Salome HOME
Minor source update for OM compatibility
[modules/adao.git] / src / daComposant / daAlgorithms / DerivativeFreeOptimization.py
index e9d9a5f0a33f4e2f491183f866ae77d6ea4ce4c6..5f34955be8c3eea1905363b7e7a61eb1cc40b40b 100644 (file)
@@ -1,6 +1,6 @@
-#-*-coding:iso-8859-1-*-
+# -*- coding: utf-8 -*-
 #
-# Copyright (C) 2008-2017 EDF R&D
+# Copyright (C) 2008-2024 EDF R&D
 #
 # This library is free software; you can redistribute it and/or
 # modify it under the terms of the GNU Lesser General Public
 #
 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
 
-import logging
+import numpy, logging, scipy.optimize
 from daCore import BasicObjects, PlatformInfo
-import numpy, scipy.optimize
+from daCore.NumericObjects import ApplyBounds, ForceNumericBounds
+from daCore.PlatformInfo import vfloat
+lpi = PlatformInfo.PlatformInfo()
 
 # ==============================================================================
 class ElementaryAlgorithm(BasicObjects.Algorithm):
@@ -32,140 +34,195 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             name     = "Minimizer",
             default  = "BOBYQA",
             typecast = str,
-            message  = "Minimiseur utilisé",
-            listval  = ["BOBYQA", "COBYLA", "NEWUOA", "POWELL", "SIMPLEX", "SUBPLEX"],
-            )
+            message  = "Minimiseur utilisé",
+            listval  = [
+                "BOBYQA",
+                "COBYLA",
+                "NEWUOA",
+                "POWELL",
+                "SIMPLEX",
+                "SUBPLEX",
+            ],
+        )
         self.defineRequiredParameter(
-            name     = "MaximumNumberOfSteps",
+            name     = "MaximumNumberOfIterations",
             default  = 15000,
             typecast = int,
             message  = "Nombre maximal de pas d'optimisation",
             minval   = -1,
-            )
+            oldname  = "MaximumNumberOfSteps",
+        )
         self.defineRequiredParameter(
             name     = "MaximumNumberOfFunctionEvaluations",
             default  = 15000,
             typecast = int,
-            message  = "Nombre maximal d'évaluations de la fonction",
+            message  = "Nombre maximal d'évaluations de la fonction",
             minval   = -1,
-            )
+        )
         self.defineRequiredParameter(
             name     = "StateVariationTolerance",
             default  = 1.e-4,
             typecast = float,
-            message  = "Variation relative maximale de l'état lors de l'arrêt",
-            )
+            message  = "Variation relative maximale de l'état lors de l'arrêt",
+        )
         self.defineRequiredParameter(
             name     = "CostDecrementTolerance",
             default  = 1.e-7,
             typecast = float,
-            message  = "Diminution relative minimale du cout lors de l'arrêt",
-            )
+            message  = "Diminution relative minimale du cout lors de l'arrêt",
+        )
         self.defineRequiredParameter(
             name     = "QualityCriterion",
             default  = "AugmentedWeightedLeastSquares",
             typecast = str,
-            message  = "Critère de qualité utilisé",
-            listval  = ["AugmentedWeightedLeastSquares","AWLS","DA",
-                        "WeightedLeastSquares","WLS",
-                        "LeastSquares","LS","L2",
-                        "AbsoluteValue","L1",
-                        "MaximumError","ME"],
-            )
+            message  = "Critère de qualité utilisé",
+            listval  = [
+                "AugmentedWeightedLeastSquares", "AWLS", "DA",
+                "WeightedLeastSquares", "WLS",
+                "LeastSquares", "LS", "L2",
+                "AbsoluteValue", "L1",
+                "MaximumError", "ME", "Linf",
+            ],
+        )
         self.defineRequiredParameter(
             name     = "StoreInternalVariables",
             default  = False,
             typecast = bool,
-            message  = "Stockage des variables internes ou intermédiaires du calcul",
-            )
+            message  = "Stockage des variables internes ou intermédiaires du calcul",
+        )
         self.defineRequiredParameter(
             name     = "StoreSupplementaryCalculations",
             default  = [],
             typecast = tuple,
-            message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
