Salome HOME
stash0
[tools/medcoupling.git] / src / MEDCoupling / MEDCouplingUMesh.cxx
index f34a8f2f4007f6984f3b965d78b9d27828778b87..aa4438c5bf52b96f720a9f07dfb9b40570361c7a 100644 (file)
@@ -165,7 +165,7 @@ MEDCouplingUMesh::MEDCouplingUMesh():_mesh_dim(-2),_nodal_connec(0),_nodal_conne
 void MEDCouplingUMesh::checkCoherency() const
 {
   if(_mesh_dim<-1)
-   throw INTERP_KERNEL::Exception("No mesh dimension specified !");
+    throw INTERP_KERNEL::Exception("No mesh dimension specified !");
   if(_mesh_dim!=-1)
     MEDCouplingPointSet::checkCoherency();
   for(std::set<INTERP_KERNEL::NormalizedCellType>::const_iterator iter=_types.begin();iter!=_types.end();iter++)
@@ -565,8 +565,8 @@ bool MEDCouplingUMesh::isEqualWithoutConsideringStr(const MEDCouplingMesh *other
  */
 void MEDCouplingUMesh::checkFastEquivalWith(const MEDCouplingMesh *other, double prec) const
 {
- MEDCouplingPointSet::checkFastEquivalWith(other,prec);
- const MEDCouplingUMesh *otherC=dynamic_cast<const MEDCouplingUMesh *>(other);
 MEDCouplingPointSet::checkFastEquivalWith(other,prec);
 const MEDCouplingUMesh *otherC=dynamic_cast<const MEDCouplingUMesh *>(other);
   if(!otherC)
     throw INTERP_KERNEL::Exception("MEDCouplingUMesh::checkFastEquivalWith : Two meshes are not not unstructured !"); 
 }
@@ -809,7 +809,7 @@ MEDCouplingUMesh *MEDCouplingUMesh::buildDescendingConnectivity2(DataArrayInt *d
  * \b WARNING this method do the assumption that connectivity lies on the coordinates set.
  * For speed reasons no check of this will be done. This method calls MEDCouplingUMesh::buildDescendingConnectivity to compute the result.
  * This method lists cell by cell in \b this which are its neighbors. To compute the result only connectivities are considered.
- * The a cell with id 'cellId' its neighbors are neighbors[neighborsIndx[cellId]:neighborsIndx[cellId+1]].
+ * The neighbor cells of cell having id 'cellId' are neighbors[neighborsIndx[cellId]:neighborsIndx[cellId+1]].
  *
  * \param [out] neighbors is an array storing all the neighbors of all cells in \b this. This array is newly allocated and should be dealt by the caller. \b neighborsIndx 2nd output
  *                        parameter allows to select the right part in this array. The number of tuples is equal to the last values in \b neighborsIndx.
@@ -832,7 +832,7 @@ void MEDCouplingUMesh::computeNeighborsOfCells(DataArrayInt *&neighbors, DataArr
  * excluding a set of meshdim-1 cells in input descending connectivity.
  * Typically \b desc, \b descIndx, \b revDesc and \b revDescIndx input params are the result of MEDCouplingUMesh::buildDescendingConnectivity.
  * This method lists cell by cell in \b this which are its neighbors. To compute the result only connectivities are considered.
- * The a cell with id 'cellId' its neighbors are neighbors[neighborsIndx[cellId]:neighborsIndx[cellId+1]].
+ * The neighbor cells of cell having id 'cellId' are neighbors[neighborsIndx[cellId]:neighborsIndx[cellId+1]].
  *
  * \param [in] desc descending connectivity array.
  * \param [in] descIndx descending connectivity index array used to walk through \b desc.
@@ -843,7 +843,7 @@ void MEDCouplingUMesh::computeNeighborsOfCells(DataArrayInt *&neighbors, DataArr
  * \param [out] neighborsIndx is an array of size this->getNumberOfCells()+1 newly allocated and should be dealt by the caller. This arrays allow to use the first output parameter \b neighbors.
  */
 void MEDCouplingUMesh::ComputeNeighborsOfCellsAdv(const DataArrayInt *desc, const DataArrayInt *descIndx, const DataArrayInt *revDesc, const DataArrayInt *revDescIndx,
-                                                  DataArrayInt *&neighbors, DataArrayInt *&neighborsIndx) throw(INTERP_KERNEL::Exception)
+                                                  DataArrayInt *&neighbors, DataArrayInt *&neighborsIndx)
 {
   if(!desc || !descIndx || !revDesc || !revDescIndx)
     throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ComputeNeighborsOfCellsAdv some input array is empty !");
@@ -872,6 +872,60 @@ void MEDCouplingUMesh::ComputeNeighborsOfCellsAdv(const DataArrayInt *desc, cons
   neighborsIndx=out1.retn();
 }
 
+/*!
+ * \b WARNING this method do the assumption that connectivity lies on the coordinates set.
+ * For speed reasons no check of this will be done. This method calls MEDCouplingUMesh::buildDescendingConnectivity to compute the result.
+ * This method lists node by node in \b this which are its neighbors. To compute the result only connectivities are considered.
+ * The neighbor nodes of node having id 'nodeId' are neighbors[neighborsIndx[cellId]:neighborsIndx[cellId+1]].
+ *
+ * \param [out] neighbors is an array storing all the neighbors of all nodes in \b this. This array is newly allocated and should be dealt by the caller. \b neighborsIndx 2nd output
+ *                        parameter allows to select the right part in this array. The number of tuples is equal to the last values in \b neighborsIndx.
+ * \param [out] neighborsIndx is an array of size this->getNumberOfCells()+1 newly allocated and should be dealt by the caller. This arrays allow to use the first output parameter \b neighbors.
+ */
+void MEDCouplingUMesh::computeNeighborsOfNodes(DataArrayInt *&neighbors, DataArrayInt *&neighborsIdx) const
+{
+  checkFullyDefined();
+  int mdim(getMeshDimension()),nbNodes(getNumberOfNodes());
+  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> desc(DataArrayInt::New()),descIndx(DataArrayInt::New()),revDesc(DataArrayInt::New()),revDescIndx(DataArrayInt::New());
+  MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> mesh1D;
+  switch(mdim)
+  {
+    case 3:
+      {
+        mesh1D=explode3DMeshTo1D(desc,descIndx,revDesc,revDescIndx);
+        break;
+      }
+    case 2:
+      {
+        mesh1D=buildDescendingConnectivity(desc,descIndx,revDesc,revDescIndx);
+        break;
+      }
+    case 1:
+      {
+        mesh1D=const_cast<MEDCouplingUMesh *>(this);
+        mesh1D->incrRef();
+        break;
+      }
+    default:
+      {
+        throw INTERP_KERNEL::Exception("MEDCouplingUMesh::computeNeighborsOfNodes : Mesh dimension supported are [3,2,1] !");
+      }
+  }
+  desc=DataArrayInt::New(); descIndx=DataArrayInt::New(); revDesc=0; revDescIndx=0;
+  mesh1D->getReverseNodalConnectivity(desc,descIndx);
+  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> ret0(DataArrayInt::New());
+  ret0->alloc(desc->getNumberOfTuples(),1);
+  int *r0Pt(ret0->getPointer());
+  const int *c1DPtr(mesh1D->getNodalConnectivity()->begin()),*rn(desc->begin()),*rni(descIndx->begin());
+  for(int i=0;i<nbNodes;i++,rni++)
+    {
+      for(const int *oneDCellIt=rn+rni[0];oneDCellIt!=rn+rni[1];oneDCellIt++)
+        *r0Pt++=c1DPtr[3*(*oneDCellIt)+1]==i?c1DPtr[3*(*oneDCellIt)+2]:c1DPtr[3*(*oneDCellIt)+1];
+    }
+  neighbors=ret0.retn();
+  neighborsIdx=descIndx.retn();
+}
+
 /// @cond INTERNAL
 
 /*!
@@ -1252,7 +1306,7 @@ bool MEDCouplingUMesh::unPolyze()
       if(cm.isDynamic())
         {
           switch(cm.getDimension())
-            {
+          {
             case 2:
               {
                 INTERP_KERNEL::AutoPtr<int> tmp=new int[lgthOfCurCell-1];
@@ -1272,7 +1326,7 @@ bool MEDCouplingUMesh::unPolyze()
                 newType=(lgthOfCurCell==3)?INTERP_KERNEL::NORM_SEG2:INTERP_KERNEL::NORM_POLYL;
                 break;
               }
-            }
+          }
           ret=ret || (newType!=type);
           conn[newPos]=newType;
           newPos+=newLgth+1;
@@ -1547,7 +1601,7 @@ DataArrayInt *MEDCouplingUMesh::zipCoordsTraducer()
 int MEDCouplingUMesh::AreCellsEqual(const int *conn, const int *connI, int cell1, int cell2, int compType)
 {
   switch(compType)
-    {
+  {
     case 0:
       return AreCellsEqual0(conn,connI,cell1,cell2);
     case 1:
@@ -1558,7 +1612,7 @@ int MEDCouplingUMesh::AreCellsEqual(const int *conn, const int *connI, int cell1
       return AreCellsEqual3(conn,connI,cell1,cell2);
     case 7:
       return AreCellsEqual7(conn,connI,cell1,cell2);
-    }
+  }
   throw INTERP_KERNEL::Exception("Unknown comparison asked ! Must be in 0,1,2,3 or 7.");
 }
 
@@ -1668,7 +1722,7 @@ int MEDCouplingUMesh::AreCellsEqual7(const int *conn, const int *connI, int cell
                       else
                         return 0;
                     }
-                  
+
                   return work!=tmp+sz1?1:0;
                 }
               else
@@ -1756,7 +1810,7 @@ void MEDCouplingUMesh::findCommonCells(int compType, int startCellId, DataArrayI
 }
 
