Salome HOME
Bug with FindClosestTupleIdAlg fixed (preventing the threshold to be null)
[tools/medcoupling.git] / src / MEDCoupling / MEDCouplingCartesianAMRMesh.cxx
old mode 100644 (file)
new mode 100755 (executable)
index c4d9a38..719fd48
@@ -1,4 +1,4 @@
-// Copyright (C) 2007-2014  CEA/DEN, EDF R&D
+// Copyright (C) 2007-2020  CEA/DEN, EDF R&D
 //
 // This library is free software; you can redistribute it and/or
 // modify it under the terms of the GNU Lesser General Public
@@ -19,6 +19,8 @@
 // Author : Anthony Geay
 
 #include "MEDCouplingCartesianAMRMesh.hxx"
+#include "MEDCouplingAMRAttribute.hxx"
+#include "MEDCouplingFieldDouble.hxx"
 #include "MEDCoupling1GTUMesh.hxx"
 #include "MEDCouplingIMesh.hxx"
 #include "MEDCouplingUMesh.hxx"
 #include <sstream>
 #include <numeric>
 
-using namespace ParaMEDMEM;
+using namespace MEDCoupling;
 
 /// @cond INTERNAL
 
-int MEDCouplingCartesianAMRPatchGen::getNumberOfCellsRecursiveWithOverlap() const
+mcIdType MEDCouplingCartesianAMRPatchGen::getNumberOfCellsRecursiveWithOverlap() const
 {
   return _mesh->getNumberOfCellsRecursiveWithOverlap();
 }
 
-int MEDCouplingCartesianAMRPatchGen::getNumberOfCellsRecursiveWithoutOverlap() const
+mcIdType MEDCouplingCartesianAMRPatchGen::getNumberOfCellsRecursiveWithoutOverlap() const
 {
   return _mesh->getNumberOfCellsRecursiveWithoutOverlap();
 }
 
-int MEDCouplingCartesianAMRPatchGen::getMaxNumberOfLevelsRelativeToThis() const
+mcIdType MEDCouplingCartesianAMRPatchGen::getMaxNumberOfLevelsRelativeToThis() const
 {
   return _mesh->getMaxNumberOfLevelsRelativeToThis();
 }
@@ -53,6 +55,13 @@ MEDCouplingCartesianAMRPatchGen::MEDCouplingCartesianAMRPatchGen(MEDCouplingCart
   _mesh=mesh; _mesh->incrRef();
 }
 
+MEDCouplingCartesianAMRPatchGen::MEDCouplingCartesianAMRPatchGen(const MEDCouplingCartesianAMRPatchGen& other, MEDCouplingCartesianAMRMeshGen *father):RefCountObject(other),_mesh(other._mesh)
+{
+  const MEDCouplingCartesianAMRMeshGen *mesh(other._mesh);
+  if(mesh)
+    _mesh=mesh->deepCopy(father);
+}
+
 const MEDCouplingCartesianAMRMeshGen *MEDCouplingCartesianAMRPatchGen::getMeshSafe() const
 {
   const MEDCouplingCartesianAMRMeshGen *mesh(_mesh);
@@ -69,11 +78,10 @@ MEDCouplingCartesianAMRMeshGen *MEDCouplingCartesianAMRPatchGen::getMeshSafe()
     return mesh;
 }
 
-std::vector<const BigMemoryObject *> MEDCouplingCartesianAMRPatchGen::getDirectChildren() const
+std::vector<const BigMemoryObject *> MEDCouplingCartesianAMRPatchGen::getDirectChildrenWithNull() const
 {
   std::vector<const BigMemoryObject *> ret;
-  if((const MEDCouplingCartesianAMRMeshGen *)_mesh)
-    ret.push_back((const MEDCouplingCartesianAMRMeshGen *)_mesh);
+  ret.push_back((const MEDCouplingCartesianAMRMeshGen *)_mesh);
   return ret;
 }
 
@@ -82,26 +90,32 @@ std::vector<const BigMemoryObject *> MEDCouplingCartesianAMRPatchGen::getDirectC
  * \param [in] bottomLeftTopRight a vector equal to the space dimension of \a mesh that specifies for each dimension, the included cell start of the range for the first element of the pair,
  *                                a the end cell (\b excluded) of the range for the second element of the pair.
  */
-MEDCouplingCartesianAMRPatch::MEDCouplingCartesianAMRPatch(MEDCouplingCartesianAMRMeshGen *mesh, const std::vector< std::pair<int,int> >& bottomLeftTopRight):MEDCouplingCartesianAMRPatchGen(mesh),_bl_tr(bottomLeftTopRight)
+MEDCouplingCartesianAMRPatch::MEDCouplingCartesianAMRPatch(MEDCouplingCartesianAMRMeshGen *mesh, const std::vector< std::pair<mcIdType,mcIdType> >& bottomLeftTopRight):MEDCouplingCartesianAMRPatchGen(mesh),_bl_tr(bottomLeftTopRight)
 {
-  int dim((int)bottomLeftTopRight.size()),dimExp(_mesh->getSpaceDimension());
+  std::size_t dim(bottomLeftTopRight.size()),dimExp(_mesh->getSpaceDimension());
   if(dim!=dimExp)
     throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch constructor : space dimension of father and input bottomLeft/topRight size mismatches !");
 }
 
-void MEDCouplingCartesianAMRPatch::addPatch(const std::vector< std::pair<int,int> >& bottomLeftTopRight, const std::vector<int>& factors)
+MEDCouplingCartesianAMRPatch *MEDCouplingCartesianAMRPatch::deepCopy(MEDCouplingCartesianAMRMeshGen *father) const
+{
+  return new MEDCouplingCartesianAMRPatch(*this,father);
+}
+
+void MEDCouplingCartesianAMRPatch::addPatch(const std::vector< std::pair<mcIdType,mcIdType> >& bottomLeftTopRight, const std::vector<mcIdType>& factors)
 {
   return getMeshSafe()->addPatch(bottomLeftTopRight,factors);
 }
 
-int MEDCouplingCartesianAMRPatch::getNumberOfOverlapedCellsForFather() const
+mcIdType MEDCouplingCartesianAMRPatch::getNumberOfOverlapedCellsForFather() const
 {
   return MEDCouplingStructuredMesh::DeduceNumberOfGivenRangeInCompactFrmt(_bl_tr);
 }
 