-            listval  = ["CurrentState", "CostFunctionJ", "CostFunctionJb", "CostFunctionJo", "CostFunctionJAtCurrentOptimum", "CurrentOptimum", "IndexOfOptimum", "InnovationAtCurrentState", "BMA", "OMA", "OMB", "SimulatedObservationAtBackground", "SimulatedObservationAtCurrentOptimum", "SimulatedObservationAtCurrentState", "SimulatedObservationAtOptimum"]
-            )
-        self.defineRequiredParameter( # Pas de type
+            message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
+            listval  = [
+                "Analysis",
+                "BMA",
+                "CostFunctionJ",
+                "CostFunctionJb",
+                "CostFunctionJo",
+                "CostFunctionJAtCurrentOptimum",
+                "CostFunctionJbAtCurrentOptimum",
+                "CostFunctionJoAtCurrentOptimum",
+                "CurrentIterationNumber",
+                "CurrentOptimum",
+                "CurrentState",
+                "IndexOfOptimum",
+                "Innovation",
+                "InnovationAtCurrentState",
+                "OMA",
+                "OMB",
+                "SimulatedObservationAtBackground",
+                "SimulatedObservationAtCurrentOptimum",
+                "SimulatedObservationAtCurrentState",
+                "SimulatedObservationAtOptimum",
+            ]
+        )
+        self.defineRequiredParameter(  # Pas de type
             name     = "Bounds",
             message  = "Liste des valeurs de bornes",
-            )
+        )
+        self.requireInputArguments(
+            mandatory= ("Xb", "Y", "HO", "R", "B"),
+        )
+        self.setAttributes(
+            tags=(
+                "Optimization",
+                "NonLinear",
+                "MetaHeuristic",
+            ),
+            features=(
+                "NonLocalOptimization",
+                "DerivativeFree",
+                "ParallelFree",
+                "ConvergenceOnBoth",
+            ),
+        )
 
     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
-        self._pre_run(Parameters)
+        self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
         #
-        if not PlatformInfo.has_nlopt and not self._parameters["Minimizer"] in ["COBYLA", "POWELL", "SIMPLEX"]:
+        if not lpi.has_nlopt and not self._parameters["Minimizer"] in ["COBYLA", "POWELL", "SIMPLEX"]:
+            logging.warning(
+                "%s Minimization by SIMPLEX is forced because %s "%(self._name, self._parameters["Minimizer"]) + \
+                "is unavailable (COBYLA, POWELL are also available)")
             self._parameters["Minimizer"] = "SIMPLEX"
         #
-        # Opérateurs
-        # ----------
         Hm = HO["Direct"].appliedTo
         #
-        # Précalcul des inversions de B et R
-        # ----------------------------------
         BI = B.getI()
         RI = R.getI()
-        #
-        # Définition de la fonction-coût
-        # ------------------------------
+
         def CostFunction(x, QualityMeasure="AugmentedWeightedLeastSquares"):
-            _X  = numpy.asmatrix(numpy.ravel( x )).T
-            self.StoredVariables["CurrentState"].store( _X )
-            _HX = Hm( _X )
-            _HX = numpy.asmatrix(numpy.ravel( _HX )).T
+            _X  = numpy.ravel( x ).reshape((-1, 1))
+            _HX = numpy.ravel( Hm( _X ) ).reshape((-1, 1))
             _Innovation = Y - _HX
-            if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"] or \
-               "SimulatedObservationAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            self.StoredVariables["CurrentState"].store( _X )
+            if self._toStore("SimulatedObservationAtCurrentState") or \
+                    self._toStore("SimulatedObservationAtCurrentOptimum"):
                 self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
-            if "InnovationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+            if self._toStore("InnovationAtCurrentState"):
                 self.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
             #
-            if QualityMeasure in ["AugmentedWeightedLeastSquares","AWLS","DA"]:
+            if QualityMeasure in ["AugmentedWeightedLeastSquares", "AWLS", "DA"]:
                 if BI is None or RI is None:
-                    raise ValueError("Background and Observation error covariance matrix has to be properly defined!")