 void MEDCouplingUMesh::FindCommonCellsAlg(int compType, int startCellId, const DataArrayInt *nodal, const DataArrayInt *nodalI, const DataArrayInt *revNodal, const DataArrayInt *revNodalI,
-                                          DataArrayInt *& commonCellsArr, DataArrayInt *& commonCellsIArr) throw(INTERP_KERNEL::Exception)
+                                          DataArrayInt *& commonCellsArr, DataArrayInt *& commonCellsIArr)
 {
   MEDCouplingAutoRefCountObjectPtr<DataArrayInt> commonCells=DataArrayInt::New(),commonCellsI=DataArrayInt::New(); commonCells->alloc(0,1);
   int nbOfCells=nodalI->getNumberOfTuples()-1;
@@ -2385,7 +2439,7 @@ MEDCouplingUMesh *MEDCouplingUMesh::buildUnstructured() const
  * \warning This method modifies param \b otherDimM1OnSameCoords (for speed reasons).
  */
 void MEDCouplingUMesh::findNodesToDuplicate(const MEDCouplingUMesh& otherDimM1OnSameCoords, DataArrayInt *& nodeIdsToDuplicate,
-                                            DataArrayInt *& cellIdsNeededToBeRenum, DataArrayInt *& cellIdsNotModified) const throw(INTERP_KERNEL::Exception)
+                                            DataArrayInt *& cellIdsNeededToBeRenum, DataArrayInt *& cellIdsNotModified) const
 {
   checkFullyDefined();
   otherDimM1OnSameCoords.checkFullyDefined();
@@ -2747,7 +2801,7 @@ INTERP_KERNEL::NormalizedCellType MEDCouplingUMesh::getTypeOfCell(int cellId) co
  */
 DataArrayInt *MEDCouplingUMesh::giveCellsWithType(INTERP_KERNEL::NormalizedCellType type) const
 {
-  
+
   MEDCouplingAutoRefCountObjectPtr<DataArrayInt> ret=DataArrayInt::New();
   ret->alloc(0,1);
   checkConnectivityFullyDefined();
@@ -3011,8 +3065,8 @@ void MEDCouplingUMesh::setConnectivity(DataArrayInt *conn, DataArrayInt *connInd
  * If 'deeCpy' is true all arrays (coordinates and connectivities) are deeply copied.
  */
 MEDCouplingUMesh::MEDCouplingUMesh(const MEDCouplingUMesh& other, bool deepCopy):MEDCouplingPointSet(other,deepCopy),_mesh_dim(other._mesh_dim),
-                                                                                 _nodal_connec(0),_nodal_connec_index(0),
-                                                                                _types(other._types)
+    _nodal_connec(0),_nodal_connec_index(0),
+    _types(other._types)
 {
   if(other._nodal_connec)
     _nodal_connec=other._nodal_connec->performCpy(deepCopy);
@@ -3575,29 +3629,29 @@ MEDCouplingFieldDouble *MEDCouplingUMesh::buildPartOrthogonalField(const int *be
  */
 MEDCouplingFieldDouble *MEDCouplingUMesh::buildDirectionVectorField() const
 {
-   if(getMeshDimension()!=1)
+  if(getMeshDimension()!=1)
     throw INTERP_KERNEL::Exception("Expected a umesh with meshDim == 1 for buildDirectionVectorField !");
-   if(_types.size()!=1 || *(_types.begin())!=INTERP_KERNEL::NORM_SEG2)
-     throw INTERP_KERNEL::Exception("Expected a umesh with only NORM_SEG2 type of elements for buildDirectionVectorField !");
-   MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret=MEDCouplingFieldDouble::New(ON_CELLS,ONE_TIME);
-   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> array=DataArrayDouble::New();
-   int nbOfCells=getNumberOfCells();
-   int spaceDim=getSpaceDimension();
-   array->alloc(nbOfCells,spaceDim);
-   double *pt=array->getPointer();
-   const double *coo=getCoords()->getConstPointer();
-   std::vector<int> conn;
-   conn.reserve(2);
-   for(int i=0;i<nbOfCells;i++)
-     {
-       conn.resize(0);
-       getNodeIdsOfCell(i,conn);
-       pt=std::transform(coo+conn[1]*spaceDim,coo+(conn[1]+1)*spaceDim,coo+conn[0]*spaceDim,pt,std::minus<double>());
-     }
-   ret->setArray(array);
-   ret->setMesh(this);
-   ret->synchronizeTimeWithSupport();
-   return ret.retn();   
+  if(_types.size()!=1 || *(_types.begin())!=INTERP_KERNEL::NORM_SEG2)
+    throw INTERP_KERNEL::Exception("Expected a umesh with only NORM_SEG2 type of elements for buildDirectionVectorField !");
+  MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> ret=MEDCouplingFieldDouble::New(ON_CELLS,ONE_TIME);
+  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> array=DataArrayDouble::New();
+  int nbOfCells=getNumberOfCells();
+  int spaceDim=getSpaceDimension();
+  array->alloc(nbOfCells,spaceDim);
+  double *pt=array->getPointer();
+  const double *coo=getCoords()->getConstPointer();
+  std::vector<int> conn;
+  conn.reserve(2);
+  for(int i=0;i<nbOfCells;i++)
+    {
+      conn.resize(0);
+      getNodeIdsOfCell(i,conn);
+      pt=std::transform(coo+conn[1]*spaceDim,coo+(conn[1]+1)*spaceDim,coo+conn[0]*spaceDim,pt,std::minus<double>());
+    }
+  ret->setArray(array);
+  ret->setMesh(this);
+  ret->synchronizeTimeWithSupport();
+  return ret.retn();
 }
 
 /*!
@@ -3840,31 +3894,31 @@ void MEDCouplingUMesh::project1D(const double *pt, const double *v, double eps,
 {
   if(getMeshDimension()!=1)
     throw INTERP_KERNEL::Exception("Expected a umesh with meshDim == 1 for project1D !");
-   if(_types.size()!=1 || *(_types.begin())!=INTERP_KERNEL::NORM_SEG2)
-     throw INTERP_KERNEL::Exception("Expected a umesh with only NORM_SEG2 type of elements for project1D !");
-   if(getSpaceDimension()!=3)
-     throw INTERP_KERNEL::Exception("Expected a umesh with spaceDim==3 for project1D !");
-   MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> f=buildDirectionVectorField();
-   const double *fPtr=f->getArray()->getConstPointer();
-   double tmp[3];
-   for(int i=0;i<getNumberOfCells();i++)
-     {
-       const double *tmp1=fPtr+3*i;
-       tmp[0]=tmp1[1]*v[2]-tmp1[2]*v[1];
-       tmp[1]=tmp1[2]*v[0]-tmp1[0]*v[2];
-       tmp[2]=tmp1[0]*v[1]-tmp1[1]*v[0];
-       double n1=INTERP_KERNEL::norm<3>(tmp);
-       n1/=INTERP_KERNEL::norm<3>(tmp1);
-       if(n1>eps)
-         throw INTERP_KERNEL::Exception("UMesh::Projection 1D failed !");
-     }
-   const double *coo=getCoords()->getConstPointer();
-   for(int i=0;i<getNumberOfNodes();i++)
-     {
-       std::transform(coo+i*3,coo+i*3+3,pt,tmp,std::minus<double>());
-       std::transform(tmp,tmp+3,v,tmp,std::multiplies<double>());
-       res[i]=std::accumulate(tmp,tmp+3,0.);
-     }
+  if(_types.size()!=1 || *(_types.begin())!=INTERP_KERNEL::NORM_SEG2)
+    throw INTERP_KERNEL::Exception("Expected a umesh with only NORM_SEG2 type of elements for project1D !");
+  if(getSpaceDimension()!=3)
+    throw INTERP_KERNEL::Exception("Expected a umesh with spaceDim==3 for project1D !");
+  MEDCouplingAutoRefCountObjectPtr<MEDCouplingFieldDouble> f=buildDirectionVectorField();
+  const double *fPtr=f->getArray()->getConstPointer();
+  double tmp[3];
+  for(int i=0;i<getNumberOfCells();i++)
+    {
+      const double *tmp1=fPtr+3*i;
+      tmp[0]=tmp1[1]*v[2]-tmp1[2]*v[1];
+      tmp[1]=tmp1[2]*v[0]-tmp1[0]*v[2];
+      tmp[2]=tmp1[0]*v[1]-tmp1[1]*v[0];
+      double n1=INTERP_KERNEL::norm<3>(tmp);
+      n1/=INTERP_KERNEL::norm<3>(tmp1);
+      if(n1>eps)
+        throw INTERP_KERNEL::Exception("UMesh::Projection 1D failed !");
+    }
+  const double *coo=getCoords()->getConstPointer();
+  for(int i=0;i<getNumberOfNodes();i++)
+    {
+      std::transform(coo+i*3,coo+i*3+3,pt,tmp,std::minus<double>());
+      std::transform(tmp,tmp+3,v,tmp,std::multiplies<double>());
+      res[i]=std::accumulate(tmp,tmp+3,0.);
+    }
 }
 
 /*!
@@ -3872,7 +3926,7 @@ void MEDCouplingUMesh::project1D(const double *pt, const double *v, double eps,
  * \a this is expected to be a mesh so that its space dimension is equal to its
  * mesh dimension + 1. Furthermore only mesh dimension 1 and 2 are supported for the moment.
  * Distance from \a ptBg to \a ptEnd is expected to be equal to the space dimension. \a this is also expected to be fully defined (connectivity and coordinates).
+ *
  * WARNING, if there is some orphan nodes in \a this (nodes not fetched by any cells in \a this ( see MEDCouplingUMesh::zipCoords ) ) these nodes will ** not ** been taken
  * into account in this method. Only cells and nodes lying on them are considered in the algorithm (even if one of these orphan nodes is closer than returned distance).
  * A user that needs to consider orphan nodes should invoke DataArrayDouble::minimalDistanceTo method on the coordinates array of \a this.
@@ -3954,7 +4008,7 @@ DataArrayDouble *MEDCouplingUMesh::distanceToPoints(const DataArrayDouble *pts,
   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> bboxArr(getBoundingBoxForBBTree());
   const double *bbox(bboxArr->begin());
   switch(spaceDim)
-    {
+  {
     case 3:
       {
         BBTreeDst<3> myTree(bbox,0,0,nbCells);
@@ -3983,7 +4037,7 @@ DataArrayDouble *MEDCouplingUMesh::distanceToPoints(const DataArrayDouble *pts,
       }
     default:
       throw INTERP_KERNEL::Exception("MEDCouplingUMesh::distanceToPoints : only spacedim 2 and 3 supported !");
-    }
+  }
   cellIds=ret1.retn();
   return ret0.retn();
 }
@@ -4005,7 +4059,7 @@ void MEDCouplingUMesh::DistanceToPoint3DSurfAlg(const double *pt, const int *cel
   for(const int *zeCell=cellIdsBg;zeCell!=cellIdsEnd;zeCell++)
     {
       switch((INTERP_KERNEL::NormalizedCellType)nc[ncI[*zeCell]])
-        {
+      {
         case INTERP_KERNEL::NORM_TRI3:
           {
             double tmp=INTERP_KERNEL::DistanceFromPtToTriInSpaceDim3(pt,coords+3*nc[ncI[*zeCell]+1],coords+3*nc[ncI[*zeCell]+2],coords+3*nc[ncI[*zeCell]+3]);
@@ -4023,7 +4077,7 @@ void MEDCouplingUMesh::DistanceToPoint3DSurfAlg(const double *pt, const int *cel
           }
         default:
           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::distanceToPoint3DSurfAlg : not managed cell type ! Supporting TRI3, QUAD4 and POLYGON !");
-        }
+      }
     }
 }
 
@@ -4043,8 +4097,8 @@ void MEDCouplingUMesh::DistanceToPoint2DCurveAlg(const double *pt, const int *ce
   ret0=std::numeric_limits<double>::max();
   for(const int *zeCell=cellIdsBg;zeCell!=cellIdsEnd;zeCell++)
     {
-       switch((INTERP_KERNEL::NormalizedCellType)nc[ncI[*zeCell]])
-        {
+      switch((INTERP_KERNEL::NormalizedCellType)nc[ncI[*zeCell]])
+      {
         case INTERP_KERNEL::NORM_SEG2:
           {
             std::size_t uselessEntry=0;
@@ -4056,7 +4110,7 @@ void MEDCouplingUMesh::DistanceToPoint2DCurveAlg(const double *pt, const int *ce
           }
         default:
           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::distanceToPoint2DCurveAlg : not managed cell type ! Supporting SEG2 !");
-        }
+      }
     }
 }
 