 /*!
  * This method states if \a other patch is in the neighborhood of \a this. The neighborhood zone is defined by \a ghostLev parameter
- * the must be >= 0.
+ * the must be >= 0. \b WARNING this method only works if \a this and \a other share the same father (no check of this will be done !).
+ * Call isInMyNeighborhoodExt to deal with 2 patches not sharing directly the same father.
  *
  * \param [in] other - The other patch
  * \param [in] ghostLev - The size of the neighborhood zone.
@@ -109,22 +123,136 @@ int MEDCouplingCartesianAMRPatch::getNumberOfOverlapedCellsForFather() const
  * \throw if \a this or \a other are invalid (end before start).
  * \throw if \a ghostLev is \b not >= 0 .
  * \throw if \a this and \a other have not the same space dimension.
+ *
+ * \sa isInMyNeighborhoodExt
  */
-bool MEDCouplingCartesianAMRPatch::isInMyNeighborhood(const MEDCouplingCartesianAMRPatch *other, int ghostLev) const
+bool MEDCouplingCartesianAMRPatch::isInMyNeighborhood(const MEDCouplingCartesianAMRPatch *other, mcIdType ghostLev) const
 {
   if(ghostLev<0)
     throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::isInMyNeighborhood : the size of the neighborhood must be >= 0 !");
   if(!other)
     throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::isInMyNeighborhood : the input patch is NULL !");
-  const std::vector< std::pair<int,int> >& thisp(getBLTRRange());
-  const std::vector< std::pair<int,int> >& otherp(other->getBLTRRange());
-  std::size_t thispsize(thisp.size());
-  if(thispsize!=otherp.size())
+  const std::vector< std::pair<mcIdType,mcIdType> >& thisp(getBLTRRange());
+  const std::vector< std::pair<mcIdType,mcIdType> >& otherp(other->getBLTRRange());
+  return IsInMyNeighborhood(ghostLev==0?0:1,thisp,otherp);//make hypothesis that nb this->_mesh->getFather->getFactors() is >= ghostLev
+}
+
+/*!
+ * This method states if \a other patch is in the neighborhood of \a this. The neighborhood zone is defined by \a ghostLev parameter
+ * the must be >= 0. This method works even if \a this and \a other does not share the same father. But the level between their common
+ * ancestor must be the same. If they don't have the same ancestor an exception will be thrown.
+ *
+ * \param [in] other - The other patch
+ * \param [in] ghostLev - The size of the neighborhood zone.
+ *
+ * \throw if \a this or \a other are invalid (end before start).
+ * \throw if \a ghostLev is \b not >= 0 .
+ * \throw if \a this and \a other have not the same space dimension.
+ * \throw if there is not common ancestor of \a this and \a other.
+ *
+ * \sa isInMyNeighborhood, isInMyNeighborhoodDiffLev
+ */
+bool MEDCouplingCartesianAMRPatch::isInMyNeighborhoodExt(const MEDCouplingCartesianAMRPatch *other, mcIdType ghostLev) const
+{
+  if(ghostLev<0)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::isInMyNeighborhoodExt : the size of the neighborhood must be >= 0 !");
+  if(!other)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::isInMyNeighborhoodExt : the input patch is NULL !");
+  mcIdType lev;
+  const MEDCouplingCartesianAMRMeshGen *com(FindCommonAncestor(this,other,lev));//check that factors are OK
+  if(lev==0)
+    return isInMyNeighborhood(other,ghostLev);
+  std::vector<mcIdType> offset(ComputeOffsetFromTwoToOne(com,lev,this,other));
+  const std::vector< std::pair<mcIdType,mcIdType> >& thisp(getBLTRRange());
+  std::vector< std::pair<mcIdType,mcIdType> > otherp(other->getBLTRRange());
+  otherp=MEDCouplingStructuredMesh::TranslateCompactFrmt(otherp,offset);
+  return IsInMyNeighborhood(ghostLev,thisp,otherp);
+}
+
+/*!
+ * This method states if \a other patch is in the neighborhood of \a this. The neighborhood zone is defined by \a ghostLev parameter
+ * the must be >= 0. This method works even if \a this and \a other does not share the same father.
+ * \a this is expected to be more refined than \a other. That is to say lev of \a this is greater than level of \a other.
+ *
+ * \param [in] other - The other patch
+ * \param [in] ghostLev - The size of the neighborhood zone.
+ *
+ * \throw if \a this or \a other are invalid (end before start).
+ * \throw if \a ghostLev is \b not >= 0 .
+ * \throw if \a this and \a other have not the same space dimension.
+ * \throw if there is not common ancestor of \a this and \a other.
+ *
+ * \sa isInMyNeighborhoodExt
+ */
+bool MEDCouplingCartesianAMRPatch::isInMyNeighborhoodDiffLev(const MEDCouplingCartesianAMRPatch *other, mcIdType ghostLev) const
+{
+  std::vector< std::pair<mcIdType,mcIdType> > thispp,otherpp;
+  std::vector<mcIdType> factors;
+  ComputeZonesOfTwoRelativeToOneDiffLev(ghostLev,this,other,thispp,otherpp,factors);
+  return IsInMyNeighborhood(ghostLev>0?1:0,thispp,otherpp);//1 not ghostLev ! It is not a bug ( I hope :) ) ! Because as \a this is a refinement of \a other ghostLev is supposed to be <= factors
+}
+
+std::vector< std::pair<mcIdType,mcIdType> > MEDCouplingCartesianAMRPatch::getBLTRRangeRelativeToGF() const
+{
+  std::vector< std::pair<mcIdType,mcIdType> > ret(_bl_tr);
+  const MEDCouplingCartesianAMRMeshGen *mesh(getMesh());
+  if(!mesh)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::getBLTRRangeRelativeToGF : not valid !");
+  const MEDCouplingCartesianAMRMeshGen *fath(mesh->getFather());
+  if(!fath)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::getBLTRRangeRelativeToGF : not valid 2 !");
+  std::vector<mcIdType> factors(fath->getFactors());
+  std::size_t sz(ret.size());
+  for(std::size_t ii=0;ii<sz;ii++)
+    {
+      ret[ii].first*=factors[ii];
+      ret[ii].second*=factors[ii];
+    }
+  const MEDCouplingCartesianAMRMeshGen *oldFather(fath);
+  fath=oldFather->getFather();
+  while(fath)
+    {
+      mcIdType pos(fath->getPatchIdFromChildMesh(oldFather));
+      const MEDCouplingCartesianAMRPatch *p(fath->getPatch(pos));
+      const std::vector< std::pair<mcIdType,mcIdType> >& tmp(p->getBLTRRange());
+      const std::vector<mcIdType>& factors2(fath->getFactors());
+      std::transform(factors.begin(),factors.end(),factors2.begin(),factors.begin(),std::multiplies<mcIdType>());
+      for(std::size_t ii=0;ii<sz;ii++)
+        {
+          mcIdType delta(ret[ii].second-ret[ii].first);
+          ret[ii].first+=tmp[ii].first*factors[ii];
+          ret[ii].second=ret[ii].first+delta;
+        }
+      oldFather=fath;
+      fath=oldFather->getFather();
+    }
+  return ret;
+}
+
+std::vector<mcIdType> MEDCouplingCartesianAMRPatch::computeCellGridSt() const
+{
+  const MEDCouplingCartesianAMRMeshGen *m(getMesh());
+  if(!m)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::computeCellGridSt : no mesh held by this !");
+  const MEDCouplingCartesianAMRMeshGen *father(m->getFather());
+  if(!father)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::computeCellGridSt : no father help by underlying mesh !");
+  const std::vector< std::pair<mcIdType,mcIdType> >& bltr(getBLTRRange());
+  const std::vector<mcIdType>& factors(father->getFactors());
+  std::vector<mcIdType> ret(MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(bltr));
+  std::transform(ret.begin(),ret.end(),factors.begin(),ret.begin(),std::multiplies<mcIdType>());
+  return ret;
+}
+
+bool MEDCouplingCartesianAMRPatch::IsInMyNeighborhood(mcIdType ghostLev, const std::vector< std::pair<mcIdType,mcIdType> >& p1, const std::vector< std::pair<mcIdType,mcIdType> >& p2)
+{
+  std::size_t thispsize(p1.size());
+  if(thispsize!=p2.size())
     throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::isInMyNeighborhood : the dimensions must be the same !");
   for(std::size_t i=0;i<thispsize;i++)
     {
-      const std::pair<int,int>& thispp(thisp[i]);
-      const std::pair<int,int>& otherpp(otherp[i]);
+      const std::pair<mcIdType,mcIdType>& thispp(p1[i]);
+      const std::pair<mcIdType,mcIdType>& otherpp(p2[i]);
       if(thispp.second<thispp.first)
         throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::isInMyNeighborhood : this patch is invalid !");
       if(otherpp.second<otherpp.first)
@@ -133,49 +261,329 @@ bool MEDCouplingCartesianAMRPatch::isInMyNeighborhood(const MEDCouplingCartesian
         continue;
       if(otherpp.second+ghostLev-1==thispp.first)
         continue;
-      int start(std::max(thispp.first,otherpp.first)),end(std::min(thispp.second,otherpp.second));
+      mcIdType start(std::max(thispp.first,otherpp.first)),end(std::min(thispp.second,otherpp.second));
       if(end<start)
         return false;
     }
   return true;
 }
 