-                Jb  = 0.5 * (_X - Xb).T * BI * (_X - Xb)
-                Jo  = 0.5 * (_Innovation).T * RI * (_Innovation)
-            elif QualityMeasure in ["WeightedLeastSquares","WLS"]:
+                    raise ValueError("Background and Observation error covariance matrices has to be properly defined!")
+                Jb  = vfloat(0.5 * (_X - Xb).T @ (BI @ (_X - Xb)))
+                Jo  = vfloat(0.5 * _Innovation.T @ (RI @ _Innovation))
+            elif QualityMeasure in ["WeightedLeastSquares", "WLS"]:
                 if RI is None:
                     raise ValueError("Observation error covariance matrix has to be properly defined!")
                 Jb  = 0.
-                Jo  = 0.5 * (_Innovation).T * RI * (_Innovation)
-            elif QualityMeasure in ["LeastSquares","LS","L2"]:
+                Jo  = vfloat(0.5 * _Innovation.T @ (RI @ _Innovation))
+            elif QualityMeasure in ["LeastSquares", "LS", "L2"]:
                 Jb  = 0.
-                Jo  = 0.5 * (_Innovation).T * (_Innovation)
-            elif QualityMeasure in ["AbsoluteValue","L1"]:
+                Jo  = vfloat(0.5 * _Innovation.T @ _Innovation)
+            elif QualityMeasure in ["AbsoluteValue", "L1"]:
                 Jb  = 0.
-                Jo  = numpy.sum( numpy.abs(_Innovation) )
-            elif QualityMeasure in ["MaximumError","ME"]:
+                Jo  = vfloat(numpy.sum( numpy.abs(_Innovation) ))
+            elif QualityMeasure in ["MaximumError", "ME", "Linf"]:
                 Jb  = 0.
-                Jo  = numpy.max( numpy.abs(_Innovation) )
+                Jo  = vfloat(numpy.max( numpy.abs(_Innovation) ))
             #
-            J   = float( Jb ) + float( Jo )
+            J   = Jb + Jo
             #
+            self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
             self.StoredVariables["CostFunctionJb"].store( Jb )
             self.StoredVariables["CostFunctionJo"].store( Jo )
             self.StoredVariables["CostFunctionJ" ].store( J )
-            if "IndexOfOptimum" in self._parameters["StoreSupplementaryCalculations"] or \
-               "CurrentOptimum" in self._parameters["StoreSupplementaryCalculations"] or \
-               "CostFunctionJAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"] or \
-               "SimulatedObservationAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            if self._toStore("IndexOfOptimum") or \
+                    self._toStore("CurrentOptimum") or \
+                    self._toStore("CostFunctionJAtCurrentOptimum") or \
+                    self._toStore("CostFunctionJbAtCurrentOptimum") or \
+                    self._toStore("CostFunctionJoAtCurrentOptimum") or \
+                    self._toStore("SimulatedObservationAtCurrentOptimum"):
                 IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-            if "IndexOfOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            if self._toStore("IndexOfOptimum"):
                 self.StoredVariables["IndexOfOptimum"].store( IndexMin )
-            if "CurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
-                self.StoredVariables["CurrentOptimum"].store( self.StoredVariables["CurrentState"][IndexMin] )
-            if "SimulatedObservationAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
-                self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
-            if "CostFunctionJAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
-                self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJb"][IndexMin] )
-                self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJo"][IndexMin] )
-                self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
+            if self._toStore("CurrentOptimum"):
+                self.StoredVariables["CurrentOptimum"].store(
+                    self.StoredVariables["CurrentState"][IndexMin] )
+            if self._toStore("SimulatedObservationAtCurrentOptimum"):
+                self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store(
+                    self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
+                )
+            if self._toStore("CostFunctionJAtCurrentOptimum"):
+                self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store(
+                    self.StoredVariables["CostFunctionJ" ][IndexMin] )
+            if self._toStore("CostFunctionJbAtCurrentOptimum"):
+                self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store(
+                    self.StoredVariables["CostFunctionJb"][IndexMin] )
+            if self._toStore("CostFunctionJoAtCurrentOptimum"):
+                self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store(
+                    self.StoredVariables["CostFunctionJo"][IndexMin] )
             return J
         #
-        # Point de démarrage de l'optimisation : Xini = Xb
-        # ------------------------------------
         Xini = numpy.ravel(Xb)
         if len(Xini) < 2 and self._parameters["Minimizer"] == "NEWUOA":
-            raise ValueError("The minimizer %s can not be used when the optimisation state dimension is 1. Please choose another minimizer."%self._parameters["Minimizer"])
+            raise ValueError(
+                "The minimizer %s "%self._parameters["Minimizer"] + \
+                "can not be used when the optimisation state dimension " + \
+                "is 1. Please choose another minimizer.")