@@ -4130,7 +4184,9 @@ namespace ParaMEDMEM
     INTERP_KERNEL::NormalizedCellType getTypeOfElement(int) const { return (INTERP_KERNEL::NormalizedCellType)0; }
     // end
   };
-  
+
+
+
   /*!
    * Warning the nodes in \a m should be decrRefed ! To avoid that Node * pointer be replaced by another instance.
    */
@@ -4140,7 +4196,7 @@ namespace ParaMEDMEM
     INTERP_KERNEL::Node *n0(new INTERP_KERNEL::Node(coords2D[2*bg[0]],coords2D[2*bg[0]+1])),*n1(new INTERP_KERNEL::Node(coords2D[2*bg[1]],coords2D[2*bg[1]+1]));
     m[n0]=bg[0]; m[n1]=bg[1];
     switch(typ)
-      {
+    {
       case INTERP_KERNEL::NORM_SEG2:
         {
           ret=new INTERP_KERNEL::EdgeLin(n0,n1);
@@ -4162,7 +4218,7 @@ namespace ParaMEDMEM
         }
       default:
         throw INTERP_KERNEL::Exception("MEDCouplingUMeshBuildQPFromEdge2 : Expecting a mesh with spaceDim==2 and meshDim==1 !");
-      } 
+    }
     return ret;
   }
 
@@ -4170,7 +4226,7 @@ namespace ParaMEDMEM
   {
     INTERP_KERNEL::Edge *ret=0;
     switch(typ)
-      {
+    {
       case INTERP_KERNEL::NORM_SEG2:
         {
           ret=new INTERP_KERNEL::EdgeLin(mapp2[bg[0]].first,mapp2[bg[1]].first);
@@ -4193,7 +4249,7 @@ namespace ParaMEDMEM
         }
       default:
         throw INTERP_KERNEL::Exception("MEDCouplingUMeshBuildQPFromEdge : Expecting a mesh with spaceDim==2 and meshDim==1 !");
-      }
+    }
     return ret;
   }
 
@@ -4204,8 +4260,7 @@ namespace ParaMEDMEM
    * 'mapp' returns a mapping between local numbering in submesh (represented by a Node*) and the global node numbering in 'mDesc'.
    */
   INTERP_KERNEL::QuadraticPolygon *MEDCouplingUMeshBuildQPFromMesh(const MEDCouplingUMesh *mDesc, const std::vector<int>& candidates,
-      std::map<INTERP_KERNEL::Node *,int>& mapp)
-      throw(INTERP_KERNEL::Exception)
+                                                                   std::map<INTERP_KERNEL::Node *,int>& mapp)
   {
     mapp.clear();
     std::map<int, std::pair<INTERP_KERNEL::Node *,bool> > mapp2;//bool is for a flag specifying if node is boundary (true) or only a middle for SEG3.
@@ -4380,7 +4435,7 @@ void MEDCouplingUMesh::getCellsContainingPoints(const double *pos, int nbOfPoint
         }
       /*else if(mDim==2)
         {
-          
+
         }*/
       else
         throw INTERP_KERNEL::Exception("For spaceDim==3 only meshDim==3 implemented for getelementscontainingpoints !");
@@ -4524,7 +4579,7 @@ MEDCouplingUMesh *MEDCouplingUMesh::buildExtrudedMesh(const MEDCouplingUMesh *me
   int oldNbOfNodes=getNumberOfNodes();
   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> newCoords;
   switch(policy)
-    {
+  {
     case 0:
       {
         newCoords=fillExtCoordsUsingTranslation(mesh1D,isQuad);
@@ -4537,7 +4592,7 @@ MEDCouplingUMesh *MEDCouplingUMesh::buildExtrudedMesh(const MEDCouplingUMesh *me
       }
     default:
       throw INTERP_KERNEL::Exception("Not implemented extrusion policy : must be in (0) !");
-    }
+  }
   setCoords(newCoords);
   MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> ret=buildExtrudedMeshFromThisLowLev(oldNbOfNodes,isQuad);
   updateTime();
@@ -4775,7 +4830,6 @@ DataArrayDouble *MEDCouplingUMesh::fillExtCoordsUsingTranslAndAutoRotation3D(con
           double cosangle=i+1<nbOfLevsInVec?(p0r[0]-tmp3[0])*(p1r[0]-tmp3[0])+(p0r[1]-tmp3[1])*(p1r[1]-tmp3[1]):(p2r[0]-tmp3[0])*(p1r[0]-tmp3[0])+(p2r[1]-tmp3[1])*(p1r[1]-tmp3[1]);
           double angle=acos(cosangle/(radius*radius));
           tmp->rotate(end,vecPlane,angle);
-          
         }
       retPtr=std::copy(tmp2->getConstPointer(),tmp2->getConstPointer()+tmp2->getNbOfElems(),retPtr);
     }
@@ -4963,10 +5017,10 @@ DataArrayInt *MEDCouplingUMesh::convertLinearCellsToQuadratic(int conversionType
   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> coordsSafe;
   int meshDim=getMeshDimension();
   switch(conversionType)
-    {
+  {
     case 0:
       switch(meshDim)
-        {
+      {
         case 1:
           ret=convertLinearCellsToQuadratic1D0(conn,connI,coords,types);
           connSafe=conn; connISafe=connI; coordsSafe=coords;
@@ -4981,32 +5035,32 @@ DataArrayInt *MEDCouplingUMesh::convertLinearCellsToQuadratic(int conversionType
           break;
         default:
           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertLinearCellsToQuadratic : conversion of type 0 mesh dimensions available are [1,2,3] !");
-        }
+      }
       break;
-    case 1:
-      {
-        switch(meshDim)
-        {
         case 1:
-          ret=convertLinearCellsToQuadratic1D0(conn,connI,coords,types);//it is not a bug. In 1D policy 0 and 1 are equals
-          connSafe=conn; connISafe=connI; coordsSafe=coords;
-          break;
-        case 2:
-          ret=convertLinearCellsToQuadratic2D1(conn,connI,coords,types);
-          connSafe=conn; connISafe=connI; coordsSafe=coords;
-          break;
-        case 3:
-          ret=convertLinearCellsToQuadratic3D1(conn,connI,coords,types);
-          connSafe=conn; connISafe=connI; coordsSafe=coords;
-          break;
+          {
+            switch(meshDim)
+            {
+              case 1:
+                ret=convertLinearCellsToQuadratic1D0(conn,connI,coords,types);//it is not a bug. In 1D policy 0 and 1 are equals
+                connSafe=conn; connISafe=connI; coordsSafe=coords;
+                break;
+              case 2:
+                ret=convertLinearCellsToQuadratic2D1(conn,connI,coords,types);
+                connSafe=conn; connISafe=connI; coordsSafe=coords;
+                break;
+              case 3:
+                ret=convertLinearCellsToQuadratic3D1(conn,connI,coords,types);
+                connSafe=conn; connISafe=connI; coordsSafe=coords;
+                break;
+              default:
+                throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertLinearCellsToQuadratic : conversion of type 1 mesh dimensions available are [1,2,3] !");
+            }
+            break;
+          }
         default:
-          throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertLinearCellsToQuadratic : conversion of type 1 mesh dimensions available are [1,2,3] !");
-        }
-        break;
-      }
-    default:
-      throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertLinearCellsToQuadratic : conversion type available are 0 (default, the simplest) and 1 (the most complex) !");
-    }
+          throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertLinearCellsToQuadratic : conversion type available are 0 (default, the simplest) and 1 (the most complex) !");
+  }
   setConnectivity(connSafe,connISafe,false);
   _types=types;
   setCoords(coordsSafe);
@@ -5108,7 +5162,6 @@ DataArrayInt *MEDCouplingUMesh::convertLinearCellsToQuadratic2DAnd3D0(const MEDC
  */
 DataArrayInt *MEDCouplingUMesh::convertLinearCellsToQuadratic2D0(DataArrayInt *&conn, DataArrayInt *&connI, DataArrayDouble *& coords, std::set<INTERP_KERNEL::NormalizedCellType>& types) const
 {
-  
   MEDCouplingAutoRefCountObjectPtr<DataArrayInt> desc(DataArrayInt::New()),descI(DataArrayInt::New()),tmp2(DataArrayInt::New()),tmp3(DataArrayInt::New());
   MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> m1D=buildDescendingConnectivity(desc,descI,tmp2,tmp3); tmp2=0; tmp3=0;
   return convertLinearCellsToQuadratic2DAnd3D0(m1D,desc,descI,conn,connI,coords,types);
@@ -5397,18 +5450,18 @@ void MEDCouplingUMesh::tessellate2DCurve(double eps)
 DataArrayInt *MEDCouplingUMesh::simplexize(int policy)
 {
   switch(policy)
-    {
+  {
     case 0:
       return simplexizePol0();
     case 1:
       return simplexizePol1();
     case (int) INTERP_KERNEL::PLANAR_FACE_5:
-      return simplexizePlanarFace5();
+        return simplexizePlanarFace5();
     case (int) INTERP_KERNEL::PLANAR_FACE_6:
-      return simplexizePlanarFace6();
+        return simplexizePlanarFace6();
     default:
       throw INTERP_KERNEL::Exception("MEDCouplingUMesh::simplexize : unrecognized policy ! Must be :\n  - 0 or 1 (only available for meshdim=2) \n  - PLANAR_FACE_5, PLANAR_FACE_6  (only for meshdim=3)");
-    }
+  }
 }
 
