Salome HOME
Python 3 compatibility improvement
[modules/adao.git] / src / daComposant / daAlgorithms / DerivativeFreeOptimization.py
index 2ae938dfd4d60f8651554d2b3f5ee218cfd5058d..221d4efe659465ee7181b385939197dd9c90dd23 100644 (file)
@@ -1,6 +1,6 @@
 #-*-coding:iso-8859-1-*-
 #
-# Copyright (C) 2008-2016 EDF R&D
+# Copyright (C) 2008-2017 EDF R&D
 #
 # This library is free software; you can redistribute it and/or
 # modify it under the terms of the GNU Lesser General Public
@@ -21,7 +21,7 @@
 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
 
 import logging
-from daCore import BasicObjects
+from daCore import BasicObjects, PlatformInfo
 import numpy, scipy.optimize
 
 # ==============================================================================
@@ -30,10 +30,10 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         BasicObjects.Algorithm.__init__(self, "DERIVATIVEFREEOPTIMIZATION")
         self.defineRequiredParameter(
             name     = "Minimizer",
-            default  = "POWELL",
+            default  = "BOBYQA",
             typecast = str,
             message  = "Minimiseur utilisé",
-            listval  = ["POWELL", "SIMPLEX", "COBYLA"],
+            listval  = ["BOBYQA", "COBYLA", "NEWUOA", "POWELL", "SIMPLEX", "SUBPLEX"],
             )
         self.defineRequiredParameter(
             name     = "MaximumNumberOfSteps",
@@ -46,7 +46,7 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             name     = "MaximumNumberOfFunctionEvaluations",
             default  = 15000,
             typecast = int,
-            message  = "Nombre maximal de d'évaluations de la fonction",
+            message  = "Nombre maximal d'évaluations de la fonction",
             minval   = -1,
             )
         self.defineRequiredParameter(
@@ -91,21 +91,10 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
             )
 