+/*!
+ * \sa FindNeighborsOfSubPatchesOf
+ */
+std::vector< std::vector< std::pair<const MEDCouplingCartesianAMRPatch *,const MEDCouplingCartesianAMRPatch *> > > MEDCouplingCartesianAMRPatch::FindNeighborsOfSubPatchesOfSameLev(mcIdType ghostLev, const MEDCouplingCartesianAMRPatch *p1, const MEDCouplingCartesianAMRPatch *p2)
+{
+  if(!p1 || !p2)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::FindNeighborsOfSubPatchesOfSameLev : the input pointers must be not NULL !");
+  std::vector< std::vector< std::pair<const MEDCouplingCartesianAMRPatch *,const MEDCouplingCartesianAMRPatch *> > > ret;
+  std::vector< const MEDCouplingCartesianAMRPatch *> p1Work(p1->getMesh()->getPatches()),p2Work(p2->getMesh()->getPatches());
+  while(!p1Work.empty())
+    {
+      std::vector< std::pair<const MEDCouplingCartesianAMRPatch *,const MEDCouplingCartesianAMRPatch *> > retTmp;
+      std::vector<const MEDCouplingCartesianAMRPatch *> p1Work2,p2Work2;
+      for(std::vector<const MEDCouplingCartesianAMRPatch *>::const_iterator it1=p1Work.begin();it1!=p1Work.end();it1++)
+        {
+          for(std::vector<const MEDCouplingCartesianAMRPatch *>::const_iterator it2=p2Work.begin();it2!=p2Work.end();it2++)
+            {
+              if((*it1)->isInMyNeighborhoodExt(*it2,ghostLev>0?1:0))//1 not ghostLev ! It is not a bug ( I hope :) ) ! Because as \a this is a refinement of \a other ghostLev is supposed to be <= factors
+                retTmp.push_back(std::pair<const MEDCouplingCartesianAMRPatch *,const MEDCouplingCartesianAMRPatch *>(*it1,*it2));
+            }
+          std::vector<const MEDCouplingCartesianAMRPatch *> tmp1((*it1)->getMesh()->getPatches());
+          p1Work2.insert(p1Work2.end(),tmp1.begin(),tmp1.end());
+        }
+      for(std::vector<const MEDCouplingCartesianAMRPatch *>::const_iterator it2=p2Work.begin();it2!=p2Work.end();it2++)
+        {
+          std::vector<const MEDCouplingCartesianAMRPatch *> tmp2((*it2)->getMesh()->getPatches());
+          p2Work2.insert(p2Work2.end(),tmp2.begin(),tmp2.end());
+        }
+      ret.push_back(retTmp);
+      p1Work=p1Work2;
+      p2Work=p2Work2;
+    }
+  return ret;
+}
+
+/*!
+ * This method returns all pair of patches (pa,pb) so that pb is in the neighborhood of pa (size of neighborhood is \a ghostLev).
+ * pa is a refinement (a child) of \b p1 and pb is equal to \a p2. So the returned pair do not have the same level as it is the case for
+ * FindNeighborsOfSubPatchesOfSameLev.
+ *
+ * \sa FindNeighborsOfSubPatchesOfSameLev
+ */
+void MEDCouplingCartesianAMRPatch::FindNeighborsOfSubPatchesOf(mcIdType ghostLev, const MEDCouplingCartesianAMRPatch *p1, const MEDCouplingCartesianAMRPatch *p2, std::vector< std::pair<const MEDCouplingCartesianAMRPatch *, const MEDCouplingCartesianAMRPatch *> >& ret)
+{
+  if(!p1 || !p2)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::FindNeighborsOfSubPatchesOf : the input pointers must be not NULL !");
+  std::vector< const MEDCouplingCartesianAMRPatch *> p1Work(p1->getMesh()->getPatches());
+  while(!p1Work.empty())
+    {
+      std::vector<const MEDCouplingCartesianAMRPatch *> p1Work2;
+      for(std::vector<const MEDCouplingCartesianAMRPatch *>::const_iterator it0=p1Work.begin();it0!=p1Work.end();it0++)
+        {
+          if((*it0)->isInMyNeighborhoodDiffLev(p2,ghostLev))
+            ret.push_back(std::pair<const MEDCouplingCartesianAMRPatch *,const MEDCouplingCartesianAMRPatch *>(*it0,p2));
+          std::vector<const MEDCouplingCartesianAMRPatch *> tmp2((*it0)->getMesh()->getPatches());
+          p1Work2.insert(p1Work2.end(),tmp2.begin(),tmp2.end());
+        }
+      p1Work=p1Work2;
+    }
+}
+
+/*!
+ * \a p1 and \a p2 are expected to be neighbors (inside the \a ghostLev zone). This method updates \a dataOnP1 only in the ghost part using a part of \a dataOnP2.
+ *
+ * \saUpdateNeighborsOfOneWithTwoExt
+ */
+void MEDCouplingCartesianAMRPatch::UpdateNeighborsOfOneWithTwo(mcIdType ghostLev, const std::vector<mcIdType>& factors, const MEDCouplingCartesianAMRPatch *p1, const MEDCouplingCartesianAMRPatch *p2, DataArrayDouble *dataOnP1, const DataArrayDouble *dataOnP2)
+{
+  const std::vector< std::pair<mcIdType,mcIdType> >& p1BLTR(p1->getBLTRRange());
+  const std::vector< std::pair<mcIdType,mcIdType> >& p2BLTR(p2->getBLTRRange());
+  UpdateNeighborsOfOneWithTwoInternal(ghostLev,factors,p1BLTR,p2BLTR,dataOnP1,dataOnP2);
+}
+
+/*!
+ * Idem than UpdateNeighborsOfOneWithTwo, except that here \a p1 and \a p2 are not sharing the same direct father.
+ *
+ * \sa UpdateNeighborsOfOneWithTwo
+ */
+void MEDCouplingCartesianAMRPatch::UpdateNeighborsOfOneWithTwoExt(mcIdType ghostLev, const MEDCouplingCartesianAMRPatch *p1, const MEDCouplingCartesianAMRPatch *p2, DataArrayDouble *dataOnP1, const DataArrayDouble *dataOnP2)
+{
+  const std::vector< std::pair<mcIdType,mcIdType> >& p1BLTR(p1->getBLTRRange());//p1BLTR=[(10,12),(5,8)]
+  std::vector< std::pair<mcIdType,mcIdType> > p2BLTR(p2->getBLTRRange());//p2BLTR=[(0,1),(0,5)]
+  mcIdType lev(0);
+  const MEDCouplingCartesianAMRMeshGen *ca(FindCommonAncestor(p1,p2,lev));
+  std::vector<mcIdType> offset(ComputeOffsetFromTwoToOne(ca,lev,p1,p2));//[12,4]
+  p2BLTR=MEDCouplingStructuredMesh::TranslateCompactFrmt(p2BLTR,offset);//p2BLTR=[(12,13),(4,9)]
+  UpdateNeighborsOfOneWithTwoInternal(ghostLev,p1->getMesh()->getFather()->getFactors(),p1BLTR,p2BLTR,dataOnP1,dataOnP2);
+}
+
+/*!
+ * \a p1 is expected to be more refined than \a p2. \a p1 and \a p2 have to share a common ancestor. Compared to UpdateNeighborsOfOneWithTwoExt here \a p1 and \a p2 are \b not at the same level !
+ */
+void MEDCouplingCartesianAMRPatch::UpdateNeighborsOfOneWithTwoMixedLev(mcIdType ghostLev, const MEDCouplingCartesianAMRPatch *p1, const MEDCouplingCartesianAMRPatch *p2, DataArrayDouble *dataOnP1, const DataArrayDouble *dataOnP2, bool isConservative)
+{
+  std::vector< std::pair<mcIdType,mcIdType> > p1pp,p2pp;
+  std::vector<mcIdType> factors;
+  ComputeZonesOfTwoRelativeToOneDiffLev(ghostLev,p1,p2,p1pp,p2pp,factors);
+  //
+  std::vector<mcIdType> dimsP2NotRefined(p2->computeCellGridSt());
+  std::vector<mcIdType> dimsP2Refined(dimsP2NotRefined);
+  std::transform(dimsP2NotRefined.begin(),dimsP2NotRefined.end(),factors.begin(),dimsP2Refined.begin(),std::multiplies<mcIdType>());
+  std::vector< std::pair<mcIdType,mcIdType> > p2RefinedAbs(MEDCouplingStructuredMesh::GetCompactFrmtFromDimensions(dimsP2NotRefined));
+  std::vector<mcIdType> dimsP2RefinedGhost(dimsP2Refined.size());
+  std::transform(dimsP2Refined.begin(),dimsP2Refined.end(),dimsP2RefinedGhost.begin(),std::bind2nd(std::plus<mcIdType>(),2*ghostLev));
+  MCAuto<DataArrayDouble> fineP2(DataArrayDouble::New()); fineP2->alloc(MEDCouplingStructuredMesh::DeduceNumberOfGivenStructure(dimsP2RefinedGhost),dataOnP2->getNumberOfComponents());
+  MEDCouplingIMesh::SpreadCoarseToFineGhost(dataOnP2,dimsP2NotRefined,fineP2,p2RefinedAbs,factors,ghostLev);
+  if(isConservative)
+    {
+      mcIdType fact(MEDCouplingStructuredMesh::DeduceNumberOfGivenStructure(factors));
+      std::transform(fineP2->begin(),fineP2->end(),fineP2->getPointer(),std::bind2nd(std::multiplies<double>(),1./((double)fact)));
+    }
+  //
+  UpdateNeighborsOfOneWithTwoInternal(ghostLev,p1->getMesh()->getFather()->getFactors(),p1pp,p2pp,dataOnP1,fineP2);
+}
+
+/*!
+ * \a p1 is expected to be more refined than \a p2. \a p1 and \a p2 have to share a common ancestor. Compared to UpdateNeighborsOfOneWithTwoExt here \a p1 and \a p2 are \b not at the same level !
+ * This method has 3 outputs. 2 two first are the resp the position of \a p1 and \a p2 relative to \a p1. And \a factToApplyOn2 is the coeff of refinement to be applied on \a p2 to be virtually
+ * on the same level as \a p1.
+ */
+void MEDCouplingCartesianAMRPatch::ComputeZonesOfTwoRelativeToOneDiffLev(mcIdType ghostLev, const MEDCouplingCartesianAMRPatch *p1, const MEDCouplingCartesianAMRPatch *p2, std::vector< std::pair<mcIdType,mcIdType> >& p1Zone, std::vector< std::pair<mcIdType,mcIdType> >& p2Zone, std::vector<mcIdType>& factToApplyOn2)
+{
+  std::vector<const MEDCouplingCartesianAMRMeshGen *> ancestorsOfThis;
+  const MEDCouplingCartesianAMRMeshGen *work(p1->getMesh()),*work2(0);
+  ancestorsOfThis.push_back(work);
+  while(work)
+    {
+      work=work->getFather();
+      if(work)
+        ancestorsOfThis.push_back(work);
+    }
+  //
+  work=p2->getMesh();
+  bool found(false);
+  std::size_t levThis(0),levOther(0);
+  while(work && !found)
+    {
+      work2=work;
+      work=work->getFather();
+      if(work)
+        {
+          levOther++;
+          std::vector<const MEDCouplingCartesianAMRMeshGen *>::iterator it(std::find(ancestorsOfThis.begin(),ancestorsOfThis.end(),work));
+          if(it!=ancestorsOfThis.end())
+            {
+              levThis=std::distance(ancestorsOfThis.begin(),it);
+              found=true;
+            }
+        }
+    }
+  if(!found)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::ComputeZonesOfTwoRelativeToOneDiffLev : no common ancestor found !");
+  if(levThis<=levOther)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::ComputeZonesOfTwoRelativeToOneDiffLev : this method is not called correctly !");
+  //
+  const MEDCouplingCartesianAMRMeshGen *comAncestor(ancestorsOfThis[levThis]);
+  mcIdType idThis(comAncestor->getPatchIdFromChildMesh(ancestorsOfThis[levThis-1])),idOther(comAncestor->getPatchIdFromChildMesh(work2));
+  const MEDCouplingCartesianAMRPatch *thisp(comAncestor->getPatch(idThis)),*otherp(comAncestor->getPatch(idOther));
+  std::vector<mcIdType> offset(ComputeOffsetFromTwoToOne(comAncestor,ToIdType(levOther),thisp,otherp));
+  p1Zone=thisp->getBLTRRange(); p2Zone=MEDCouplingStructuredMesh::TranslateCompactFrmt(otherp->getBLTRRange(),offset);
+  factToApplyOn2.resize(p1Zone.size()); std::fill(factToApplyOn2.begin(),factToApplyOn2.end(),1);
+  //
+  std::size_t nbOfTurn(levThis-levOther);
+  for(std::size_t i=0;i<nbOfTurn;i++)
+    {
+      std::vector< std::pair<mcIdType,mcIdType> > tmp0;
+      MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(p1Zone,p2Zone,tmp0,false);
+      p2Zone=tmp0;
+      const MEDCouplingCartesianAMRMeshGen *curAncestor(ancestorsOfThis[levThis-i]);
+      ApplyFactorsOnCompactFrmt(p2Zone,curAncestor->getFactors());
+      curAncestor=ancestorsOfThis[levThis-1-i];
+      const std::vector<mcIdType>& factors(curAncestor->getFactors());
+      std::transform(factToApplyOn2.begin(),factToApplyOn2.end(),factors.begin(),factToApplyOn2.begin(),std::multiplies<mcIdType>());
+      mcIdType tmpId(curAncestor->getPatchIdFromChildMesh(ancestorsOfThis[levThis-2-i]));
+      p1Zone=curAncestor->getPatch(tmpId)->getBLTRRange();
+    }
+}
+
 std::size_t MEDCouplingCartesianAMRPatch::getHeapMemorySizeWithoutChildren() const
 {
   std::size_t ret(sizeof(MEDCouplingCartesianAMRPatch));
-  ret+=_bl_tr.capacity()*sizeof(std::pair<int,int>);
+  ret+=_bl_tr.capacity()*sizeof(std::pair<mcIdType,mcIdType>);
   return ret;
 }
 
-MEDCouplingCartesianAMRPatchGF::MEDCouplingCartesianAMRPatchGF(MEDCouplingCartesianAMRMesh *mesh):MEDCouplingCartesianAMRPatchGen(mesh)
+const MEDCouplingCartesianAMRMeshGen *MEDCouplingCartesianAMRPatch::FindCommonAncestor(const MEDCouplingCartesianAMRPatch *p1, const MEDCouplingCartesianAMRPatch *p2, mcIdType& lev)
 {
+  const MEDCouplingCartesianAMRMeshGen *f1(p1->_mesh),*f2(p2->_mesh);
+  lev=0;
+  while(f1!=f2 || f1==0 || f2==0)
+    {
+      f1=f1->getFather(); f2=f2->getFather();
+      if(f1->getFactors()!=f2->getFactors())
+        throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::FindCommonAncestor : factors differ !");
+      lev++;
+    }
+  if(f1!=f2)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::FindCommonAncestor : no common ancestor between p1 and p2 !");
+  return f1;
 }
 