 /*!
@@ -5471,7 +5524,7 @@ DataArrayInt *MEDCouplingUMesh::simplexizePol0()
       if((INTERP_KERNEL::NormalizedCellType)oldc[ci[0]]==INTERP_KERNEL::NORM_QUAD4)
         {
           const int tmp[8]={(int)INTERP_KERNEL::NORM_TRI3,oldc[ci[0]+1],oldc[ci[0]+2],oldc[ci[0]+3],
-                            (int)INTERP_KERNEL::NORM_TRI3,oldc[ci[0]+1],oldc[ci[0]+3],oldc[ci[0]+4]};
+            (int)INTERP_KERNEL::NORM_TRI3,oldc[ci[0]+1],oldc[ci[0]+3],oldc[ci[0]+4]};
           pt=std::copy(tmp,tmp+8,pt);
           ptI[1]=ptI[0]+4;
           ptI[2]=ptI[0]+8;
@@ -5524,7 +5577,7 @@ DataArrayInt *MEDCouplingUMesh::simplexizePol1()
       if((INTERP_KERNEL::NormalizedCellType)oldc[ci[0]]==INTERP_KERNEL::NORM_QUAD4)
         {
           const int tmp[8]={(int)INTERP_KERNEL::NORM_TRI3,oldc[ci[0]+1],oldc[ci[0]+2],oldc[ci[0]+4],
-                            (int)INTERP_KERNEL::NORM_TRI3,oldc[ci[0]+2],oldc[ci[0]+3],oldc[ci[0]+4]};
+            (int)INTERP_KERNEL::NORM_TRI3,oldc[ci[0]+2],oldc[ci[0]+3],oldc[ci[0]+4]};
           pt=std::copy(tmp,tmp+8,pt);
           ptI[1]=ptI[0]+4;
           ptI[2]=ptI[0]+8;
@@ -5934,15 +5987,15 @@ void MEDCouplingUMesh::orientCorrectlyPolyhedrons()
       if(type==INTERP_KERNEL::NORM_POLYHED)
         {
           try
-            {
+          {
               if(!IsPolyhedronWellOriented(conn+connI[i]+1,conn+connI[i+1],coordsPtr))
                 TryToCorrectPolyhedronOrientation(conn+connI[i]+1,conn+connI[i+1],coordsPtr);
-            }
+          }
           catch(INTERP_KERNEL::Exception& e)
-            {
+          {
               std::ostringstream oss; oss << "Something wrong in polyhedron #" << i << " : " << e.what();
               throw INTERP_KERNEL::Exception(oss.str().c_str());
-            }
+          }
         }
     }
   updateTime();
@@ -6017,7 +6070,7 @@ DataArrayInt *MEDCouplingUMesh::findAndCorrectBadOriented3DCells()
     {
       INTERP_KERNEL::NormalizedCellType type=(INTERP_KERNEL::NormalizedCellType)conn[connI[i]];
       switch(type)
-        {
+      {
         case INTERP_KERNEL::NORM_TETRA4:
           {
             if(!IsTetra4WellOriented(conn+connI[i]+1,conn+connI[i+1],coordsPtr))
@@ -6058,7 +6111,7 @@ DataArrayInt *MEDCouplingUMesh::findAndCorrectBadOriented3DCells()
           }
         default:
           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::orientCorrectly3DCells : Your mesh contains type of cell not supported yet ! send mail to anthony.geay@cea.fr to add it !");
-        }
+      }
     }
   updateTime();
   return ret.retn();
@@ -6129,28 +6182,28 @@ MEDCouplingFieldDouble *MEDCouplingUMesh::getEdgeRatioField() const
     {
       INTERP_KERNEL::NormalizedCellType t=(INTERP_KERNEL::NormalizedCellType)*conn;
       switch(t)
-        {
-          case INTERP_KERNEL::NORM_TRI3:
-            {
-              FillInCompact3DMode(spaceDim,3,conn+1,coo,tmp);
-              *pt=INTERP_KERNEL::triEdgeRatio(tmp);
-              break;
-            }
-          case INTERP_KERNEL::NORM_QUAD4:
-            {
-              FillInCompact3DMode(spaceDim,4,conn+1,coo,tmp);
-              *pt=INTERP_KERNEL::quadEdgeRatio(tmp);
-              break;
-            }
-          case INTERP_KERNEL::NORM_TETRA4:
-            {
-              FillInCompact3DMode(spaceDim,4,conn+1,coo,tmp);
-              *pt=INTERP_KERNEL::tetraEdgeRatio(tmp);
-              break;
-            }
+      {
+        case INTERP_KERNEL::NORM_TRI3:
+          {
+            FillInCompact3DMode(spaceDim,3,conn+1,coo,tmp);
+            *pt=INTERP_KERNEL::triEdgeRatio(tmp);
+            break;
+          }
+        case INTERP_KERNEL::NORM_QUAD4:
+          {
+            FillInCompact3DMode(spaceDim,4,conn+1,coo,tmp);
+            *pt=INTERP_KERNEL::quadEdgeRatio(tmp);
+            break;
+          }
+        case INTERP_KERNEL::NORM_TETRA4:
+          {
+            FillInCompact3DMode(spaceDim,4,conn+1,coo,tmp);
+            *pt=INTERP_KERNEL::tetraEdgeRatio(tmp);
+            break;
+          }
         default:
           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::getEdgeRatioField : A cell with not manged type (NORM_TRI3, NORM_QUAD4 and NORM_TETRA4) has been detected !");
-        }
+      }
       conn+=connI[i+1]-connI[i];
     }
   ret->setName("EdgeRatio");
@@ -6201,28 +6254,28 @@ MEDCouplingFieldDouble *MEDCouplingUMesh::getAspectRatioField() const
     {
       INTERP_KERNEL::NormalizedCellType t=(INTERP_KERNEL::NormalizedCellType)*conn;
       switch(t)
-        {
-          case INTERP_KERNEL::NORM_TRI3:
-            {
-              FillInCompact3DMode(spaceDim,3,conn+1,coo,tmp);
-              *pt=INTERP_KERNEL::triAspectRatio(tmp);
-              break;
-            }
-          case INTERP_KERNEL::NORM_QUAD4:
-            {
-              FillInCompact3DMode(spaceDim,4,conn+1,coo,tmp);
-              *pt=INTERP_KERNEL::quadAspectRatio(tmp);
-              break;
-            }
-          case INTERP_KERNEL::NORM_TETRA4:
-            {
-              FillInCompact3DMode(spaceDim,4,conn+1,coo,tmp);
-              *pt=INTERP_KERNEL::tetraAspectRatio(tmp);
-              break;
-            }
+      {
+        case INTERP_KERNEL::NORM_TRI3:
+          {
+            FillInCompact3DMode(spaceDim,3,conn+1,coo,tmp);
+            *pt=INTERP_KERNEL::triAspectRatio(tmp);
+            break;
+          }
+        case INTERP_KERNEL::NORM_QUAD4:
+          {
+            FillInCompact3DMode(spaceDim,4,conn+1,coo,tmp);
+            *pt=INTERP_KERNEL::quadAspectRatio(tmp);
+            break;
+          }
+        case INTERP_KERNEL::NORM_TETRA4:
+          {
+            FillInCompact3DMode(spaceDim,4,conn+1,coo,tmp);
+            *pt=INTERP_KERNEL::tetraAspectRatio(tmp);
+            break;
+          }
         default:
           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::getAspectRatioField : A cell with not manged type (NORM_TRI3, NORM_QUAD4 and NORM_TETRA4) has been detected !");
-        }
+      }
       conn+=connI[i+1]-connI[i];
     }
   ret->setName("AspectRatio");
@@ -6272,16 +6325,16 @@ MEDCouplingFieldDouble *MEDCouplingUMesh::getWarpField() const
     {
       INTERP_KERNEL::NormalizedCellType t=(INTERP_KERNEL::NormalizedCellType)*conn;
       switch(t)
-        {
-          case INTERP_KERNEL::NORM_QUAD4:
-            {
-              FillInCompact3DMode(3,4,conn+1,coo,tmp);
-              *pt=INTERP_KERNEL::quadWarp(tmp);
-              break;
-            }
+      {
+        case INTERP_KERNEL::NORM_QUAD4:
+          {
+            FillInCompact3DMode(3,4,conn+1,coo,tmp);
+            *pt=INTERP_KERNEL::quadWarp(tmp);
+            break;
+          }
         default:
           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::getWarpField : A cell with not manged type (NORM_QUAD4) has been detected !");
-        }
+      }
       conn+=connI[i+1]-connI[i];
     }
   ret->setName("Warp");
@@ -6332,16 +6385,16 @@ MEDCouplingFieldDouble *MEDCouplingUMesh::getSkewField() const
     {
       INTERP_KERNEL::NormalizedCellType t=(INTERP_KERNEL::NormalizedCellType)*conn;
       switch(t)
-        {
-          case INTERP_KERNEL::NORM_QUAD4:
-            {
-              FillInCompact3DMode(3,4,conn+1,coo,tmp);
-              *pt=INTERP_KERNEL::quadSkew(tmp);
-              break;
-            }
+      {
+        case INTERP_KERNEL::NORM_QUAD4:
+          {
+            FillInCompact3DMode(3,4,conn+1,coo,tmp);
+            *pt=INTERP_KERNEL::quadSkew(tmp);
+            break;
+          }
         default:
           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::getSkewField : A cell with not manged type (NORM_QUAD4) has been detected !");
-        }
+      }
       conn+=connI[i+1]-connI[i];
     }
   ret->setName("Skew");
@@ -6471,7 +6524,7 @@ DataArrayDouble *MEDCouplingUMesh::getBoundingBoxForBBTree2DQuadratic(double arc
         pol=INTERP_KERNEL::QuadraticPolygon::BuildLinearPolygon(nodes);
       else
         pol=INTERP_KERNEL::QuadraticPolygon::BuildArcCirclePolygon(nodes);
-      INTERP_KERNEL::Bounds b; pol->fillBounds(b); delete pol;
+      INTERP_KERNEL::Bounds b; b.prepareForAggregation(); pol->fillBounds(b); delete pol;
       bbox[0]=b.getXMin(); bbox[1]=b.getXMax(); bbox[2]=b.getYMin(); bbox[3]=b.getYMax(); 
     }
   return ret.retn();
@@ -7052,7 +7105,7 @@ std::vector<MEDCouplingUMesh *> MEDCouplingUMesh::splitByType() const
 MEDCoupling1GTUMesh *MEDCouplingUMesh::convertIntoSingleGeoTypeMesh() const
 {
   checkConnectivityFullyDefined();
-    if(_types.size()!=1)
+  if(_types.size()!=1)
     throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertIntoSingleGeoTypeMesh : current mesh does not contain exactly one geometric type !");
   INTERP_KERNEL::NormalizedCellType typ=*_types.begin();
   MEDCouplingAutoRefCountObjectPtr<MEDCoupling1GTUMesh> ret=MEDCoupling1GTUMesh::New(getName(),typ);
@@ -7079,7 +7132,7 @@ MEDCoupling1GTUMesh *MEDCouplingUMesh::convertIntoSingleGeoTypeMesh() const
 DataArrayInt *MEDCouplingUMesh::convertNodalConnectivityToStaticGeoTypeMesh() const
 {
   checkConnectivityFullyDefined();
-    if(_types.size()!=1)
+  if(_types.size()!=1)
     throw INTERP_KERNEL::Exception("MEDCouplingUMesh::convertNodalConnectivityToStaticGeoTypeMesh : current mesh does not contain exactly one geometric type !");
   INTERP_KERNEL::NormalizedCellType typ=*_types.begin();
   const INTERP_KERNEL::CellModel& cm=INTERP_KERNEL::CellModel::GetCellModel(typ);
@@ -7160,7 +7213,7 @@ void MEDCouplingUMesh::convertNodalConnectivityToDynamicGeoTypeMesh(DataArrayInt
  */
 MEDCouplingUMesh *MEDCouplingUMesh::AggregateSortedByTypeMeshesOnSameCoords(const std::vector<const MEDCouplingUMesh *>& ms,
                                                                             DataArrayInt *&szOfCellGrpOfSameType,
-                                                                            DataArrayInt *&idInMsOfCellGrpOfSameType) throw(INTERP_KERNEL::Exception)
+                                                                            DataArrayInt *&idInMsOfCellGrpOfSameType)
 {
   std::vector<const MEDCouplingUMesh *> ms2;
   for(std::vector<const MEDCouplingUMesh *>::const_iterator it=ms.begin();it!=ms.end();it++)
@@ -7586,7 +7639,7 @@ MEDCouplingUMesh *MEDCouplingUMesh::MergeUMeshes(const MEDCouplingUMesh *mesh1,
  *  \throw If the coordinates array is not set in none of the meshes.
  *  \throw If \a a[ *i* ]->getMeshDimension() < 0.
  *  \throw If the meshes in \a a are of different dimension (getMeshDimension()).
-*/
+ */
 MEDCouplingUMesh *MEDCouplingUMesh::MergeUMeshes(std::vector<const MEDCouplingUMesh *>& a)
 {
   std::size_t sz=a.size();
@@ -7932,7 +7985,7 @@ void MEDCouplingUMesh::AppendExtrudedCell(const int *connBg, const int *connEnd,
   ret.push_back(cm.getExtrudedType());
   int deltaz=isQuad?2*nbOfNodesPerLev:nbOfNodesPerLev;
   switch(flatType)
-    {
+  {
     case INTERP_KERNEL::NORM_POINT1:
       {
         ret.push_back(connBg[1]);
@@ -7966,7 +8019,7 @@ void MEDCouplingUMesh::AppendExtrudedCell(const int *connBg, const int *connEnd,
     case INTERP_KERNEL::NORM_TRI6:
       {
         int conn[15]={connBg[1],connBg[2],connBg[3],connBg[1]+deltaz,connBg[2]+deltaz,connBg[3]+deltaz,connBg[4],connBg[5],connBg[6],connBg[4]+deltaz,connBg[5]+deltaz,connBg[6]+deltaz,
-                      connBg[1]+nbOfNodesPerLev,connBg[2]+nbOfNodesPerLev,connBg[3]+nbOfNodesPerLev};
+          connBg[1]+nbOfNodesPerLev,connBg[2]+nbOfNodesPerLev,connBg[3]+nbOfNodesPerLev};
         ret.insert(ret.end(),conn,conn+15);
         break;
       }
@@ -7999,7 +8052,7 @@ void MEDCouplingUMesh::AppendExtrudedCell(const int *connBg, const int *connEnd,
       }
     default:
       throw INTERP_KERNEL::Exception("A flat type has been detected that has not its extruded representation !");
-    }
+  }
 }
 