     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
-        self._pre_run()
-        if logging.getLogger().level < logging.WARNING:
-            self.__disp = 1
-        else:
-            self.__disp = 0
-        #
-        # Paramètres de pilotage
-        # ----------------------
-        self.setParameters(Parameters)
+        self._pre_run(Parameters)
         #
-        if self._parameters.has_key("Bounds") and (type(self._parameters["Bounds"]) is type([]) or type(self._parameters["Bounds"]) is type(())) and (len(self._parameters["Bounds"]) > 0):
-            Bounds = self._parameters["Bounds"]
-            logging.debug("%s Prise en compte des bornes effectuee"%(self._name,))
-        else:
-            Bounds = None
+        if not PlatformInfo.has_nlopt and not self._parameters["Minimizer"] in ["COBYLA", "POWELL", "SIMPLEX"]:
+            self._parameters["Minimizer"] = "SIMPLEX"
         #
         # Opérateurs
         # ----------
@@ -175,6 +164,8 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
         # Point de démarrage de l'optimisation : Xini = Xb
         # ------------------------------------
         Xini = numpy.ravel(Xb)
+        if len(Xini) < 2 and self._parameters["Minimizer"] == "NEWUOA":
+            raise ValueError("The minimizer %s can not be used when the optimisation state dimension is 1. Please choose another minimizer."%self._parameters["Minimizer"])
         #
         # Minimisation de la fonctionnelle
         # --------------------------------
@@ -190,21 +181,9 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
                 xtol        = self._parameters["StateVariationTolerance"],
                 ftol        = self._parameters["CostDecrementTolerance"],
                 full_output = True,
-                disp        = self.__disp,
-                )
-        elif self._parameters["Minimizer"] == "SIMPLEX":
-            Minimum, J_optimal, niter, nfeval, rc = scipy.optimize.fmin(
-                func        = CostFunction,
-                x0          = Xini,
-                args        = (self._parameters["QualityCriterion"],),
-                maxiter     = self._parameters["MaximumNumberOfSteps"]-1,
-                maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"],
-                xtol        = self._parameters["StateVariationTolerance"],
-                ftol        = self._parameters["CostDecrementTolerance"],
-                full_output = True,
-                disp        = self.__disp,
+                disp        = self._parameters["optdisp"],
                 )
-        elif self._parameters["Minimizer"] == "COBYLA":
+        elif self._parameters["Minimizer"] == "COBYLA" and not PlatformInfo.has_nlopt:
             def make_constraints(bounds):
                 constraints = []
                 for (i,(a,b)) in enumerate(bounds):
@@ -212,20 +191,152 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
                     upper = lambda x: b - x[i]
                     constraints = constraints + [lower] + [upper]
                 return constraints
-            if Bounds is None:
+            if self._parameters["Bounds"] is None:
                 raise ValueError("Bounds have to be given for all axes as a list of lower/upper pairs!")
             Minimum = scipy.optimize.fmin_cobyla(
                 func        = CostFunction,
                 x0          = Xini,
-                cons        = make_constraints( Bounds ),
+                cons        = make_constraints( self._parameters["Bounds"] ),
                 args        = (self._parameters["QualityCriterion"],),
                 consargs    = (), # To avoid extra-args
                 maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"],
                 rhobeg      = 1.0,
                 rhoend      = self._parameters["StateVariationTolerance"],
                 catol       = 2.*self._parameters["StateVariationTolerance"],
-                disp        = self.__disp,
+                disp        = self._parameters["optdisp"],
+                )
+        elif self._parameters["Minimizer"] == "COBYLA" and PlatformInfo.has_nlopt:
+            import nlopt
+            opt = nlopt.opt(nlopt.LN_COBYLA, Xini.size)
+            def _f(_Xx, Grad):
+                # DFO, so no gradient
+                return CostFunction(_Xx, self._parameters["QualityCriterion"])
+            opt.set_min_objective(_f)
+            if self._parameters["Bounds"] is not None:
+                lub = numpy.array(self._parameters["Bounds"]).reshape((Xini.size,2))
+                lb = lub[:,0]
+                ub = lub[:,1]
+                if self._parameters["optdisp"]:
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                opt.set_upper_bounds(ub)
+                opt.set_lower_bounds(lb)
+            opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
+            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
+            Minimum = opt.optimize( Xini )
+            if self._parameters["optdisp"]:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
+        elif self._parameters["Minimizer"] == "SIMPLEX" and not PlatformInfo.has_nlopt:
+            Minimum, J_optimal, niter, nfeval, rc = scipy.optimize.fmin(
+                func        = CostFunction,
+                x0          = Xini,
+                args        = (self._parameters["QualityCriterion"],),
+                maxiter     = self._parameters["MaximumNumberOfSteps"]-1,
+                maxfun      = self._parameters["MaximumNumberOfFunctionEvaluations"],
+                xtol        = self._parameters["StateVariationTolerance"],
+                ftol        = self._parameters["CostDecrementTolerance"],
+                full_output = True,
+                disp        = self._parameters["optdisp"],
                 )
+        elif self._parameters["Minimizer"] == "SIMPLEX" and PlatformInfo.has_nlopt:
+            import nlopt
+            opt = nlopt.opt(nlopt.LN_NELDERMEAD, Xini.size)
+            def _f(_Xx, Grad):
+                # DFO, so no gradient
+                return CostFunction(_Xx, self._parameters["QualityCriterion"])
+            opt.set_min_objective(_f)
+            if self._parameters["Bounds"] is not None:
+                lub = numpy.array(self._parameters["Bounds"]).reshape((Xini.size,2))
+                lb = lub[:,0]
+                ub = lub[:,1]
+                if self._parameters["optdisp"]:
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                opt.set_upper_bounds(ub)
+                opt.set_lower_bounds(lb)
+            opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
+            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
+            Minimum = opt.optimize( Xini )
+            if self._parameters["optdisp"]:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
+        elif self._parameters["Minimizer"] == "BOBYQA" and PlatformInfo.has_nlopt:
+            import nlopt
+            opt = nlopt.opt(nlopt.LN_BOBYQA, Xini.size)
+            def _f(_Xx, Grad):
+                # DFO, so no gradient
+                return CostFunction(_Xx, self._parameters["QualityCriterion"])
+            opt.set_min_objective(_f)
+            if self._parameters["Bounds"] is not None:
+                lub = numpy.array(self._parameters["Bounds"]).reshape((Xini.size,2))
+                lb = lub[:,0]
+                ub = lub[:,1]
+                if self._parameters["optdisp"]:
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                opt.set_upper_bounds(ub)
+                opt.set_lower_bounds(lb)
+            opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
+            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
+            Minimum = opt.optimize( Xini )
+            if self._parameters["optdisp"]:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
+        elif self._parameters["Minimizer"] == "NEWUOA" and PlatformInfo.has_nlopt:
+            import nlopt
+            opt = nlopt.opt(nlopt.LN_NEWUOA, Xini.size)
+            def _f(_Xx, Grad):
+                # DFO, so no gradient
+                return CostFunction(_Xx, self._parameters["QualityCriterion"])
+            opt.set_min_objective(_f)
+            if self._parameters["Bounds"] is not None:
+                lub = numpy.array(self._parameters["Bounds"]).reshape((Xini.size,2))
+                lb = lub[:,0]
+                ub = lub[:,1]
+                if self._parameters["optdisp"]:
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                opt.set_upper_bounds(ub)
+                opt.set_lower_bounds(lb)
+            opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
+            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
+            Minimum = opt.optimize( Xini )
+            if self._parameters["optdisp"]:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
+        elif self._parameters["Minimizer"] == "SUBPLEX" and PlatformInfo.has_nlopt:
+            import nlopt
+            opt = nlopt.opt(nlopt.LN_SBPLX, Xini.size)
+            def _f(_Xx, Grad):
+                # DFO, so no gradient
+                return CostFunction(_Xx, self._parameters["QualityCriterion"])
+            opt.set_min_objective(_f)
+            if self._parameters["Bounds"] is not None:
+                lub = numpy.array(self._parameters["Bounds"]).reshape((Xini.size,2))
+                lb = lub[:,0]
+                ub = lub[:,1]
+                if self._parameters["optdisp"]:
+                    print("%s: upper bounds %s"%(opt.get_algorithm_name(),ub))
+                    print("%s: lower bounds %s"%(opt.get_algorithm_name(),lb))
+                opt.set_upper_bounds(ub)
+                opt.set_lower_bounds(lb)
+            opt.set_ftol_rel(self._parameters["CostDecrementTolerance"])
+            opt.set_xtol_rel(2.*self._parameters["StateVariationTolerance"])
+            opt.set_maxeval(self._parameters["MaximumNumberOfFunctionEvaluations"])
+            Minimum = opt.optimize( Xini )
+            if self._parameters["optdisp"]:
+                print("%s: optimal state: %s"%(opt.get_algorithm_name(),Minimum))
+                print("%s: minimum of J: %s"%(opt.get_algorithm_name(),opt.last_optimum_value()))
+                print("%s: return code: %i"%(opt.get_algorithm_name(),opt.last_optimize_result()))
         else:
             raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"])
         #
@@ -266,4 +377,4 @@ class ElementaryAlgorithm(BasicObjects.Algorithm):
 
 # ==============================================================================
 if __name__ == "__main__":
-    print '\n AUTODIAGNOSTIC \n'
+    print('\n AUTODIAGNOSTIC \n')