-std::size_t MEDCouplingCartesianAMRPatchGF::getHeapMemorySizeWithoutChildren() const
+std::vector<mcIdType> MEDCouplingCartesianAMRPatch::ComputeOffsetFromTwoToOne(const MEDCouplingCartesianAMRMeshGen *comAncestor, mcIdType lev, const MEDCouplingCartesianAMRPatch *p1, const MEDCouplingCartesianAMRPatch *p2)
 {
-  return sizeof(MEDCouplingCartesianAMRPatchGF);
+  if(lev<=0)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::ComputeOffsetFromTwoToOne : this method is useful only for lev > 0 !");
+  mcIdType zeLev(lev-1);
+  mcIdType dim(p1->getMesh()->getSpaceDimension());
+  if(p2->getMesh()->getSpaceDimension()!=dim)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::ComputeOffsetFromTwoToOne : dimension must be the same !");
+  std::vector< mcIdType > ret(dim,0);
+  for(mcIdType i=0;i<zeLev;i++)
+    {
+      const MEDCouplingCartesianAMRMeshGen *f1(p1->_mesh),*f2(p2->_mesh);
+      const MEDCouplingCartesianAMRPatch *p1h(0),*p2h(0);
+      for(mcIdType j=0;j<lev-i;j++)
+        {
+          const MEDCouplingCartesianAMRMeshGen *f1tmp(f1->getFather()),*f2tmp(f2->getFather());
+          mcIdType pid1(f1tmp->getPatchIdFromChildMesh(f1)),pid2(f2tmp->getPatchIdFromChildMesh(f2));
+          p1h=f1tmp->getPatch(pid1); p2h=f2tmp->getPatch(pid2);
+          f1=f1tmp; f2=f2tmp;
+        }
+      std::vector< std::pair<mcIdType,mcIdType> > p2c(p2h->getBLTRRange());
+      for(mcIdType k=0;k<dim;k++)
+        {
+          p2c[k].first+=ret[k];
+          p2c[k].second+=ret[k];
+        }
+      for(mcIdType k=0;k<dim;k++)
+        {
+          ret[k]=p2c[k].first-p1h->getBLTRRange()[k].first;
+          ret[k]*=f1->getFactors()[k];
+        }
+    }
+  return ret;
+}
+
+void MEDCouplingCartesianAMRPatch::UpdateNeighborsOfOneWithTwoInternal(mcIdType ghostLev, const std::vector<mcIdType>& factors, const std::vector< std::pair<mcIdType,mcIdType> >&p1 ,const std::vector< std::pair<mcIdType,mcIdType> >&p2, DataArrayDouble *dataOnP1, const DataArrayDouble *dataOnP2)
+{//p1=[(1,4),(2,4)] p2=[(4,5),(3,4)]
+  mcIdType dim(ToIdType(factors.size()));
+  std::vector<mcIdType> dimsCoarse(MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(p1));//[3,2]
+  std::transform(dimsCoarse.begin(),dimsCoarse.end(),factors.begin(),dimsCoarse.begin(),std::multiplies<mcIdType>());//[12,8]
+  std::transform(dimsCoarse.begin(),dimsCoarse.end(),dimsCoarse.begin(),std::bind2nd(std::plus<mcIdType>(),2*ghostLev));//[14,10]
+  std::vector< std::pair<mcIdType,mcIdType> > rangeCoarse(MEDCouplingStructuredMesh::GetCompactFrmtFromDimensions(dimsCoarse));//[(0,14),(0,10)]
+  std::vector<mcIdType> fakeFactors(dim,1);
+  //
+  std::vector< std::pair<mcIdType,mcIdType> > tmp0,tmp1,tmp2;
+  MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(p1,p2,tmp0,false);//tmp0=[(3,4),(1,2)]
+  ApplyFactorsOnCompactFrmt(tmp0,factors);//tmp0=[(12,16),(4,8)]
+  MEDCouplingStructuredMesh::ApplyGhostOnCompactFrmt(tmp0,ghostLev);//tmp0=[(13,17),(5,9)]
+  std::vector< std::pair<mcIdType,mcIdType> > interstRange(MEDCouplingStructuredMesh::IntersectRanges(tmp0,rangeCoarse));//interstRange=[(13,14),(5,9)]
+  MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(p2,p1,tmp1,false);//tmp1=[(-3,0),(-1,1)]
+  ApplyFactorsOnCompactFrmt(tmp1,factors);//tmp1=[(-12,-4),(-4,0)]
+  MEDCouplingStructuredMesh::ChangeReferenceToGlobalOfCompactFrmt(tmp1,interstRange,tmp2,false);//tmp2=[(1,2),(1,5)]
+  //
+  std::vector< std::pair<mcIdType,mcIdType> > dimsFine(p2);
+  ApplyFactorsOnCompactFrmt(dimsFine,factors);
+  ApplyAllGhostOnCompactFrmt(dimsFine,ghostLev);
+  //
+  MCAuto<DataArrayDouble> ghostVals(MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom(MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(dimsFine),dataOnP2,tmp2));
+  MEDCouplingIMesh::CondenseFineToCoarse(dimsCoarse,ghostVals,interstRange,fakeFactors,dataOnP1);
 }
 
-MEDCouplingDataForGodFather::MEDCouplingDataForGodFather(MEDCouplingCartesianAMRMesh *gf):_gf(gf),_tlc(gf)
+MEDCouplingCartesianAMRPatch::MEDCouplingCartesianAMRPatch(const MEDCouplingCartesianAMRPatch& other, MEDCouplingCartesianAMRMeshGen *father):MEDCouplingCartesianAMRPatchGen(other,father),_bl_tr(other._bl_tr)
 {
-  if(!_gf)
-    throw INTERP_KERNEL::Exception("MEDCouplingDataForGodFather constructor : A data has to be attached to a AMR Mesh instance !");
-  _gf->setData(this);
 }
 
-void MEDCouplingDataForGodFather::checkGodFatherFrozen() const
+/*!
+ * \param [in,out] partBeforeFact - the part of a image mesh in compact format that will be put in refined reference.
+ * \param [in] factors - the factors per axis.
+ */
+void MEDCouplingCartesianAMRPatch::ApplyFactorsOnCompactFrmt(std::vector< std::pair<mcIdType,mcIdType> >& partBeforeFact, const std::vector<mcIdType>& factors)
 {
-  _tlc.checkConst();
+  std::size_t sz(factors.size());
+  if(sz!=partBeforeFact.size())
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::ApplyFactorsOnCompactFrmt : size of input vectors must be the same !");
+  for(std::size_t i=0;i<sz;i++)
+    {
+      partBeforeFact[i].first*=factors[i];
+      partBeforeFact[i].second*=factors[i];
+    }
 }
 
-bool MEDCouplingDataForGodFather::changeGodFather(MEDCouplingCartesianAMRMesh *gf)
+/*!
+ * This method is different than ApplyGhostOnCompactFrmt. The \a partBeforeFact parameter is enlarger contrary to ApplyGhostOnCompactFrmt.
+ *
+ * \param [in,out] partBeforeFact - the part of a image mesh in compact format that will be put in ghost reference.
+ * \param [in] ghostSize - the ghost size of zone for all axis.
+ */
+void MEDCouplingCartesianAMRPatch::ApplyAllGhostOnCompactFrmt(std::vector< std::pair<mcIdType,mcIdType> >& partBeforeFact, mcIdType ghostSize)
 {
-  bool ret(_tlc.keepTrackOfNewTL(gf));
-  if(ret)
+  if(ghostSize<0)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRPatch::ApplyAllGhostOnCompactFrmt : ghost size must be >= 0 !");
+  std::size_t sz(partBeforeFact.size());
+  for(std::size_t i=0;i<sz;i++)
     {
-      _gf=gf;
+      partBeforeFact[i].first-=ghostSize;
+      partBeforeFact[i].second+=ghostSize;
     }
-  return ret;
+}
+
+MEDCouplingCartesianAMRPatchGF::MEDCouplingCartesianAMRPatchGF(MEDCouplingCartesianAMRMesh *mesh):MEDCouplingCartesianAMRPatchGen(mesh)
+{
+}
+
+MEDCouplingCartesianAMRPatchGF *MEDCouplingCartesianAMRPatchGF::deepCopy(MEDCouplingCartesianAMRMeshGen *father) const
+{
+  return new MEDCouplingCartesianAMRPatchGF(*this,father);
+}
+
+std::size_t MEDCouplingCartesianAMRPatchGF::getHeapMemorySizeWithoutChildren() const
+{
+  return sizeof(MEDCouplingCartesianAMRPatchGF);
+}
+
+MEDCouplingCartesianAMRPatchGF::MEDCouplingCartesianAMRPatchGF(const MEDCouplingCartesianAMRPatchGF& other, MEDCouplingCartesianAMRMeshGen *father):MEDCouplingCartesianAMRPatchGen(other,father)
+{
 }
 
 /// @endcond
@@ -185,9 +593,9 @@ int MEDCouplingCartesianAMRMeshGen::getSpaceDimension() const
   return _mesh->getSpaceDimension();
 }
 
-void MEDCouplingCartesianAMRMeshGen::setFactors(const std::vector<int>& newFactors)
+void MEDCouplingCartesianAMRMeshGen::setFactors(const std::vector<mcIdType>& newFactors)
 {
-  if(getSpaceDimension()!=(int)newFactors.size())
+  if(getSpaceDimension()!=ToIdType(newFactors.size()))
     throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::setFactors : size of input factors is not equal to the space dimension !");
   if(_factors.empty())
     {
@@ -202,33 +610,62 @@ void MEDCouplingCartesianAMRMeshGen::setFactors(const std::vector<int>& newFacto
   declareAsNew();
 }
 
-int MEDCouplingCartesianAMRMeshGen::getMaxNumberOfLevelsRelativeToThis() const
+mcIdType MEDCouplingCartesianAMRMeshGen::getMaxNumberOfLevelsRelativeToThis() const
 {
-  int ret(1);
-  for(std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
+  mcIdType ret(1);
+  for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
     ret=std::max(ret,(*it)->getMaxNumberOfLevelsRelativeToThis()+1);
   return ret;
 }
 
-int MEDCouplingCartesianAMRMeshGen::getNumberOfCellsAtCurrentLevel() const
+/*!
+ * This method returns the number of cells of \a this with the help of the MEDCouplingIMesh instance representing \a this.
+ * The patches in \a this are ignored here.
+ * \sa getNumberOfCellsAtCurrentLevelGhost, getNumberOfCellsRecursiveWithOverlap
+ */
+mcIdType MEDCouplingCartesianAMRMeshGen::getNumberOfCellsAtCurrentLevel() const
 {
   return _mesh->getNumberOfCells();
 }
 
-int MEDCouplingCartesianAMRMeshGen::getNumberOfCellsRecursiveWithOverlap() const
+/*!
+ * This method returns the number of cells of \a this with the help of the MEDCouplingIMesh instance representing \a this enlarged by \a ghostLev size
+ * to take into account of the ghost cells for future computation.
+ * The patches in \a this are ignored here.
+ *
+ * \sa getNumberOfCellsAtCurrentLevel
+ */
+mcIdType MEDCouplingCartesianAMRMeshGen::getNumberOfCellsAtCurrentLevelGhost(mcIdType ghostLev) const
+{
+  MCAuto<MEDCouplingIMesh> tmp(_mesh->buildWithGhost(ghostLev));
+  return tmp->getNumberOfCells();
+}
+
+/*!
+ * This method returns the number of cells including the current level but \b also \b including recursively all cells of other levels
+ * starting from this. The set of cells which size is returned here are generally overlapping each other.
+ */
+mcIdType MEDCouplingCartesianAMRMeshGen::getNumberOfCellsRecursiveWithOverlap() const
 {
-  int ret(_mesh->getNumberOfCells());
-  for(std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
+  mcIdType ret=_mesh->getNumberOfCells();
+  for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
     {
       ret+=(*it)->getNumberOfCellsRecursiveWithOverlap();
     }
   return ret;
 }
 
-int MEDCouplingCartesianAMRMeshGen::getNumberOfCellsRecursiveWithoutOverlap() const
+/*!
+ * This method returns the max number of cells covering all the space without overlapping.
+ * It returns the number of cells of the mesh with the highest resolution.
+ * The returned value is equal to the number of cells of mesh returned by buildUnstructured.
+ *
+ * \sa buildUnstructured
+ */
+mcIdType MEDCouplingCartesianAMRMeshGen::getNumberOfCellsRecursiveWithoutOverlap() const
 {
-  int ret(_mesh->getNumberOfCells());
-  for(std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
+  mcIdType ret=_mesh->getNumberOfCells();
+  for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
     {
       ret-=(*it)->getNumberOfOverlapedCellsForFather();
       ret+=(*it)->getNumberOfCellsRecursiveWithoutOverlap();
@@ -236,28 +673,57 @@ int MEDCouplingCartesianAMRMeshGen::getNumberOfCellsRecursiveWithoutOverlap() co
   return ret;
 }
 