 /*!
@@ -8616,6 +8669,11 @@ std::string MEDCouplingUMesh::getVTKDataSetType() const
   return std::string("UnstructuredGrid");
 }
 
+std::string MEDCouplingUMesh::getVTKFileExtension() const
+{
+  return std::string("vtu");
+}
+
 /*!
  * Partitions the first given 2D mesh using the second given 2D mesh as a tool, and
  * returns a result mesh constituted by polygons.
@@ -8645,6 +8703,8 @@ std::string MEDCouplingUMesh::getVTKDataSetType() const
 MEDCouplingUMesh *MEDCouplingUMesh::Intersect2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2,
                                                       double eps, DataArrayInt *&cellNb1, DataArrayInt *&cellNb2)
 {
+  if(!m1 || !m2)
+    throw INTERP_KERNEL::Exception("MEDCouplingUMesh::Intersect2DMeshes : input meshes must be not NULL !");
   m1->checkFullyDefined();
   m2->checkFullyDefined();
   if(m1->getMeshDimension()!=2 || m1->getSpaceDimension()!=2 || m2->getMeshDimension()!=2 || m2->getSpaceDimension()!=2)
@@ -8655,10 +8715,8 @@ MEDCouplingUMesh *MEDCouplingUMesh::Intersect2DMeshes(const MEDCouplingUMesh *m1
   MEDCouplingUMesh *m1Desc=0,*m2Desc=0; // descending connec. meshes
   DataArrayInt *desc1=0,*descIndx1=0,*revDesc1=0,*revDescIndx1=0,*desc2=0,*descIndx2=0,*revDesc2=0,*revDescIndx2=0;
   std::vector<double> addCoo,addCoordsQuadratic;  // coordinates of newly created nodes
-  INTERP_KERNEL::QUADRATIC_PLANAR::_precision=eps;
-  INTERP_KERNEL::QUADRATIC_PLANAR::_arc_detection_precision=eps;
   IntersectDescending2DMeshes(m1,m2,eps,intersectEdge1,colinear2, subDiv2,
-                                      m1Desc,desc1,descIndx1,revDesc1,revDescIndx1,
+                              m1Desc,desc1,descIndx1,revDesc1,revDescIndx1,
                               addCoo, m2Desc,desc2,descIndx2,revDesc2,revDescIndx2);
   revDesc1->decrRef(); revDescIndx1->decrRef(); revDesc2->decrRef(); revDescIndx2->decrRef();
   MEDCouplingAutoRefCountObjectPtr<DataArrayInt> dd1(desc1),dd2(descIndx1),dd3(desc2),dd4(descIndx2);
@@ -8676,26 +8734,135 @@ MEDCouplingUMesh *MEDCouplingUMesh::Intersect2DMeshes(const MEDCouplingUMesh *m1
                                     /* outputs -> */addCoordsQuadratic,cr,crI,cNb1,cNb2);
 
   // Step 4: Prepare final result:
-  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> addCooDa=DataArrayDouble::New();
+  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> addCooDa(DataArrayDouble::New());
   addCooDa->alloc((int)(addCoo.size())/2,2);
   std::copy(addCoo.begin(),addCoo.end(),addCooDa->getPointer());
-  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> addCoordsQuadraticDa=DataArrayDouble::New();
+  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> addCoordsQuadraticDa(DataArrayDouble::New());
   addCoordsQuadraticDa->alloc((int)(addCoordsQuadratic.size())/2,2);
   std::copy(addCoordsQuadratic.begin(),addCoordsQuadratic.end(),addCoordsQuadraticDa->getPointer());
   std::vector<const DataArrayDouble *> coordss(4);
   coordss[0]=m1->getCoords(); coordss[1]=m2->getCoords(); coordss[2]=addCooDa; coordss[3]=addCoordsQuadraticDa;
-  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> coo=DataArrayDouble::Aggregate(coordss);
-  MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> ret=MEDCouplingUMesh::New("Intersect2D",2);
-  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> conn=DataArrayInt::New(); conn->alloc((int)cr.size(),1); std::copy(cr.begin(),cr.end(),conn->getPointer());
-  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> connI=DataArrayInt::New(); connI->alloc((int)crI.size(),1); std::copy(crI.begin(),crI.end(),connI->getPointer());
-  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> c1=DataArrayInt::New(); c1->alloc((int)cNb1.size(),1); std::copy(cNb1.begin(),cNb1.end(),c1->getPointer());
-  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> c2=DataArrayInt::New(); c2->alloc((int)cNb2.size(),1); std::copy(cNb2.begin(),cNb2.end(),c2->getPointer());
+  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> coo(DataArrayDouble::Aggregate(coordss));
+  MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> ret(MEDCouplingUMesh::New("Intersect2D",2));
+  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> conn(DataArrayInt::New()); conn->alloc((int)cr.size(),1); std::copy(cr.begin(),cr.end(),conn->getPointer());
+  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> connI(DataArrayInt::New()); connI->alloc((int)crI.size(),1); std::copy(crI.begin(),crI.end(),connI->getPointer());
+  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> c1(DataArrayInt::New()); c1->alloc((int)cNb1.size(),1); std::copy(cNb1.begin(),cNb1.end(),c1->getPointer());
+  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> c2(DataArrayInt::New()); c2->alloc((int)cNb2.size(),1); std::copy(cNb2.begin(),cNb2.end(),c2->getPointer());
   ret->setConnectivity(conn,connI,true);
   ret->setCoords(coo);
   cellNb1=c1.retn(); cellNb2=c2.retn();
   return ret.retn();
 }
 