         #
         # Minimisation de la fonctionnelle
         # --------------------------------
@@ -176,205 +233,228 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
                 func        = CostFunction,
                 x0          = Xini,
                 args        = (self._parameters["QualityCriterion"],),
-                maxiter     = self._parameters["MaximumNumberOfSteps"]-1,
+                maxiter     = self._parameters["MaximumNumberOfIterations"] - 1,
                 maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"],
                 xtol        = self._parameters["StateVariationTolerance"],
                 ftol        = self._parameters["CostDecrementTolerance"],
                 full_output = True,
                 disp        = self._parameters["optdisp"],
-                )
-        elif self._parameters["Minimizer"] == "COBYLA" and not PlatformInfo.has_nlopt:
+            )
+        elif self._parameters["Minimizer"] == "COBYLA" and not lpi.has_nlopt:
             def make_constraints(bounds):
                 constraints = []
-                for (i,(a,b)) in enumerate(bounds):
-                    lower = lambda x: x[i] - a
-                    upper = lambda x: b - x[i]
+                for (i, (a, b)) in enumerate(bounds):
+                    lower = lambda x: x[i] - a  # noqa: E731
+                    upper = lambda x: b - x[i]  # noqa: E731
                     constraints = constraints + [lower] + [upper]
                 return constraints
             if self._parameters["Bounds"] is None:
                 raise ValueError("Bounds have to be given for all axes as a list of lower/upper pairs!")
+            self._parameters["Bounds"] = ForceNumericBounds( self._parameters["Bounds"] )
+            Xini = ApplyBounds( Xini, self._parameters["Bounds"] )
             Minimum = scipy.optimize.fmin_cobyla(
                 func        = CostFunction,
                 x0          = Xini,
                 cons        = make_constraints( self._parameters["Bounds"] ),
                 args        = (self._parameters["QualityCriterion"],),
-                consargs    = (), # To avoid extra-args
+                consargs    = (),  # To avoid extra-args
                 maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"],
                 rhobeg      = 1.0,
                 rhoend      = self._parameters["StateVariationTolerance"],
-                catol       = 2.*self._parameters["StateVariationTolerance"],
+                catol       = 2. * self._parameters["StateVariationTolerance"],
                 disp        = self._parameters["optdisp"],
-                )
-        elif self._parameters["Minimizer"] == "COBYLA" and PlatformInfo.has_nlopt:
+            )
+        elif self._parameters["Minimizer"] == "COBYLA" and lpi.has_nlopt:
             import nlopt
             opt = nlopt.opt(nlopt.LN_COBYLA, Xini.size)
+
             def _f(_Xx, Grad):
                 # DFO, so no gradient
                 return CostFunction(_Xx, self._parameters["QualityCriterion"])
             opt.set_min_objective(_f)
+            self._parameters["Bounds"] = ForceNumericBounds( self._parameters["Bounds"] )
+            Xini = ApplyBounds( Xini, self._parameters["Bounds"] )
             if self._parameters["Bounds"] is not None:
-                lub = numpy.array(self._parameters["Bounds"],dtype=float).reshape((Xini.size,2))
-                lb = lub[:,0] ; lb[numpy.isnan(lb)] = -float('inf')
-                ub = lub[:,1] ; ub[numpy.isnan(ub)] = +float('inf')
+                lub = numpy.array(self._parameters["Bounds"], dtype=float).reshape((Xini.size, 2))
+                lb = lub[:, 0]; lb[numpy.isnan(lb)] = -float('inf')  # noqa: E702
+                ub = lub[:, 1]; ub[numpy.isnan(ub)] = +float('inf')  # noqa: E702
                 if self._parameters["optdisp"]:
-                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
-                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(), ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(), lb))
                 opt.set_upper_bounds(ub)
                 opt.set_lower_bounds(lb)
             opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
-            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_xtol_rel(2. * self._parameters["StateVariationTolerance"])
             opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
             Minimum = opt.optimize( Xini )
             if self._parameters["optdisp"]:
-                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
-                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