-const MEDCouplingCartesianAMRMeshGen *MEDCouplingCartesianAMRMeshGen::getFather() const
+/*!
+ * This method returns a vector of size equal to getAbsoluteLevelRelativeTo. It allows to find position an absolute position of \a this
+ * relative to \a ref (that is typically the god father).
+ *
+ * \sa getPatchAtPosition
+ */
+std::vector<mcIdType> MEDCouplingCartesianAMRMeshGen::getPositionRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const
 {
-  return _father;
+  if(!ref)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::getPositionRelativeTo : input pointer is NULL !");
+  std::vector<mcIdType> ret;
+  getPositionRelativeToInternal(ref,ret);
+  std::reverse(ret.begin(),ret.end());
+  return ret;
 }
 
-const MEDCouplingCartesianAMRMeshGen *MEDCouplingCartesianAMRMeshGen::getGodFather() const
+/*!
+ * \sa getPositionRelativeTo, getMeshAtPosition
+ */
+const MEDCouplingCartesianAMRPatch *MEDCouplingCartesianAMRMeshGen::getPatchAtPosition(const std::vector<mcIdType>& pos) const
 {
-  if(_father==0)
-    return this;
-  else
-    return _father->getGodFather();
+  std::size_t sz(pos.size());
+  if(sz==0)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::getPatchAtPosition : empty input -> no patch by definition !");
+  mcIdType patchId(pos[0]);
+  const MEDCouplingCartesianAMRPatch *elt(getPatch(patchId));
+  if(sz==1)
+    return elt;
+  if(!elt || !elt->getMesh())
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::getPatchAtPosition : NULL element found during walk !");
+  std::vector<mcIdType> pos2(pos.begin()+1,pos.end());
+  return elt->getMesh()->getPatchAtPosition(pos2);
 }
 
-/*!
- * This method returns the level of \a this. 0 for god father. -1 for children of god father ...
- */
-int MEDCouplingCartesianAMRMeshGen::getAbsoluteLevel() const
+const MEDCouplingCartesianAMRMeshGen *MEDCouplingCartesianAMRMeshGen::getMeshAtPosition(const std::vector<mcIdType>& pos) const
 {
-  if(_father==0)
-    return 0;
-  else
-    return _father->getAbsoluteLevel()-1;
+  std::size_t sz(pos.size());
+  if(sz==0)
+    return this;
+  mcIdType patchId(pos[0]);
+  const MEDCouplingCartesianAMRPatch *elt(getPatch(patchId));
+  if(sz==1)
+    {
+      if(!elt)
+        throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::getMeshAtPosition : NULL patch !");
+      return elt->getMesh();
+    }
+  if(!elt || !elt->getMesh())
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::getPatchAtPosition : NULL element found during walk !");
+  std::vector<mcIdType> pos2(pos.begin()+1,pos.end());
+  return elt->getMesh()->getMeshAtPosition(pos2);
 }
 
 /*!
@@ -265,27 +731,11 @@ int MEDCouplingCartesianAMRMeshGen::getAbsoluteLevel() const
  *
  * \return std::vector<MEDCouplingCartesianAMRPatchGen *> - objects in vector are to be managed (decrRef) by the caller.
  */
-std::vector<MEDCouplingCartesianAMRPatchGen *> MEDCouplingCartesianAMRMeshGen::retrieveGridsAt(int absoluteLev) const
+std::vector<MEDCouplingCartesianAMRPatchGen *> MEDCouplingCartesianAMRMeshGen::retrieveGridsAt(mcIdType absoluteLev) const
 {
   if(absoluteLev<0)
     throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::retrieveGridsAt : absolute level must be >=0 !");
-  if(_father)
-    return getGodFather()->retrieveGridsAt(absoluteLev);
-  //
-  std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatchGen> > rets;
-  retrieveGridsAtInternal(absoluteLev,rets);
-  std::vector< MEDCouplingCartesianAMRPatchGen * > ret(rets.size());
-  for(std::size_t i=0;i<rets.size();i++)
-    {
-      ret[i]=rets[i].retn();
-    }
-  return ret;
-}
-
-void MEDCouplingCartesianAMRMeshGen::detachFromFather()
-{
-  _father=0;
-  declareAsNew();
+  return getGodFather()->retrieveGridsAt(absoluteLev);
 }
 
 /*!
@@ -293,13 +743,13 @@ void MEDCouplingCartesianAMRMeshGen::detachFromFather()
  *                                a the end cell (\b excluded) of the range for the second element of the pair.
  * \param [in] factors The factor of refinement per axis (different from 0).
  */
-void MEDCouplingCartesianAMRMeshGen::addPatch(const std::vector< std::pair<int,int> >& bottomLeftTopRight, const std::vector<int>& factors)
+void MEDCouplingCartesianAMRMeshGen::addPatch(const std::vector< std::pair<mcIdType,mcIdType> >& bottomLeftTopRight, const std::vector<mcIdType>& factors)
 {
   checkFactorsAndIfNotSetAssign(factors);
-  MEDCouplingAutoRefCountObjectPtr<MEDCouplingIMesh> mesh(static_cast<MEDCouplingIMesh *>(_mesh->buildStructuredSubPart(bottomLeftTopRight)));
+  MCAuto<MEDCouplingIMesh> mesh(static_cast<MEDCouplingIMesh *>(_mesh->buildStructuredSubPart(bottomLeftTopRight)));
   mesh->refineWithFactor(factors);
-  MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRMeshSub> zeMesh(new MEDCouplingCartesianAMRMeshSub(this,mesh));
-  MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> elt(new MEDCouplingCartesianAMRPatch(zeMesh,bottomLeftTopRight));
+  MCAuto<MEDCouplingCartesianAMRMeshSub> zeMesh(new MEDCouplingCartesianAMRMeshSub(this,mesh));
+  MCAuto<MEDCouplingCartesianAMRPatch> elt(new MEDCouplingCartesianAMRPatch(zeMesh,bottomLeftTopRight));
   _patches.push_back(elt);
   declareAsNew();
 }
@@ -310,38 +760,38 @@ class InternalPatch : public RefCountObjectOnly
 {
 public:
   InternalPatch():_nb_of_true(0) { }
-  int getDimension() const { return (int)_part.size(); }
+  mcIdType getDimension() const { return ToIdType(_part.size()); }
   double getEfficiency() const { return (double)_nb_of_true/(double)_crit.size(); }
-  int getNumberOfCells() const { return (int)_crit.size(); }
-  void setNumberOfTrue(int nboft) { _nb_of_true=nboft; }
+  mcIdType getNumberOfCells() const { return ToIdType(_crit.size()); }
+  void setNumberOfTrue(mcIdType nboft) { _nb_of_true=nboft; }
   std::vector<bool>& getCriterion() { return _crit; }
   const std::vector<bool>& getConstCriterion() const { return _crit; }
-  void setPart(const std::vector< std::pair<int,int> >& part) { _part=part; }
-  std::vector< std::pair<int,int> >& getPart() { return _part; }
-  const std::vector< std::pair<int,int> >& getConstPart() const { return _part; }
+  void setPart(const std::vector< std::pair<mcIdType,mcIdType> >& part) { _part=part; }
+  std::vector< std::pair<mcIdType,mcIdType> >& getPart() { return _part; }
+  const std::vector< std::pair<mcIdType,mcIdType> >& getConstPart() const { return _part; }
   bool presenceOfTrue() const { return _nb_of_true>0; }
-  std::vector<int> computeCGS() const { return MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(_part); }
-  std::vector< std::vector<int> > computeSignature() const { return MEDCouplingStructuredMesh::ComputeSignaturePerAxisOf(computeCGS(),getConstCriterion()); }
-  double getEfficiencyPerAxis(int axisId) const { return (double)_nb_of_true/((double)(_part[axisId].second-_part[axisId].first)); }
-  void zipToFitOnCriterion();
+  std::vector<mcIdType> computeCGS() const { return MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(_part); }
+  std::vector< std::vector<mcIdType> > computeSignature() const { return MEDCouplingStructuredMesh::ComputeSignaturePerAxisOf(computeCGS(),getConstCriterion()); }
+  double getEfficiencyPerAxis(mcIdType axisId) const { return (double)_nb_of_true/((double)(_part[axisId].second-_part[axisId].first)); }
+  void zipToFitOnCriterion(mcIdType minPatchLgth);
   void updateNumberOfTrue() const;
-  MEDCouplingAutoRefCountObjectPtr<InternalPatch> extractPart(const std::vector< std::pair<int,int> >&partInGlobal) const;
-  MEDCouplingAutoRefCountObjectPtr<InternalPatch> deepCpy() const;
+  MCAuto<InternalPatch> extractPart(const std::vector< std::pair<mcIdType,mcIdType> >&partInGlobal) const;
+  MCAuto<InternalPatch> deepCopy() const;
 protected:
   ~InternalPatch() { }
 private:
-  mutable int _nb_of_true;
+  mutable mcIdType _nb_of_true;
   std::vector<bool> _crit;
   //! _part is global
-  std::vector< std::pair<int,int> > _part;
+  std::vector< std::pair<mcIdType,mcIdType> > _part;
 };
 
-void InternalPatch::zipToFitOnCriterion()
+void InternalPatch::zipToFitOnCriterion(mcIdType minPatchLgth)
 {
-  std::vector<int> cgs(computeCGS());
+  std::vector<mcIdType> cgs(computeCGS());
   std::vector<bool> newCrit;
-  std::vector< std::pair<int,int> > newPart,newPart2;
-  int newNbOfTrue(MEDCouplingStructuredMesh::FindMinimalPartOf(cgs,_crit,newCrit,newPart));
+  std::vector< std::pair<mcIdType,mcIdType> > newPart,newPart2;
+  mcIdType newNbOfTrue(MEDCouplingStructuredMesh::FindMinimalPartOf(minPatchLgth,cgs,_crit,newCrit,newPart));
   MEDCouplingStructuredMesh::ChangeReferenceToGlobalOfCompactFrmt(_part,newPart,newPart2);
   if(newNbOfTrue!=_nb_of_true)
     throw INTERP_KERNEL::Exception("InternalPatch::zipToFitOnCrit : internal error !");
@@ -350,14 +800,14 @@ void InternalPatch::zipToFitOnCriterion()
 
 void InternalPatch::updateNumberOfTrue() const
 {
-  _nb_of_true=(int)std::count(_crit.begin(),_crit.end(),true);
+  _nb_of_true=ToIdType(std::count(_crit.begin(),_crit.end(),true));
 }
 