+//tony to put in private of MEDCouplingUMesh
+MEDCouplingUMesh *BuildMesh1DCutFrom(const MEDCouplingUMesh *mesh1D, const std::vector< std::vector<int> >& intersectEdge2, const DataArrayDouble *coords1, const std::vector<double>& addCoo)
+{
+  int nCells(mesh1D->getNumberOfCells());
+  if(nCells!=(int)intersectEdge2.size())
+    throw INTERP_KERNEL::Exception("BuildMesh1DCutFrom : internal error # 1 !");
+  const DataArrayDouble *coo2(mesh1D->getCoords());
+  const int *c(mesh1D->getNodalConnectivity()->begin()),*ci(mesh1D->getNodalConnectivityIndex()->begin());
+  const double *coo2Ptr(coo2->begin());
+  int offset1(coords1->getNumberOfTuples());
+  int offset2(offset1+coo2->getNumberOfTuples());
+  int offset3(offset2+addCoo.size()/2);
+  std::vector<double> addCooQuad;
+  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> cOut(DataArrayInt::New()),ciOut(DataArrayInt::New()); cOut->alloc(0,1); ciOut->alloc(1,1); ciOut->setIJ(0,0,0);
+  int tmp[4],cicnt(0);
+  for(int i=0;i<nCells;i++)
+    {
+      std::map<INTERP_KERNEL::Node *,int> m;
+      INTERP_KERNEL::Edge *e(MEDCouplingUMeshBuildQPFromEdge2((INTERP_KERNEL::NormalizedCellType)c[ci[i]],c+ci[i]+1,coo2Ptr,m));
+      const std::vector<int>& subEdges(intersectEdge2[i]);
+      int nbSubEdge(subEdges.size()/2);
+      for(int j=0;j<nbSubEdge;j++)
+        {
+          MEDCouplingAutoRefCountObjectPtr<INTERP_KERNEL::Node> n1(MEDCouplingUMeshBuildQPNode(subEdges[2*j],coords1->begin(),offset1,coo2Ptr,offset2,addCoo));
+          MEDCouplingAutoRefCountObjectPtr<INTERP_KERNEL::Node> n2(MEDCouplingUMeshBuildQPNode(subEdges[2*j+1],coords1->begin(),offset1,coo2Ptr,offset2,addCoo));
+          MEDCouplingAutoRefCountObjectPtr<INTERP_KERNEL::Edge> e2(e->buildEdgeLyingOnMe(n1,n2));
+          INTERP_KERNEL::Edge *e2Ptr(e2);
+          if(dynamic_cast<INTERP_KERNEL::EdgeArcCircle *>(e2Ptr))
+            {
+              tmp[0]=INTERP_KERNEL::NORM_SEG3;
+              tmp[1]=subEdges[2*j]; tmp[2]=subEdges[2*j+1];
+              cicnt+=4;
+              cOut->insertAtTheEnd(tmp,tmp+4);
+              ciOut->pushBackSilent(cicnt);
+            }
+          else
+            {
+              tmp[0]=INTERP_KERNEL::NORM_SEG2;
+              tmp[1]=subEdges[2*j]; tmp[2]=subEdges[2*j+1]; tmp[3]=offset3+(int)addCooQuad.size()/2;
+              cicnt+=3;
+              cOut->insertAtTheEnd(tmp,tmp+3);
+              ciOut->pushBackSilent(cicnt);
+            }
+        }
+      //INTERP_KERNEL::Edge *e2(e->buildEdgeLyingOnMe());
+      for(std::map<INTERP_KERNEL::Node *,int>::const_iterator it2=m.begin();it2!=m.end();it2++)
+        (*it2).first->decrRef();
+      e->decrRef();
+    }
+  MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> ret(MEDCouplingUMesh::New(mesh1D->getName(),1));
+  ret->setConnectivity(cOut,ciOut,true);
+  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> arr3(DataArrayDouble::New());
+  arr3->useArray(&addCoo[0],false,C_DEALLOC,(int)addCoo.size()/2,2);
+  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> arr4(DataArrayDouble::New()); arr4->useArray(&addCooQuad[0],false,C_DEALLOC,(int)addCooQuad.size()/2,2);
+  std::vector<const DataArrayDouble *> coordss(4);
+  coordss[0]=coords1; coordss[1]=mesh1D->getCoords(); coordss[2]=arr3; coordss[3]=arr4;
+  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> arr(DataArrayDouble::Aggregate(coordss));
+  ret->setCoords(arr);
+  return ret.retn();
+}
+
+/*!
+ * Partitions the first given 2D mesh using the second given 1D mesh as a tool.
+ * Thus the final result contains all nodes from m1 plus new nodes. However it doesn't necessarily contains
+ * all nodes from \a mesh1D.
+ * The meshes should be in 2D space. In addition, returns two arrays mapping cells of the resulting mesh to cells of the input.
+ *
+ * \param [in] mesh2D - the 2D mesh (spacedim=meshdim=2) to be intersected using \a mesh1D tool.
+ * \param [in] mesh1D - the 1D mesh (spacedim=2 meshdim=1) the is the tool that will be used to intersect \a mesh2D.
+ * \param [in] eps - precision used to perform intersections and localization operations.
+ * \param [out] splitMesh2D - the result of the split of \a mesh2D mesh.
+ * \param [out] splitMesh1D - the result of the split of \a mesh1D mesh.
+ * \param [out] cellIdInMesh2D - the array that gives for each cell id \a i in \a splitMesh2D the id in \a mesh2D it comes from.
+ *                               So this array has a number of tuples equal to the number of cells of \a splitMesh2D and a number of component equal to 1.
+ * \param [out] cellIdInMesh1D - the array that gives for each cell id \a i in \a splitMesh1D the 1 or 2 id(s) in \a splitMesh2D that \a i shares.
+ *                               So this array has a number of tuples equal to the number of cells of \a splitMesh1D and a number of components equal to 2.
+ */
+void MEDCouplingUMesh::Intersect2DMeshWith1DLine(const MEDCouplingUMesh *mesh2D, const MEDCouplingUMesh *mesh1D, double eps, MEDCouplingUMesh *&splitMesh2D, MEDCouplingUMesh *&splitMesh1D, DataArrayInt *&cellIdInMesh2D, DataArrayInt *&cellIdInMesh1D)
+{
+  if(!mesh2D || !mesh1D)
+    throw INTERP_KERNEL::Exception("MEDCouplingUMesh::Intersect2DMeshWith1DLine : input meshes must be not NULL !");
+  mesh2D->checkFullyDefined();
+  mesh1D->checkFullyDefined();
+  if(mesh2D->getMeshDimension()!=2 || mesh2D->getSpaceDimension()!=2 || mesh1D->getMeshDimension()!=1 || mesh1D->getSpaceDimension()!=2)
+    throw INTERP_KERNEL::Exception("MEDCouplingUMesh::Intersect2DMeshWith1DLine works with mesh2D with spacedim=meshdim=2 and mesh1D with meshdim=1 spaceDim=2 !");
+  // Step 1: compute all edge intersections (new nodes)
+  std::vector< std::vector<int> > intersectEdge1, colinear2, subDiv2;
+  std::vector<double> addCoo,addCoordsQuadratic;  // coordinates of newly created nodes
+  INTERP_KERNEL::QUADRATIC_PLANAR::_precision=eps;
+  INTERP_KERNEL::QUADRATIC_PLANAR::_arc_detection_precision=eps;
+  //
+  // Build desc connectivity
+  DataArrayInt *desc1(DataArrayInt::New()),*descIndx1(DataArrayInt::New()),*revDesc1(DataArrayInt::New()),*revDescIndx1(DataArrayInt::New());
+  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> dd1(desc1),dd2(descIndx1),dd3(revDesc1),dd4(revDescIndx1);
+  MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> m1Desc(mesh2D->buildDescendingConnectivity2(desc1,descIndx1,revDesc1,revDescIndx1));
+  Intersect1DMeshes(m1Desc,mesh1D,eps,intersectEdge1,colinear2,subDiv2,addCoo);
+  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> addCooDa(DataArrayDouble::New());
+  addCooDa->useArray(&addCoo[0],false,C_DEALLOC,(int)addCoo.size()/2,2);
+  // Step 2: re-order newly created nodes according to the ordering found in m2
+  std::vector< std::vector<int> > intersectEdge2;
+  BuildIntersectEdges(m1Desc,mesh1D,addCoo,subDiv2,intersectEdge2);
+  subDiv2.clear();
+  //
+  MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> ret1(BuildMesh1DCutFrom(mesh1D,intersectEdge2,mesh2D->getCoords(),addCoo));
+  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> baryRet1(ret1->getBarycenterAndOwner());
+  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> elts,eltsIndex;
+  mesh2D->getCellsContainingPoints(baryRet1->begin(),baryRet1->getNumberOfTuples(),eps,elts,eltsIndex);
+  splitMesh1D=ret1.retn();
+}
 
 /**
  * Private. Third step of the partitioning algorithm (Intersect2DMeshes): reconstruct full 2D cells from the
@@ -8712,20 +8879,18 @@ void MEDCouplingUMesh::BuildIntersecting2DCellsFromEdges(double eps, const MEDCo
                                                          std::vector<double>& addCoordsQuadratic, std::vector<int>& cr, std::vector<int>& crI, std::vector<int>& cNb1, std::vector<int>& cNb2)
 {
   static const int SPACEDIM=2;
-  const double *coo1=m1->getCoords()->getConstPointer();
-  const int *conn1=m1->getNodalConnectivity()->getConstPointer();
-  const int *connI1=m1->getNodalConnectivityIndex()->getConstPointer();
-  int offset1=m1->getNumberOfNodes();
-  const double *coo2=m2->getCoords()->getConstPointer();
-  const int *conn2=m2->getNodalConnectivity()->getConstPointer();
-  const int *connI2=m2->getNodalConnectivityIndex()->getConstPointer();
-  int offset2=offset1+m2->getNumberOfNodes();
-  int offset3=offset2+((int)addCoords.size())/2;
+  const double *coo1(m1->getCoords()->getConstPointer());
+  const int *conn1(m1->getNodalConnectivity()->getConstPointer()),*connI1(m1->getNodalConnectivityIndex()->getConstPointer());
+  int offset1(m1->getNumberOfNodes());
+  const double *coo2(m2->getCoords()->getConstPointer());
+  const int *conn2(m2->getNodalConnectivity()->getConstPointer()),*connI2(m2->getNodalConnectivityIndex()->getConstPointer());
+  int offset2(offset1+m2->getNumberOfNodes());
+  int offset3(offset2+((int)addCoords.size())/2);
   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> bbox1Arr(m1->getBoundingBoxForBBTree()),bbox2Arr(m2->getBoundingBoxForBBTree());
   const double *bbox1(bbox1Arr->begin()),*bbox2(bbox2Arr->begin());
   // Here a BBTree on 2D-cells, not on segments:
   BBTree<SPACEDIM,int> myTree(bbox2,0,0,m2->getNumberOfCells(),eps);
-  int ncell1=m1->getNumberOfCells();
+  int ncell1(m1->getNumberOfCells());
   crI.push_back(0);
   for(int i=0;i<ncell1;i++)
     {
@@ -8740,7 +8905,7 @@ void MEDCouplingUMesh::BuildIntersecting2DCellsFromEdges(double eps, const MEDCo
       MEDCouplingUMeshBuildQPFromMesh3(coo1,offset1,coo2,offset2,addCoords,desc1+descIndx1[i],desc1+descIndx1[i+1],intesctEdges1,/* output */mapp,mappRev);
       // pol1 is the full cell from mesh2, in QP format, with all the additional intersecting nodes.
       pol1.buildFromCrudeDataArray(mappRev,cm.isQuadratic(),conn1+connI1[i]+1,coo1,
-                                   desc1+descIndx1[i],desc1+descIndx1[i+1],intesctEdges1);
+          desc1+descIndx1[i],desc1+descIndx1[i+1],intesctEdges1);
       //
       std::set<INTERP_KERNEL::Edge *> edges1;// store all edges of pol1 that are NOT consumed by intersect cells. If any after iteration over candidates2 -> a part of pol1 should appear in result
       std::set<INTERP_KERNEL::Edge *> edgesBoundary2;// store all edges that are on boundary of (pol2 intersect pol1) minus edges on pol1.
@@ -8759,12 +8924,12 @@ void MEDCouplingUMesh::BuildIntersecting2DCellsFromEdges(double eps, const MEDCo
           MEDCouplingUMeshBuildQPFromMesh3(coo1,offset1,coo2,offset2,addCoords,desc2+descIndx2[*it2],desc2+descIndx2[*it2+1],intesctEdges2,/* output */mapp,mappRev);
           // pol2 is the new QP in the final merged result.
           pol2s[ii].buildFromCrudeDataArray2(mappRev,cm2.isQuadratic(),conn2+connI2[*it2]+1,coo2,desc2+descIndx2[*it2],desc2+descIndx2[*it2+1],intesctEdges2,
-                                             pol1,desc1+descIndx1[i],desc1+descIndx1[i+1],intesctEdges1,colinear2, /* output */ edgesIn2ForShare);
+              pol1,desc1+descIndx1[i],desc1+descIndx1[i+1],intesctEdges1,colinear2, /* output */ edgesIn2ForShare);
         }
       ii=0;
       for(std::vector<int>::const_iterator it2=candidates2.begin();it2!=candidates2.end();it2++,ii++)
         {
-          pol1.initLocationsWithOther(pol2s[ii]);
+          INTERP_KERNEL::ComposedEdge::InitLocationsWithOther(pol1,pol2s[ii]);
           pol2s[ii].updateLocOfEdgeFromCrudeDataArray2(desc2+descIndx2[*it2],desc2+descIndx2[*it2+1],intesctEdges2,pol1,desc1+descIndx1[i],desc1+descIndx1[i+1],intesctEdges1,colinear2);
           //MEDCouplingUMeshAssignOnLoc(pol1,pol2,desc1+descIndx1[i],desc1+descIndx1[i+1],intesctEdges1,desc2+descIndx2[*it2],desc2+descIndx2[*it2+1],intesctEdges2,colinear2);
           pol1.buildPartitionsAbs(pol2s[ii],edges1,edgesBoundary2,mapp,i,*it2,offset3,addCoordsQuadratic,cr,crI,cNb1,cNb2);
@@ -8774,14 +8939,14 @@ void MEDCouplingUMesh::BuildIntersecting2DCellsFromEdges(double eps, const MEDCo
       if(!edges1.empty())
         {
           try
-            {
+          {
               INTERP_KERNEL::QuadraticPolygon::ComputeResidual(pol1,edges1,edgesBoundary2,mapp,offset3,i,addCoordsQuadratic,cr,crI,cNb1,cNb2);
-            }
+          }
           catch(INTERP_KERNEL::Exception& e)
-            {
+          {
               std::ostringstream oss; oss << "Error when computing residual of cell #" << i << " in source/m1 mesh ! Maybe the neighbours of this cell in mesh are not well connected !\n" << "The deep reason is the following : " << e.what();
               throw INTERP_KERNEL::Exception(oss.str().c_str());
-            }
+          }
         }
       for(std::map<int,INTERP_KERNEL::Node *>::const_iterator it=mappRev.begin();it!=mappRev.end();it++)
         (*it).second->decrRef();
@@ -8853,9 +9018,11 @@ int MEDCouplingUMesh::split2DCells(const DataArrayInt *desc, const DataArrayInt
  * \b WARNING this method is \b potentially \b non \b const (if returned array is empty).
  * \b WARNING this method lead to have a non geometric type sorted mesh (for MED file users) !
  * This method performs a conformization of \b this. So if a edge in \a this can be split into entire edges in \a this this method
- * will suppress such edges to use sub edges in \a this. So this method does not add nodes in \a this if merged edges have same nature each other (Linear,Quadratic).
+ * will suppress such edges to use sub edges in \a this. So this method does not add nodes in \a this if merged edges are both linear (INTERP_KERNEL::NORM_SEG2).
+ * In the other cases new nodes can be created. If any are created, they will be appended at the end of the coordinates object before the invokation of this method.
+ * 
  * Whatever the returned value, this method does not alter the order of cells in \a this neither the orientation of cells.
- * The modified cells if any are systematically declared as NORM_POLYGON or NORM_QPOLYG depending on the 
+ * The modified cells, if any, are systematically declared as NORM_POLYGON or NORM_QPOLYG depending on the initial quadraticness of geometric type.
  *
  * This method expects that \b this has a meshDim equal 2 and spaceDim equal to 2 too.
  * This method expects that all nodes in \a this are not closer than \a eps.
@@ -8896,7 +9063,7 @@ DataArrayInt *MEDCouplingUMesh::conformize2D(double eps)
           {
             std::map<INTERP_KERNEL::Node *,int> m;
             INTERP_KERNEL::Edge *e1(MEDCouplingUMeshBuildQPFromEdge2((INTERP_KERNEL::NormalizedCellType)c[ci[i]],c+ci[i]+1,coords,m)),
-              *e2(MEDCouplingUMeshBuildQPFromEdge2((INTERP_KERNEL::NormalizedCellType)c[ci[*it]],c+ci[*it]+1,coords,m));
+                *e2(MEDCouplingUMeshBuildQPFromEdge2((INTERP_KERNEL::NormalizedCellType)c[ci[*it]],c+ci[*it]+1,coords,m));
             INTERP_KERNEL::MergePoints merge;
             INTERP_KERNEL::QuadraticPolygon c1,c2;
             e1->intersectWith(e2,merge,c1,c2);
@@ -9047,46 +9214,32 @@ DataArrayInt *MEDCouplingUMesh::colinearize2D(double eps)
 }
 