-                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
-        elif self._parameters["Minimizer"] == "SIMPLEX" and not PlatformInfo.has_nlopt:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(), Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(), opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(), opt.last_optimize_result()))
+        elif self._parameters["Minimizer"] == "SIMPLEX" and not lpi.has_nlopt:
             Minimum, J_optimal, niter, nfeval, rc = scipy.optimize.fmin(
                 func        = CostFunction,
                 x0          = Xini,
                 args        = (self._parameters["QualityCriterion"],),
-                maxiter     = self._parameters["MaximumNumberOfSteps"]-1,
+                maxiter     = self._parameters["MaximumNumberOfIterations"] - 1,
                 maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"],
                 xtol        = self._parameters["StateVariationTolerance"],
                 ftol        = self._parameters["CostDecrementTolerance"],
                 full_output = True,
                 disp        = self._parameters["optdisp"],
-                )
-        elif self._parameters["Minimizer"] == "SIMPLEX" and PlatformInfo.has_nlopt:
+            )
+        elif self._parameters["Minimizer"] == "SIMPLEX" and lpi.has_nlopt:
             import nlopt
             opt = nlopt.opt(nlopt.LN_NELDERMEAD, Xini.size)
+
             def _f(_Xx, Grad):
                 # DFO, so no gradient
                 return CostFunction(_Xx, self._parameters["QualityCriterion"])
             opt.set_min_objective(_f)
+            self._parameters["Bounds"] = ForceNumericBounds( self._parameters["Bounds"] )
+            Xini = ApplyBounds( Xini, self._parameters["Bounds"] )
             if self._parameters["Bounds"] is not None:
-                lub = numpy.array(self._parameters["Bounds"],dtype=float).reshape((Xini.size,2))
-                lb = lub[:,0] ; lb[numpy.isnan(lb)] = -float('inf')
-                ub = lub[:,1] ; ub[numpy.isnan(ub)] = +float('inf')
+                lub = numpy.array(self._parameters["Bounds"], dtype=float).reshape((Xini.size, 2))
+                lb = lub[:, 0]; lb[numpy.isnan(lb)] = -float('inf')  # noqa: E702
+                ub = lub[:, 1]; ub[numpy.isnan(ub)] = +float('inf')  # noqa: E702
                 if self._parameters["optdisp"]:
-                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
-                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(), ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(), lb))
                 opt.set_upper_bounds(ub)
                 opt.set_lower_bounds(lb)
             opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
-            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_xtol_rel(2. * self._parameters["StateVariationTolerance"])
             opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
             Minimum = opt.optimize( Xini )
             if self._parameters["optdisp"]:
-                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
-                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
-                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
-        elif self._parameters["Minimizer"] == "BOBYQA" and PlatformInfo.has_nlopt:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(), Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(), opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(), opt.last_optimize_result()))
+        elif self._parameters["Minimizer"] == "BOBYQA" and lpi.has_nlopt:
             import nlopt
             opt = nlopt.opt(nlopt.LN_BOBYQA, Xini.size)
+
             def _f(_Xx, Grad):
                 # DFO, so no gradient
                 return CostFunction(_Xx, self._parameters["QualityCriterion"])
             opt.set_min_objective(_f)
+            self._parameters["Bounds"] = ForceNumericBounds( self._parameters["Bounds"] )
+            Xini = ApplyBounds( Xini, self._parameters["Bounds"] )
             if self._parameters["Bounds"] is not None:
-                lub = numpy.array(self._parameters["Bounds"],dtype=float).reshape((Xini.size,2))
-                lb = lub[:,0] ; lb[numpy.isnan(lb)] = -float('inf')
-                ub = lub[:,1] ; ub[numpy.isnan(ub)] = +float('inf')
+                lub = numpy.array(self._parameters["Bounds"], dtype=float).reshape((Xini.size, 2))
+                lb = lub[:, 0]; lb[numpy.isnan(lb)] = -float('inf')  # noqa: E702
+                ub = lub[:, 1]; ub[numpy.isnan(ub)] = +float('inf')  # noqa: E702
                 if self._parameters["optdisp"]:
-                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
-                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(), ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(), lb))
                 opt.set_upper_bounds(ub)
                 opt.set_lower_bounds(lb)
             opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
-            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_xtol_rel(2. * self._parameters["StateVariationTolerance"])
             opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
             Minimum = opt.optimize( Xini )
             if self._parameters["optdisp"]:
-                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
-                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
-                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
-        elif self._parameters["Minimizer"] == "NEWUOA" and PlatformInfo.has_nlopt:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(), Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(), opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(), opt.last_optimize_result()))
+        elif self._parameters["Minimizer"] == "NEWUOA" and lpi.has_nlopt:
             import nlopt
             opt = nlopt.opt(nlopt.LN_NEWUOA, Xini.size)
+
             def _f(_Xx, Grad):
                 # DFO, so no gradient
                 return CostFunction(_Xx, self._parameters["QualityCriterion"])
             opt.set_min_objective(_f)
+            self._parameters["Bounds"] = ForceNumericBounds( self._parameters["Bounds"] )
+            Xini = ApplyBounds( Xini, self._parameters["Bounds"] )
             if self._parameters["Bounds"] is not None:
-                lub = numpy.array(self._parameters["Bounds"],dtype=float).reshape((Xini.size,2))
-                lb = lub[:,0] ; lb[numpy.isnan(lb)] = -float('inf')
-                ub = lub[:,1] ; ub[numpy.isnan(ub)] = +float('inf')
+                lub = numpy.array(self._parameters["Bounds"], dtype=float).reshape((Xini.size, 2))
+                lb = lub[:, 0]; lb[numpy.isnan(lb)] = -float('inf')  # noqa: E702
+                ub = lub[:, 1]; ub[numpy.isnan(ub)] = +float('inf')  # noqa: E702
                 if self._parameters["optdisp"]:
-                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
-                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(), ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(), lb))
                 opt.set_upper_bounds(ub)
                 opt.set_lower_bounds(lb)
             opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
-            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_xtol_rel(2. * self._parameters["StateVariationTolerance"])
             opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
             Minimum = opt.optimize( Xini )
             if self._parameters["optdisp"]:
-                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
-                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
-                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
-        elif self._parameters["Minimizer"] == "SUBPLEX" and PlatformInfo.has_nlopt:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(), Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(), opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(), opt.last_optimize_result()))
+        elif self._parameters["Minimizer"] == "SUBPLEX" and lpi.has_nlopt:
             import nlopt
             opt = nlopt.opt(nlopt.LN_SBPLX, Xini.size)
+
             def _f(_Xx, Grad):
                 # DFO, so no gradient
                 return CostFunction(_Xx, self._parameters["QualityCriterion"])
             opt.set_min_objective(_f)
+            self._parameters["Bounds"] = ForceNumericBounds( self._parameters["Bounds"] )
+            Xini = ApplyBounds( Xini, self._parameters["Bounds"] )
             if self._parameters["Bounds"] is not None:
-                lub = numpy.array(self._parameters["Bounds"],dtype=float).reshape((Xini.size,2))
-                lb = lub[:,0] ; lb[numpy.isnan(lb)] = -float('inf')
-                ub = lub[:,1] ; ub[numpy.isnan(ub)] = +float('inf')
+                lub = numpy.array(self._parameters["Bounds"], dtype=float).reshape((Xini.size, 2))
+                lb = lub[:, 0]; lb[numpy.isnan(lb)] = -float('inf')  # noqa: E702
+                ub = lub[:, 1]; ub[numpy.isnan(ub)] = +float('inf')  # noqa: E702
                 if self._parameters["optdisp"]:
-                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