-MEDCouplingAutoRefCountObjectPtr<InternalPatch> InternalPatch::extractPart(const std::vector< std::pair<int,int> >&partInGlobal) const
+MCAuto<InternalPatch> InternalPatch::extractPart(const std::vector< std::pair<mcIdType,mcIdType> >&partInGlobal) const
 {
-  MEDCouplingAutoRefCountObjectPtr<InternalPatch> ret(new InternalPatch);
-  std::vector<int> cgs(computeCGS());
-  std::vector< std::pair<int,int> > newPart;
+  MCAuto<InternalPatch> ret(new InternalPatch);
+  std::vector<mcIdType> cgs(computeCGS());
+  std::vector< std::pair<mcIdType,mcIdType> > newPart;
   MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(_part,partInGlobal,newPart);
   MEDCouplingStructuredMesh::ExtractFieldOfBoolFrom(cgs,_crit,newPart,ret->getCriterion());
   ret->setPart(partInGlobal);
@@ -365,107 +815,110 @@ MEDCouplingAutoRefCountObjectPtr<InternalPatch> InternalPatch::extractPart(const
   return ret;
 }
 
-MEDCouplingAutoRefCountObjectPtr<InternalPatch> InternalPatch::deepCpy() const
+MCAuto<InternalPatch> InternalPatch::deepCopy() const
 {
-  MEDCouplingAutoRefCountObjectPtr<InternalPatch> ret(new InternalPatch);
+  MCAuto<InternalPatch> ret(new InternalPatch);
   (*ret)=*this;
   return ret;
 }
 
-void DissectBigPatch(const INTERP_KERNEL::BoxSplittingOptions& bso, const InternalPatch *patchToBeSplit, int axisId, int rangeOfAxisId, bool& cutFound, int& cutPlace)
+void DissectBigPatch(const INTERP_KERNEL::BoxSplittingOptions& bso, const InternalPatch *patchToBeSplit, mcIdType axisId, mcIdType largestLength, mcIdType& cutPlace)
 {
-  cutFound=false; cutPlace=-1;
-  std::vector<double> ratio(rangeOfAxisId-1);
-  for(int id=0;id<rangeOfAxisId-1;id++)
+  mcIdType minimumPatchLength(bso.getMinimumPatchLength());
+  std::vector<double> ratio(largestLength-minimumPatchLength,std::numeric_limits<double>::max());
+  mcIdType index_min = -1;
+  double minSemiEfficiencyRatio(std::numeric_limits<double>::max());
+  double efficiencyPerAxis[2];
+
+  for(mcIdType i=minimumPatchLength-1;i<largestLength-minimumPatchLength;i++)
     {
-      double efficiency[2];
-      for(int h=0;h<2;h++)
+      for(mcIdType h=0;h<2;h++)
         {
-          std::vector< std::pair<int,int> > rectH(patchToBeSplit->getConstPart());
+          std::vector< std::pair<mcIdType,mcIdType> > rectH(patchToBeSplit->getConstPart());
           if(h==0)
-            rectH[axisId].second=patchToBeSplit->getConstPart()[axisId].first+id;
+            rectH[axisId].second=patchToBeSplit->getConstPart()[axisId].first+i;
           else
-            rectH[axisId].first=patchToBeSplit->getConstPart()[axisId].first+id;
-          MEDCouplingAutoRefCountObjectPtr<InternalPatch> p(patchToBeSplit->deepCpy());
-          p->zipToFitOnCriterion();
-          //anouar rectH ?
-          efficiency[h]=p->getEfficiencyPerAxis(axisId);
+            rectH[axisId].first=patchToBeSplit->getConstPart()[axisId].first+i;
+          MCAuto<InternalPatch> p(patchToBeSplit->deepCopy());
+          p->zipToFitOnCriterion(bso.getMinimumPatchLength());
+          efficiencyPerAxis[h]=p->getEfficiencyPerAxis(axisId);
         }
-      ratio[id]=std::max(efficiency[0],efficiency[1])/std::min(efficiency[0],efficiency[1]);
-    }
-  int minCellDirection(bso.getMinCellDirection()),indexMin(-1);
-  int dimRatioInner(rangeOfAxisId-1-2*(minCellDirection-1));
-  std::vector<double> ratio_inner(dimRatioInner);
-  double minRatio(1.e10);
-  for(int i=0; i<dimRatioInner; i++)
-    {
-      if(ratio[minCellDirection-1+i]<minRatio)
+      ratio[i]=std::max(efficiencyPerAxis[0], efficiencyPerAxis[1]) / std::min(efficiencyPerAxis[0], efficiencyPerAxis[1]);
+      if(ratio[i]<minSemiEfficiencyRatio)
         {
-          minRatio=ratio[minCellDirection-1+i];
-          indexMin=i+minCellDirection;
+          minSemiEfficiencyRatio = ratio[i];
+          index_min = i;
         }
     }
-  cutFound=true; cutPlace=indexMin+patchToBeSplit->getConstPart()[axisId].first-1;
+
+  if(index_min==-1)
+    throw INTERP_KERNEL::Exception("DissectBigPatch : just call to Arthur !");
+
+  cutPlace=index_min+patchToBeSplit->getConstPart()[axisId].first;
 }
 
-void FindHole(const INTERP_KERNEL::BoxSplittingOptions& bso, const InternalPatch *patchToBeSplit, int& axisId, bool& cutFound, int& cutPlace)
+bool FindHole(const INTERP_KERNEL::BoxSplittingOptions& bso, const InternalPatch *patchToBeSplit, mcIdType axisId, mcIdType& cutPlace)
 {
-  cutPlace=-1; cutFound=false;
-  int minCellDirection(bso.getMinCellDirection());
-  const int dim(patchToBeSplit->getDimension());
-  std::vector< std::vector<int> > signatures(patchToBeSplit->computeSignature());
-  for(int id=0;id<dim;id++)
+  cutPlace=-1;
+  mcIdType minimumPatchLength(bso.getMinimumPatchLength());
+  const mcIdType dim(patchToBeSplit->getDimension());
+  std::vector< std::vector<mcIdType> > signatures(patchToBeSplit->computeSignature());
+  for(mcIdType id=0;id<dim;id++)
     {
-      const std::vector<int>& signature(signatures[id]);
-      std::vector<int> hole;
+      const std::vector<mcIdType>& signature(signatures[id]);
+      std::vector<mcIdType> hole;
       std::vector<double> distance;
-      int len((int)signature.size());
-      for(int i=0;i<len;i++)
+      mcIdType len(ToIdType(signature.size()));
+      for(mcIdType i=minimumPatchLength-1;i<len-minimumPatchLength;i++)
         if(signature[i]==0)
-          if(len>= 2*minCellDirection && i >= minCellDirection-1 && i <= len-minCellDirection-1)
-            hole.push_back(i);
+          hole.push_back(i);
       if(!hole.empty())
         {
-          double center(((double)len/2.));
+          mcIdType closestHoleToMiddle(hole[0]);
+          mcIdType oldDistanceToMiddle(std::abs(hole[0]-len/2));
+          mcIdType newDistanceToMiddle(oldDistanceToMiddle);
           for(std::size_t i=0;i<hole.size();i++)
-            distance.push_back(fabs(hole[i]+1.-center));
-
-          std::size_t posDistanceMin(std::distance(distance.begin(),std::min_element(distance.begin(),distance.end())));
-          cutFound=true;
-          axisId=id;
-          cutPlace=hole[posDistanceMin]+patchToBeSplit->getConstPart()[axisId].first+1;
-          return ;
+            {
+              newDistanceToMiddle=std::abs(hole[i]-len/2);
+              if(newDistanceToMiddle < oldDistanceToMiddle)
+                {
+                  oldDistanceToMiddle = newDistanceToMiddle;
+                  closestHoleToMiddle = hole[i];
+                }
+            }
+          cutPlace=closestHoleToMiddle+patchToBeSplit->getConstPart()[axisId].first;
+          return true;
         }
     }
+  return false;
 }
 
-void FindInflection(const INTERP_KERNEL::BoxSplittingOptions& bso, const InternalPatch *patchToBeSplit, bool& cutFound, int& cutPlace, int& axisId)
+bool FindInflection(const INTERP_KERNEL::BoxSplittingOptions& bso, const InternalPatch *patchToBeSplit, mcIdType& cutPlace, int& axisId)
 {
-  cutFound=false; cutPlace=-1;// do not set axisId before to be sure that cutFound was set to true
-
-  const std::vector< std::pair<int,int> >& part(patchToBeSplit->getConstPart());
-  int sign,minCellDirection(bso.getMinCellDirection());
-  const int dim(patchToBeSplit->getDimension());
+  bool cutFound(false); cutPlace=-1;// do not set axisId before to be sure that cutFound was set to true
+  const std::vector< std::pair<mcIdType,mcIdType> >& part(patchToBeSplit->getConstPart());
+  mcIdType sign=0,minimumPatchLength(bso.getMinimumPatchLength());
+  const mcIdType dim(patchToBeSplit->getDimension());
 
-  std::vector<int> zeroCrossDims(dim,-1);
-  std::vector<int> zeroCrossVals(dim,-1);
-  std::vector< std::vector<int> > signatures(patchToBeSplit->computeSignature());
-  for (int id=0;id<dim;id++)
+  std::vector<mcIdType> zeroCrossDims(dim,-1);
+  std::vector<mcIdType> zeroCrossVals(dim,-1);
+  std::vector< std::vector<mcIdType> > signatures(patchToBeSplit->computeSignature());
+  for (mcIdType id=0;id<dim;id++)
     {
-      const std::vector<int>& signature(signatures[id]);
+      const std::vector<mcIdType>& signature(signatures[id]);
 
-      std::vector<int> derivate_second_order,gradient_absolute,signe_change,zero_cross,edge,max_cross_list ;
+      std::vector<mcIdType> derivate_second_order,gradient_absolute,zero_cross,edge,max_cross_list ;
       std::vector<double> distance ;
 
-      for (unsigned int i=1;i<signature.size()-1;i++)
+      for(std::size_t i=1;i<signature.size()-1;i++)
         derivate_second_order.push_back(signature[i-1]-2*signature[i]+signature[i+1]) ;
 