 /*!
- * This method is private and is the first step of Partition of 2D mesh (spaceDim==2 and meshDim==2).
- * It builds the descending connectivity of the two meshes, and then using a binary tree
- * it computes the edge intersections. This results in new points being created : they're stored in addCoo.
- * Documentation about parameters  colinear2 and subDiv2 can be found in method QuadraticPolygon::splitAbs().
+ * \param [out] intersectEdge1 - for each cell in \a m1Desc returns the result of the split. The result is given using pair of int given resp start and stop.
+ *                               So for all edge \a i in \a m1Desc \a  intersectEdge1[i] is of length 2*n where n is the number of sub edges.
+ *                               And for each j in [1,n) intersect[i][2*(j-1)+1]==intersect[i][2*j].
+ * \param [out] subDiv2 - for each cell in \a m2Desc returns nodes that split it using convention \a m1Desc first, then \a m2Desc, then addCoo
+ * \param [out] colinear2 - for each cell in \a m2Desc returns the edges in \a m1Desc that are colinear to it.
+ * \param [out] addCoo - nodes to be append at the end
  */
-void MEDCouplingUMesh::IntersectDescending2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps,
-                                                   std::vector< std::vector<int> >& intersectEdge1, std::vector< std::vector<int> >& colinear2, std::vector< std::vector<int> >& subDiv2,
-                                                   MEDCouplingUMesh *& m1Desc, DataArrayInt *&desc1, DataArrayInt *&descIndx1, DataArrayInt *&revDesc1, DataArrayInt *&revDescIndx1,
-                                                   std::vector<double>& addCoo,
-                                                   MEDCouplingUMesh *& m2Desc, DataArrayInt *&desc2, DataArrayInt *&descIndx2, DataArrayInt *&revDesc2, DataArrayInt *&revDescIndx2)
-                                                   throw(INTERP_KERNEL::Exception)
+void MEDCouplingUMesh::Intersect1DMeshes(const MEDCouplingUMesh *m1Desc, const MEDCouplingUMesh *m2Desc, double eps,
+                                         std::vector< std::vector<int> >& intersectEdge1, std::vector< std::vector<int> >& colinear2, std::vector< std::vector<int> >& subDiv2, std::vector<double>& addCoo)
 {
   static const int SPACEDIM=2;
-  // Build desc connectivity
-  desc1=DataArrayInt::New(); descIndx1=DataArrayInt::New(); revDesc1=DataArrayInt::New(); revDescIndx1=DataArrayInt::New();
-  desc2=DataArrayInt::New();
-  descIndx2=DataArrayInt::New();
-  revDesc2=DataArrayInt::New();
-  revDescIndx2=DataArrayInt::New();
-  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> dd1(desc1),dd2(descIndx1),dd3(revDesc1),dd4(revDescIndx1);
-  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> dd5(desc2),dd6(descIndx2),dd7(revDesc2),dd8(revDescIndx2);
-  m1Desc=m1->buildDescendingConnectivity2(desc1,descIndx1,revDesc1,revDescIndx1);
-  m2Desc=m2->buildDescendingConnectivity2(desc2,descIndx2,revDesc2,revDescIndx2);
-  MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> dd9(m1Desc),dd10(m2Desc);
-  const int *c1=m1Desc->getNodalConnectivity()->getConstPointer();
-  const int *ci1=m1Desc->getNodalConnectivityIndex()->getConstPointer();
-
+  INTERP_KERNEL::QUADRATIC_PLANAR::_precision=eps;
+  INTERP_KERNEL::QUADRATIC_PLANAR::_arc_detection_precision=eps;
+  const int *c1(m1Desc->getNodalConnectivity()->getConstPointer()),*ci1(m1Desc->getNodalConnectivityIndex()->getConstPointer());
   // Build BB tree of all edges in the tool mesh (second mesh)
   MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> bbox1Arr(m1Desc->getBoundingBoxForBBTree()),bbox2Arr(m2Desc->getBoundingBoxForBBTree());
   const double *bbox1(bbox1Arr->begin()),*bbox2(bbox2Arr->begin());
-  int nDescCell1=m1Desc->getNumberOfCells();
-  int nDescCell2=m2Desc->getNumberOfCells();
+  int nDescCell1(m1Desc->getNumberOfCells()),nDescCell2(m2Desc->getNumberOfCells());
   intersectEdge1.resize(nDescCell1);
   colinear2.resize(nDescCell2);
   subDiv2.resize(nDescCell2);
   BBTree<SPACEDIM,int> myTree(bbox2,0,0,m2Desc->getNumberOfCells(),-eps);
 
   std::vector<int> candidates1(1);
-  int offset1=m1->getNumberOfNodes();
-  int offset2=offset1+m2->getNumberOfNodes();
+  int offset1(m1Desc->getNumberOfNodes());
+  int offset2(offset1+m2Desc->getNumberOfNodes());
   for(int i=0;i<nDescCell1;i++)  // for all edges in the first mesh
     {
       std::vector<int> candidates2; // edges of mesh2 candidate for intersection
@@ -9116,6 +9269,32 @@ void MEDCouplingUMesh::IntersectDescending2DMeshes(const MEDCouplingUMesh *m1, c
       else
         intersectEdge1[i].insert(intersectEdge1[i].end(),c1+ci1[i]+1,c1+ci1[i+1]);
     }
+}
+
+/*!
+ * This method is private and is the first step of Partition of 2D mesh (spaceDim==2 and meshDim==2).
+ * It builds the descending connectivity of the two meshes, and then using a binary tree
+ * it computes the edge intersections. This results in new points being created : they're stored in addCoo.
+ * Documentation about parameters  colinear2 and subDiv2 can be found in method QuadraticPolygon::splitAbs().
+ */
+void MEDCouplingUMesh::IntersectDescending2DMeshes(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2, double eps,
+                                                   std::vector< std::vector<int> >& intersectEdge1, std::vector< std::vector<int> >& colinear2, std::vector< std::vector<int> >& subDiv2,
+                                                   MEDCouplingUMesh *& m1Desc, DataArrayInt *&desc1, DataArrayInt *&descIndx1, DataArrayInt *&revDesc1, DataArrayInt *&revDescIndx1,
+                                                   std::vector<double>& addCoo,
+                                                   MEDCouplingUMesh *& m2Desc, DataArrayInt *&desc2, DataArrayInt *&descIndx2, DataArrayInt *&revDesc2, DataArrayInt *&revDescIndx2)
+{
+  // Build desc connectivity
+  desc1=DataArrayInt::New(); descIndx1=DataArrayInt::New(); revDesc1=DataArrayInt::New(); revDescIndx1=DataArrayInt::New();
+  desc2=DataArrayInt::New();
+  descIndx2=DataArrayInt::New();
+  revDesc2=DataArrayInt::New();
+  revDescIndx2=DataArrayInt::New();
+  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> dd1(desc1),dd2(descIndx1),dd3(revDesc1),dd4(revDescIndx1);
+  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> dd5(desc2),dd6(descIndx2),dd7(revDesc2),dd8(revDescIndx2);
+  m1Desc=m1->buildDescendingConnectivity2(desc1,descIndx1,revDesc1,revDescIndx1);
+  m2Desc=m2->buildDescendingConnectivity2(desc2,descIndx2,revDesc2,revDescIndx2);
+  MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> dd9(m1Desc),dd10(m2Desc);
+  Intersect1DMeshes(m1Desc,m2Desc,eps,intersectEdge1,colinear2,subDiv2,addCoo);
   m1Desc->incrRef(); desc1->incrRef(); descIndx1->incrRef(); revDesc1->incrRef(); revDescIndx1->incrRef();
   m2Desc->incrRef(); desc2->incrRef(); descIndx2->incrRef(); revDesc2->incrRef(); revDescIndx2->incrRef();
 }
@@ -9135,8 +9314,8 @@ void MEDCouplingUMesh::IntersectDescending2DMeshes(const MEDCouplingUMesh *m1, c
  * \param[out] intersectEdge the same content as subDiv, but correclty oriented.
  */
 void MEDCouplingUMesh::BuildIntersectEdges(const MEDCouplingUMesh *m1, const MEDCouplingUMesh *m2,
-      const std::vector<double>& addCoo,
-      const std::vector< std::vector<int> >& subDiv, std::vector< std::vector<int> >& intersectEdge)
+                                           const std::vector<double>& addCoo,
+                                           const std::vector< std::vector<int> >& subDiv, std::vector< std::vector<int> >& intersectEdge)
 {
   int offset1=m1->getNumberOfNodes();
   int ncell=m2->getNumberOfCells();
@@ -9201,7 +9380,7 @@ void MEDCouplingUMesh::BuildIntersectEdges(const MEDCouplingUMesh *m1, const MED
 void MEDCouplingUMesh::AssemblyForSplitFrom3DCurve(const std::vector<int>& cut3DCurve, std::vector<int>& nodesOnPlane, const int *nodal3DSurf, const int *nodalIndx3DSurf,
                                                    const int *nodal3DCurve, const int *nodalIndx3DCurve,
                                                    const int *desc, const int *descIndx, 
-                                                   std::vector< std::pair<int,int> >& cut3DSurf) throw(INTERP_KERNEL::Exception)
+                                                   std::vector< std::pair<int,int> >& cut3DSurf)
 {
   std::set<int> nodesOnP(nodesOnPlane.begin(),nodesOnPlane.end());
   int nbOf3DSurfCell=(int)cut3DSurf.size();
@@ -9226,7 +9405,7 @@ void MEDCouplingUMesh::AssemblyForSplitFrom3DCurve(const std::vector<int>& cut3D
             }
         }
       switch(res.size())
-        {
+      {
         case 2:
           {
             cut3DSurf[i].first=res[0]; cut3DSurf[i].second=res[1];
@@ -9256,7 +9435,7 @@ void MEDCouplingUMesh::AssemblyForSplitFrom3DCurve(const std::vector<int>& cut3D
             else
               throw INTERP_KERNEL::Exception("MEDCouplingUMesh::AssemblyPointsFrom3DCurve : unexpected situation !");
           }
-        }
+      }
     }
 }
 