-                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(), ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(), lb))
                 opt.set_upper_bounds(ub)
                 opt.set_lower_bounds(lb)
             opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
-            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_xtol_rel(2. * self._parameters["StateVariationTolerance"])
             opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
             Minimum = opt.optimize( Xini )
             if self._parameters["optdisp"]:
-                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
-                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
-                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(), Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(), opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(), opt.last_optimize_result()))
         else:
-            raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"])
+            raise ValueError("Error in minimizer name: %s is unkown"%self._parameters["Minimizer"])
         #
         IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
-        MinJ     = self.StoredVariables["CostFunctionJ"][IndexMin]
         Minimum  = self.StoredVariables["CurrentState"][IndexMin]
         #
         # Obtention de l'analyse
         # ----------------------
-        Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
+        Xa = Minimum
         #
-        self.StoredVariables["Analysis"].store( Xa.A1 )
+        self.StoredVariables["Analysis"].store( Xa )
         #
-        if "OMA"                           in self._parameters["StoreSupplementaryCalculations"] or \
-           "SimulatedObservationAtOptimum" in self._parameters["StoreSupplementaryCalculations"]:
-            if "SimulatedObservationAtCurrentState" in self._parameters["StoreSupplementaryCalculations"]:
+        # Calculs et/ou stockages supplémentaires
+        # ---------------------------------------
+        if self._toStore("OMA") or \
+                self._toStore("SimulatedObservationAtOptimum"):
+            if self._toStore("SimulatedObservationAtCurrentState"):
                 HXa = self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
-            elif "SimulatedObservationAtCurrentOptimum" in self._parameters["StoreSupplementaryCalculations"]:
+            elif self._toStore("SimulatedObservationAtCurrentOptimum"):
                 HXa = self.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
             else:
                 HXa = Hm(Xa)
-        #
-        if "Innovation" in self._parameters["StoreSupplementaryCalculations"]:
-            self.StoredVariables["Innovation"].store( numpy.ravel(d) )
-        if "OMB" in self._parameters["StoreSupplementaryCalculations"]:
-            self.StoredVariables["OMB"].store( numpy.ravel(d) )
-        if "BMA" in self._parameters["StoreSupplementaryCalculations"]:
+            HXa = HXa.reshape((-1, 1))
+        if self._toStore("Innovation") or \
+                self._toStore("OMB") or \
+                self._toStore("SimulatedObservationAtBackground"):
+            HXb = Hm(Xb).reshape((-1, 1))
+            Innovation = Y - HXb
+        if self._toStore("Innovation"):
+            self.StoredVariables["Innovation"].store( Innovation )
+        if self._toStore("OMB"):
+            self.StoredVariables["OMB"].store( Innovation )
+        if self._toStore("BMA"):
             self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
-        if "OMA" in self._parameters["StoreSupplementaryCalculations"]:
-            self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
-        if "SimulatedObservationAtBackground" in self._parameters["StoreSupplementaryCalculations"]:
-            self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(Hm(Xb)) )
-        if "SimulatedObservationAtOptimum" in self._parameters["StoreSupplementaryCalculations"]:
-            self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
+        if self._toStore("OMA"):
+            self.StoredVariables["OMA"].store( Y - HXa )
+        if self._toStore("SimulatedObservationAtBackground"):
+            self.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
+        if self._toStore("SimulatedObservationAtOptimum"):
+            self.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
         #
-        self._post_run()
+        self._post_run(HO, EM)
         return 0
 
 # ==============================================================================
 if __name__ == "__main__":
-    print('\n AUTODIAGNOSTIC \n')
+    print("\n AUTODIAGNOSTIC\n")