       // Gradient absolute value
-      for ( unsigned int i=1;i<derivate_second_order.size();i++)
-        gradient_absolute.push_back(fabs(derivate_second_order[i]-derivate_second_order[i-1])) ;
+      for(std::size_t i=1;i<derivate_second_order.size();i++)
+        gradient_absolute.push_back(std::abs(derivate_second_order[i]-derivate_second_order[i-1])) ;
       if(derivate_second_order.empty())
         continue;
-      for (unsigned int i=0;i<derivate_second_order.size()-1;i++)
+      for(std::size_t i=1;i<derivate_second_order.size()-1;i++)
         {
           if (derivate_second_order[i]*derivate_second_order[i+1] < 0 )
             sign = -1 ;
@@ -474,27 +927,26 @@ void FindInflection(const INTERP_KERNEL::BoxSplittingOptions& bso, const Interna
           if (derivate_second_order[i]*derivate_second_order[i+1] == 0 )
             sign = 0 ;
           if ( sign==0 || sign==-1 )
-            if ( i >= (unsigned int)minCellDirection-2 && i <= signature.size()-minCellDirection-2 )
+            if ( i >= (std::size_t)minimumPatchLength-2 && i <= signature.size()-minimumPatchLength-2 )
               {
-                zero_cross.push_back(i) ;
+                zero_cross.push_back(ToIdType(i)) ;
                 edge.push_back(gradient_absolute[i]) ;
               }
-          signe_change.push_back(sign) ;
         }
       if ( zero_cross.size() > 0 )
         {
-          int max_cross=*max_element(edge.begin(),edge.end()) ;
-          for (unsigned int i=0;i<edge.size();i++)
+          mcIdType max_cross=*max_element(edge.begin(),edge.end()) ;
+          for (std::size_t i=0;i<edge.size();i++)
             if (edge[i]==max_cross)
               max_cross_list.push_back(zero_cross[i]+1) ;
 
-          double center((signature.size()/2.0));
-          for (unsigned int i=0;i<max_cross_list.size();i++)
-            distance.push_back(fabs(max_cross_list[i]+1-center));
+          double center(static_cast<double>(signature.size())/2.0);
+          for (std::size_t i=0;i<max_cross_list.size();i++)
+            distance.push_back(fabs(FromIdType<double>(max_cross_list[i])+1-center));
 
-          float distance_min=*min_element(distance.begin(),distance.end()) ;
-          int pos_distance_min=find(distance.begin(),distance.end(),distance_min)-distance.begin();
-          int best_place = max_cross_list[pos_distance_min] + part[id].first ;
+          double distance_min=*min_element(distance.begin(),distance.end()) ;
+          mcIdType pos_distance_min=ToIdType(find(distance.begin(),distance.end(),distance_min)-distance.begin());
+          mcIdType best_place = max_cross_list[pos_distance_min] + part[id].first ;
           if ( max_cross >=0 )
             {
               zeroCrossDims[id] = best_place ;
@@ -503,7 +955,6 @@ void FindInflection(const INTERP_KERNEL::BoxSplittingOptions& bso, const Interna
         }
       derivate_second_order.clear() ;
       gradient_absolute.clear() ;
-      signe_change.clear() ;
       zero_cross.clear() ;
       edge.clear() ;
       max_cross_list.clear() ;
@@ -512,150 +963,199 @@ void FindInflection(const INTERP_KERNEL::BoxSplittingOptions& bso, const Interna
 
   if ( zeroCrossDims[0]!=-1 || zeroCrossDims[1]!=-1  )
     {
-      int max_cross_dims = *max_element(zeroCrossVals.begin(),zeroCrossVals.end()) ;
+      mcIdType max_cross_dims = *max_element(zeroCrossVals.begin(),zeroCrossVals.end()) ;
 
       if (zeroCrossVals[0]==max_cross_dims &&  zeroCrossVals[1]==max_cross_dims )
         {
-          int nl_left(part[0].second-part[0].first);
-          int nc_left(part[1].second-part[1].first);
+          mcIdType nl_left(part[0].second-part[0].first);
+          mcIdType nc_left(part[1].second-part[1].first);
           if ( nl_left >=  nc_left )
             max_cross_dims = 0 ;
           else
             max_cross_dims = 1 ;
         }
       else
-        max_cross_dims=std::find(zeroCrossVals.begin(),zeroCrossVals.end(),max_cross_dims)-zeroCrossVals.begin();
+        max_cross_dims=ToIdType(std::find(zeroCrossVals.begin(),zeroCrossVals.end(),max_cross_dims)-zeroCrossVals.begin());
       cutFound=true;
       cutPlace=zeroCrossDims[max_cross_dims];
-      axisId=max_cross_dims ;
+      axisId=FromIdType<int>(max_cross_dims);
     }
+  return cutFound;
 }
 
-void TryAction4(const INTERP_KERNEL::BoxSplittingOptions& bso, const InternalPatch *patchToBeSplit, int axisId, int rangeOfAxisId, bool& cutFound, int& cutPlace)
+bool TryAction4(const INTERP_KERNEL::BoxSplittingOptions& bso, const InternalPatch *patchToBeSplit, mcIdType axisId, mcIdType rangeOfAxisId, mcIdType& cutPlace)
 {
-  cutFound=false;
-  if(patchToBeSplit->getEfficiency()<=bso.getEffeciencySnd())
+  if(patchToBeSplit->getEfficiency()<=bso.getEfficiencyGoal())
     {
-      if(rangeOfAxisId>=2*bso.getMinCellDirection())
+      if(rangeOfAxisId>=2*bso.getMinimumPatchLength())
         {
-          cutFound=true;
           cutPlace=rangeOfAxisId/2+patchToBeSplit->getConstPart()[axisId].first-1;
         }
+      else
+        return false;
     }
   else
     {
-      if(patchToBeSplit->getNumberOfCells()>bso.getMaxCells())
+      if(patchToBeSplit->getNumberOfCells()>bso.getMaximumNbOfCellsInPatch() || rangeOfAxisId>bso.getMaximumPatchLength())
         {
-          DissectBigPatch(bso,patchToBeSplit,axisId,rangeOfAxisId,cutFound,cutPlace);
+          DissectBigPatch(bso,patchToBeSplit,axisId,rangeOfAxisId,cutPlace);
         }
+      else
+        return false;
     }
+  return true;
 }
 
-MEDCouplingAutoRefCountObjectPtr<InternalPatch> DealWithNoCut(const InternalPatch *patch)
+MCAuto<InternalPatch> DealWithNoCut(const InternalPatch *patch)
 {
-  MEDCouplingAutoRefCountObjectPtr<InternalPatch> ret(const_cast<InternalPatch *>(patch));
+  MCAuto<InternalPatch> ret(const_cast<InternalPatch *>(patch));
   ret->incrRef();
   return ret;
 }
 
-void DealWithCut(const InternalPatch *patchToBeSplit, int axisId, int cutPlace, std::vector<MEDCouplingAutoRefCountObjectPtr<InternalPatch> >& listOfPatches)
+void DealWithCut(double minPatchLgth, const InternalPatch *patchToBeSplit, int axisId, mcIdType cutPlace, std::vector<MCAuto<InternalPatch> >& listOfPatches)
 {
-  MEDCouplingAutoRefCountObjectPtr<InternalPatch> leftPart,rightPart;
-  std::vector< std::pair<int,int> > rect(patchToBeSplit->getConstPart());
-  std::vector< std::pair<int,int> > leftRect(rect),rightRect(rect);
+  MCAuto<InternalPatch> leftPart,rightPart;
+  std::vector< std::pair<mcIdType,mcIdType> > rect(patchToBeSplit->getConstPart());
+  std::vector< std::pair<mcIdType,mcIdType> > leftRect(rect),rightRect(rect);
   leftRect[axisId].second=cutPlace+1;
   rightRect[axisId].first=cutPlace+1;
   leftPart=patchToBeSplit->extractPart(leftRect);
   rightPart=patchToBeSplit->extractPart(rightRect);
-  leftPart->zipToFitOnCriterion(); rightPart->zipToFitOnCriterion();
+  leftPart->zipToFitOnCriterion(ToIdType(minPatchLgth)); rightPart->zipToFitOnCriterion(ToIdType(minPatchLgth));
   listOfPatches.push_back(leftPart);
   listOfPatches.push_back(rightPart);
 }
 