@@ -9271,7 +9450,7 @@ void MEDCouplingUMesh::AssemblyForSplitFrom3DCurve(const std::vector<int>& cut3D
  */
 void MEDCouplingUMesh::assemblyForSplitFrom3DSurf(const std::vector< std::pair<int,int> >& cut3DSurf,
                                                   const int *desc, const int *descIndx,
-                                                  DataArrayInt *nodalRes, DataArrayInt *nodalResIndx, DataArrayInt *cellIds) const throw(INTERP_KERNEL::Exception)
+                                                  DataArrayInt *nodalRes, DataArrayInt *nodalResIndx, DataArrayInt *cellIds) const
 {
   checkFullyDefined();
   if(getMeshDimension()!=3 || getSpaceDimension()!=3)
@@ -9500,7 +9679,7 @@ bool MEDCouplingUMesh::RemoveIdsFromIndexedArrays(const int *idsToRemoveBg, cons
  * \sa MEDCouplingUMesh::ExtractFromIndexedArrays2
  */
 void MEDCouplingUMesh::ExtractFromIndexedArrays(const int *idsOfSelectBg, const int *idsOfSelectEnd, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
-                                                DataArrayInt* &arrOut, DataArrayInt* &arrIndexOut) throw(INTERP_KERNEL::Exception)
+                                                DataArrayInt* &arrOut, DataArrayInt* &arrIndexOut)
 {
   if(!arrIn || !arrIndxIn)
     throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays : input pointer is NULL !");
@@ -9572,7 +9751,7 @@ void MEDCouplingUMesh::ExtractFromIndexedArrays(const int *idsOfSelectBg, const
  * \sa MEDCouplingUMesh::ExtractFromIndexedArrays
  */
 void MEDCouplingUMesh::ExtractFromIndexedArrays2(int idsOfSelectStart, int idsOfSelectStop, int idsOfSelectStep, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
-                                                 DataArrayInt* &arrOut, DataArrayInt* &arrIndexOut) throw(INTERP_KERNEL::Exception)
+                                                 DataArrayInt* &arrOut, DataArrayInt* &arrIndexOut)
 {
   if(!arrIn || !arrIndxIn)
     throw INTERP_KERNEL::Exception("MEDCouplingUMesh::ExtractFromIndexedArrays2 : input pointer is NULL !");
@@ -9648,7 +9827,7 @@ void MEDCouplingUMesh::ExtractFromIndexedArrays2(int idsOfSelectStart, int idsOf
  */
 void MEDCouplingUMesh::SetPartOfIndexedArrays(const int *idsOfSelectBg, const int *idsOfSelectEnd, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
                                               const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex,
-                                              DataArrayInt* &arrOut, DataArrayInt* &arrIndexOut) throw(INTERP_KERNEL::Exception)
+                                              DataArrayInt* &arrOut, DataArrayInt* &arrIndexOut)
 {
   if(arrIn==0 || arrIndxIn==0 || srcArr==0 || srcArrIndex==0)
     throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays : presence of null pointer in input parameter !");
@@ -9711,7 +9890,7 @@ void MEDCouplingUMesh::SetPartOfIndexedArrays(const int *idsOfSelectBg, const in
  * \sa MEDCouplingUMesh::SetPartOfIndexedArrays
  */
 void MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx(const int *idsOfSelectBg, const int *idsOfSelectEnd, DataArrayInt *arrInOut, const DataArrayInt *arrIndxIn,
-                                                     const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
+                                                     const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex)
 {
   if(arrInOut==0 || arrIndxIn==0 || srcArr==0 || srcArrIndex==0)
     throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx : presence of null pointer in input parameter !");
@@ -9853,7 +10032,7 @@ DataArrayInt *MEDCouplingUMesh::ComputeSpreadZoneGraduallyFromSeedAlg(std::vecto
  */
 void MEDCouplingUMesh::SetPartOfIndexedArrays2(int start, int end, int step, const DataArrayInt *arrIn, const DataArrayInt *arrIndxIn,
                                                const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex,
-                                               DataArrayInt* &arrOut, DataArrayInt* &arrIndexOut) throw(INTERP_KERNEL::Exception)
+                                               DataArrayInt* &arrOut, DataArrayInt* &arrIndexOut)
 {
   if(arrIn==0 || arrIndxIn==0 || srcArr==0 || srcArrIndex==0)
     throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArrays2 : presence of null pointer in input parameter !");
@@ -9915,7 +10094,7 @@ void MEDCouplingUMesh::SetPartOfIndexedArrays2(int start, int end, int step, con
  * \sa MEDCouplingUMesh::SetPartOfIndexedArrays2 MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx
  */
 void MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx2(int start, int end, int step, DataArrayInt *arrInOut, const DataArrayInt *arrIndxIn,
-                                                      const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex) throw(INTERP_KERNEL::Exception)
+                                                      const DataArrayInt *srcArr, const DataArrayInt *srcArrIndex)
 {
   if(arrInOut==0 || arrIndxIn==0 || srcArr==0 || srcArrIndex==0)
     throw INTERP_KERNEL::Exception("MEDCouplingUMesh::SetPartOfIndexedArraysSameIdx2 : presence of null pointer in input parameter !");
@@ -9974,7 +10153,7 @@ MEDCouplingUMesh *MEDCouplingUMesh::buildSpreadZonesWithPoly() const
       MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> tmp=static_cast<MEDCouplingUMesh *>(buildPartOfMySelf((*it)->begin(),(*it)->end(),true));
       MEDCouplingAutoRefCountObjectPtr<DataArrayInt> cell;
       switch(mdim)
-        {
+      {
         case 2:
           cell=tmp->buildUnionOf2DMesh();
           break;
@@ -9983,8 +10162,8 @@ MEDCouplingUMesh *MEDCouplingUMesh::buildSpreadZonesWithPoly() const
           break;
         default:
           throw INTERP_KERNEL::Exception("MEDCouplingUMesh::buildSpreadZonesWithPoly : meshdimension supported are [2,3] ! Not implemented yet for others !");
-        }
-      
+      }
+
       ret->insertNextCell((INTERP_KERNEL::NormalizedCellType)cell->getIJSafe(0,0),cell->getNumberOfTuples()-1,cell->getConstPointer()+1);
     }
   //
@@ -10282,6 +10461,8 @@ bool MEDCouplingUMesh::Colinearize2DCell(const double *coords, const int *connBg
                         }
                       delete eint;
                       eCand->decrRef();
+                      if(!isColinear)
+                        break;
                     }
                 }
               break;
@@ -10366,7 +10547,7 @@ int MEDCouplingUMesh::split2DCellsQuadratic(const DataArrayInt *desc, const Data
 }
 
 MEDCouplingUMeshCellIterator::MEDCouplingUMeshCellIterator(MEDCouplingUMesh *mesh):_mesh(mesh),_cell(new MEDCouplingUMeshCell(mesh)),
-                                                                                   _own_cell(true),_cell_id(-1),_nb_cell(0)
+    _own_cell(true),_cell_id(-1),_nb_cell(0)
 {
   if(mesh)
     {
@@ -10384,8 +10565,8 @@ MEDCouplingUMeshCellIterator::~MEDCouplingUMeshCellIterator()
 }
 
 MEDCouplingUMeshCellIterator::MEDCouplingUMeshCellIterator(MEDCouplingUMesh *mesh, MEDCouplingUMeshCell *itc, int bg, int end):_mesh(mesh),_cell(itc),
-                                                                                                                               _own_cell(false),_cell_id(bg-1),
-                                                                                                                               _nb_cell(end)
+    _own_cell(false),_cell_id(bg-1),
+    _nb_cell(end)
 {
   if(mesh)
     mesh->incrRef();
@@ -10421,8 +10602,8 @@ MEDCouplingUMeshCellByTypeEntry::~MEDCouplingUMeshCellByTypeEntry()
 }
 
 MEDCouplingUMeshCellEntry::MEDCouplingUMeshCellEntry(MEDCouplingUMesh *mesh,  INTERP_KERNEL::NormalizedCellType type, MEDCouplingUMeshCell *itc, int bg, int end):_mesh(mesh),_type(type),
-                                                                                                                                                                  _itc(itc),
-                                                                                                                                                                  _bg(bg),_end(end)
+    _itc(itc),
+    _bg(bg),_end(end)
 {
   if(_mesh)
     _mesh->incrRef();