is not None:
+                lub = numpy.array(self._parameters["Bounds"],dtype=float).reshape((Xini.size,2))
+                lb = lub[:,0] ; lb[numpy.isnan(lb)] = -float('inf')
+                ub = lub[:,1] ; ub[numpy.isnan(ub)] = +float('inf')
+                if self._parameters["optdisp"]:
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                opt.set_upper_bounds(ub)
+                opt.set_lower_bounds(lb)
+            opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
+            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
+            Minimum = opt.optimize( Xini )
+            if self._parameters["optdisp"]:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
+        elif self._parameters["Minimizer"] == "SUBPLEX" and PlatformInfo.has_nlopt:
+            import nlopt
+            opt = nlopt.opt(nlopt.LN_SBPLX, Xini.size)
+            def _f(_Xx, Grad):
+                # DFO, so no gradient
+                return CostFunction(_Xx, self._parameters["QualityCriterion"])
+            opt.set_min_objective(_f)
+            if self._parameters["Bounds"] is not None:
+                lub = numpy.array(self._parameters["Bounds"],dtype=float).reshape((Xini.size,2))
+                lb = lub[:,0] ; lb[numpy.isnan(lb)] = -float('inf')
+                ub = lub[:,1] ; ub[numpy.isnan(ub)] = +float('inf')
+                if self._parameters["optdisp"]:
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                opt.set_upper_bounds(ub)
+                opt.set_lower_bounds(lb)
+            opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
+            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
+            Minimum = opt.optimize( Xini )
+            if self._parameters["optdisp"]:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
         else:
             raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"])
         #
@@ -207,26 +392,30 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         #
         self.StoredVariables["Analysis"].store( Xa.A1 )
         #
-        if "OMA"                           in self._parameters["StoreSupplementaryCalculations"] or \
-           "SimulatedObservationAtOptimum" in self._parameters["StoreSupplementaryCalculations"]:
-            if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+        # Calculs et/ou stockages supplémentaires
+        # ---------------------------------------
+        if self._toStore("OMA" ) or \
+            self._toStore("SimulatedObservationAtOptimum"):
+            if self._toStore("SimulatedObservationAtCurrentState"):
                 HXa = self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
-            elif "SimulatedObservationAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            elif self._toStore("SimulatedObservationAtCurrentOptimum"):
                 HXa = self.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
             else:
                 HXa = Hm(Xa)
-        #
-        if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("Innovation") or \
+            self._toStore("OMB"):
+            d  = Y - HXb
+        if self._toStore("Innovation"):
             self.StoredVariables["Innovation"].store( numpy.ravel(d) )
-        if "OMB" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("OMB"):
             self.StoredVariables["OMB"].store( numpy.ravel(d) )
-        if "BMA" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("BMA"):
             self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
-        if "OMA" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("OMA"):
             self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
-        if "SimulatedObservationAtBackground" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("SimulatedObservationAtBackground"):
             self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(Hm(Xb)) )
-        if "SimulatedObservationAtOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+        if self._toStore("SimulatedObservationAtOptimum"):
             self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
         #
         self._post_run()
@@ -234,4 +423,4 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
 
 # ==============================================================================
 if __name__ == "__main__":
-    print '\n AUTODIAGNOSTIC \n'
+    print('\n AUTODIAGNOSTIC\n')