 /// @endcond
 
+void MEDCouplingCartesianAMRMeshGen::removeAllPatches()
+{
+  _patches.clear();
+  declareAsNew();
+}
+
+void MEDCouplingCartesianAMRMeshGen::removePatch(mcIdType patchId)
+{
+  checkPatchId(patchId);
+  mcIdType sz(ToIdType(_patches.size())),j(0);
+  std::vector< MCAuto<MEDCouplingCartesianAMRPatch> > patches(sz-1);
+  for(mcIdType i=0;i<sz;i++)
+    if(i!=patchId)
+      patches[j++]=_patches[i];
+  (const_cast<MEDCouplingCartesianAMRMeshGen *>(_patches[patchId]->getMesh()))->detachFromFather();
+  _patches=patches;
+  declareAsNew();
+}
+
+mcIdType MEDCouplingCartesianAMRMeshGen::getNumberOfPatches() const
+{
+  return ToIdType(_patches.size());
+}
+
 /*!
- * This method creates patches in \a this (by destroying the patches if any). This method uses \a criterion array as a field on cells on this level.
+ * This method is a generic algorithm to create patches in \a this (by destroying the patches if any).
+ * This method uses \a criterion array as a field on cells on this level.
+ * This method only create patches at level 0 relative to \a this.
+ *
+ * This generic algorithm can be degenerated into three child ones, depending on the arguments given; in particular depending
+ * on whether they are equal to 0 or not.
+ * 1/ If  minimumPatchLength = maximumPatchLength = maximumPatchVolume = 0, then we have the Berger-Rigoutsos algorithm.
+ * This algorithm was developed in 1991 and seems appropriate for sequential programming.
+ * 2/ If maximumPatchLength = 0, then we have the Livne algorithm.
+ * This algorithm was developed in 2004 and is an improvement of the Berger-Rigoutsos algorithm.
+ * 3/ If maximumPatchVolume = 0, the we have the lmin-lmax algorithm.
+ * This algorithm was developed by Arthur TALPAERT in 2014 and is an improvement of the Livne algorithm. It is especially
+ * appropriate for parallel computing, where one patch would be given to one CPU. See Arthur TALPAERT's 2014 CANUM poster
+ * for more information.
+ *
  */
-void MEDCouplingCartesianAMRMeshGen::createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const std::vector<bool>& criterion, const std::vector<int>& factors)
+void MEDCouplingCartesianAMRMeshGen::createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const std::vector<bool>& criterion, const std::vector<mcIdType>& factors)
 {
-  int nbCells(getNumberOfCellsAtCurrentLevel());
-  if(nbCells!=(int)criterion.size())
-    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::createPatchesFromCriterion : the number of tuples of criterion array must be equal to the number of cells at the current level !");
+  mcIdType nbCells(getNumberOfCellsAtCurrentLevel());
+  if(nbCells!=ToIdType(criterion.size()))
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::createPatchesFromCriterion : the number of tuples of criterion array must be equal to the number of cells at the current level !");
   _patches.clear();
-  std::vector<int> cgs(_mesh->getCellGridStructure());
-  std::vector< MEDCouplingAutoRefCountObjectPtr<InternalPatch> > listOfPatches,listOfPatchesOK;
+  std::vector<mcIdType> cgs(_mesh->getCellGridStructure());
+  std::vector< MCAuto<InternalPatch> > listOfPatches,listOfPatchesOK;
   //
-  MEDCouplingAutoRefCountObjectPtr<InternalPatch> p(new InternalPatch);
-  p->setNumberOfTrue(MEDCouplingStructuredMesh::FindMinimalPartOf(cgs,criterion,p->getCriterion(),p->getPart()));
+  MCAuto<InternalPatch> p(new InternalPatch);
+  p->setNumberOfTrue(MEDCouplingStructuredMesh::FindMinimalPartOf(bso.getMinimumPatchLength(),cgs,criterion,p->getCriterion(),p->getPart()));
   if(p->presenceOfTrue())
     listOfPatches.push_back(p);
   while(!listOfPatches.empty())
     {
-      std::vector< MEDCouplingAutoRefCountObjectPtr<InternalPatch> > listOfPatchesTmp;
-      for(std::vector< MEDCouplingAutoRefCountObjectPtr<InternalPatch> >::iterator it=listOfPatches.begin();it!=listOfPatches.end();it++)
+      std::vector< MCAuto<InternalPatch> > listOfPatchesTmp;
+      for(std::vector< MCAuto<InternalPatch> >::iterator it=listOfPatches.begin();it!=listOfPatches.end();it++)
         {
           //
-          int axisId,rangeOfAxisId,cutPlace;
-          bool cutFound;
-          MEDCouplingStructuredMesh::FindTheWidestAxisOfGivenRangeInCompactFrmt((*it)->getConstPart(),axisId,rangeOfAxisId);
-          if((*it)->getEfficiency()>=bso.getEffeciency() && (*it)->getNumberOfCells()<bso.getMaxCells())
-            { listOfPatchesOK.push_back(DealWithNoCut(*it)); continue; }//action 1
-          FindHole(bso,*it,axisId,cutFound,cutPlace);//axisId overwritten here if FindHole equal to true !
-          if(cutFound)
-            { DealWithCut(*it,axisId,cutPlace,listOfPatchesTmp); continue; }//action 2
-          FindInflection(bso,*it,cutFound,cutPlace,axisId);//axisId overwritten here if cutFound equal to true !
-          if(cutFound)
-            { DealWithCut(*it,axisId,cutPlace,listOfPatchesTmp); continue; }//action 3
-          TryAction4(bso,*it,axisId,rangeOfAxisId,cutFound,cutPlace);
-          if(cutFound)
-            { DealWithCut(*it,axisId,cutPlace,listOfPatchesTmp); continue; }//action 4
-          listOfPatchesOK.push_back(DealWithNoCut(*it));
+          int axisId;
+          mcIdType largestLength,cutPlace;
+          MEDCouplingStructuredMesh::FindTheWidestAxisOfGivenRangeInCompactFrmt((*it)->getConstPart(),axisId,largestLength);
+          if((*it)->getEfficiency()>=bso.getEfficiencyThreshold() && ((*it)->getNumberOfCells()>bso.getMaximumNbOfCellsInPatch() || largestLength>bso.getMaximumPatchLength()))
+            {
+              DissectBigPatch(bso,*it,axisId,largestLength,cutPlace);
+              DealWithCut(bso.getMinimumPatchLength(),*it,axisId,cutPlace,listOfPatchesTmp);
+              continue;
+            }//action 1
+          if(FindHole(bso,*it,axisId,cutPlace))//axisId overwritten here if FindHole equal to true !
+            { DealWithCut(bso.getMinimumPatchLength(),*it,axisId,cutPlace,listOfPatchesTmp); continue; }//action 2
+          if(FindInflection(bso,*it,cutPlace,axisId))//axisId overwritten here if cutFound equal to true !
+            { DealWithCut(bso.getMinimumPatchLength(),*it,axisId,cutPlace,listOfPatchesTmp); continue; }//action 3
+          if(TryAction4(bso,*it,axisId,largestLength,cutPlace))
+            { DealWithCut(bso.getMinimumPatchLength(),*it,axisId,cutPlace,listOfPatchesTmp); continue; }//action 4
+          else
+            listOfPatchesOK.push_back(DealWithNoCut(*it));
         }
       listOfPatches=listOfPatchesTmp;
     }
-  for(std::vector< MEDCouplingAutoRefCountObjectPtr<InternalPatch> >::const_iterator it=listOfPatchesOK.begin();it!=listOfPatchesOK.end();it++)
+  for(std::vector< MCAuto<InternalPatch> >::const_iterator it=listOfPatchesOK.begin();it!=listOfPatchesOK.end();it++)
     addPatch((*it)->getConstPart(),factors);
   declareAsNew();
 }
 
 /*!
  * This method creates patches in \a this (by destroying the patches if any). This method uses \a criterion array as a field on cells on this level.
+ * This method only create patches at level 0 relative to \a this.
  */
-void MEDCouplingCartesianAMRMeshGen::createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayByte *criterion, const std::vector<int>& factors)
+void MEDCouplingCartesianAMRMeshGen::createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayByte *criterion, const std::vector<mcIdType>& factors)
 {
   if(!criterion || !criterion->isAllocated())
-    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::createPatchesFromCriterion : the criterion DataArrayByte instance must be allocated and not NULL !");
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::createPatchesFromCriterion : the criterion DataArrayByte instance must be allocated and not NULL !");
   std::vector<bool> crit(criterion->toVectorOfBool());//check that criterion has one component.
   createPatchesFromCriterion(bso,crit,factors);
   declareAsNew();
 }
 
-void MEDCouplingCartesianAMRMeshGen::removeAllPatches()
+void MEDCouplingCartesianAMRMeshGen::createPatchesFromCriterion(const INTERP_KERNEL::BoxSplittingOptions& bso, const DataArrayDouble *criterion, const std::vector<mcIdType>& factors, double eps)
 {
-  _patches.clear();
-  declareAsNew();
+  if(!criterion)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::createPatchesFromCriterion : null criterion pointer !");
+  std::vector<bool> inp(criterion->toVectorOfBool(eps));
+  createPatchesFromCriterion(bso,inp,factors);
 }
 
-void MEDCouplingCartesianAMRMeshGen::removePatch(int patchId)
+mcIdType MEDCouplingCartesianAMRMeshGen::getPatchIdFromChildMesh(const MEDCouplingCartesianAMRMeshGen *mesh) const
 {
-  checkPatchId(patchId);
-  int sz((int)_patches.size()),j(0);
-  std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> > patches(sz-1);
-  for(int i=0;i<sz;i++)
-    if(i!=patchId)
-      patches[j++]=_patches[i];
-  (const_cast<MEDCouplingCartesianAMRMeshGen *>(_patches[patchId]->getMesh()))->detachFromFather();
-  _patches=patches;
-  declareAsNew();
+  mcIdType ret(0);
+  for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++,ret++)
+    {
+      if((*it)->getMesh()==mesh)
+        return ret;
+    }
+  throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::getPatchIdFromChildMesh : no such a mesh in my direct progeny !");
 }
 
-int MEDCouplingCartesianAMRMeshGen::getNumberOfPatches() const
+std::vector< const MEDCouplingCartesianAMRPatch *> MEDCouplingCartesianAMRMeshGen::getPatches() const
 {
-  return (int)_patches.size();
+  std::size_t sz(_patches.size());
+  std::vector< const MEDCouplingCartesianAMRPatch *> ret(sz);
+  for(std::size_t i=0;i<sz;i++)
+    ret[i]=_patches[i];
+  return ret;
 }
 
-const MEDCouplingCartesianAMRPatch *MEDCouplingCartesianAMRMeshGen::getPatch(int patchId) const
+const MEDCouplingCartesianAMRPatch *MEDCouplingCartesianAMRMeshGen::getPatch(mcIdType patchId) const
 {
   checkPatchId(patchId);
   return _patches[patchId];
@@ -665,23 +1165,10 @@ const MEDCouplingCartesianAMRPatch *MEDCouplingCartesianAMRMeshGen::getPatch(int
  * This method states if patch2 (with id \a patchId2) is in the neighborhood of patch1 (with id \a patchId1).
  * The neighborhood size is defined by \a ghostLev in the reference of \a this ( \b not in the reference of patches !).
  */
-bool MEDCouplingCartesianAMRMeshGen::isPatchInNeighborhoodOf(int patchId1, int patchId2, int ghostLev) const
+bool MEDCouplingCartesianAMRMeshGen::isPatchInNeighborhoodOf(mcIdType patchId1, mcIdType patchId2, mcIdType ghostLev) const
 {
-  if(ghostLev<0)
-    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::isPatchInNeighborhoodOf : the ghost size must be >=0 !");
   const MEDCouplingCartesianAMRPatch *p1(getPatch(patchId1)),*p2(getPatch(patchId2));
-  if(_factors.empty())
-    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::isPatchInNeighborhoodOf : no factors defined !");
-  int ghostLevInPatchRef;
-  if(ghostLev==0)
-    ghostLevInPatchRef=0;
-  else
-    {
-      ghostLevInPatchRef=(ghostLev-1)/_factors[0]+1;
-      for(std::size_t i=0;i<_factors.size();i++)
-        ghostLevInPatchRef=std::max(ghostLevInPatchRef,(ghostLev-1)/_factors[i]+1);
-    }
-  return p1->isInMyNeighborhood(p2,ghostLevInPatchRef);
+  return p1->isInMyNeighborhood(p2,ghostLev);
 }
 
 /*!
@@ -697,13 +1184,13 @@ bool MEDCouplingCartesianAMRMeshGen::isPatchInNeighborhoodOf(int patchId1, int p
  * \throw if \a cellFieldOnThis is NULL or not allocated
  * \sa fillCellFieldOnPatch, MEDCouplingIMesh::SpreadCoarseToFine
  */
-DataArrayDouble *MEDCouplingCartesianAMRMeshGen::createCellFieldOnPatch(int patchId, const DataArrayDouble *cellFieldOnThis) const
+DataArrayDouble *MEDCouplingCartesianAMRMeshGen::createCellFieldOnPatch(mcIdType patchId, const DataArrayDouble *cellFieldOnThis) const
 {
   if(!cellFieldOnThis || !cellFieldOnThis->isAllocated())
     throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::createCellFieldOnPatch : the input cell field array is NULL or not allocated !");
   const MEDCouplingCartesianAMRPatch *patch(getPatch(patchId));
   const MEDCouplingIMesh *fine(patch->getMesh()->getImageMesh());
-  MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ret(DataArrayDouble::New()); ret->alloc(fine->getNumberOfCells(),cellFieldOnThis->getNumberOfComponents());
+  MCAuto<DataArrayDouble> ret(DataArrayDouble::New()); ret->alloc(fine->getNumberOfCells(),cellFieldOnThis->getNumberOfComponents());
   ret->copyStringInfoFrom(*cellFieldOnThis);
   MEDCouplingIMesh::SpreadCoarseToFine(cellFieldOnThis,_mesh->getCellGridStructure(),ret,patch->getBLTRRange(),getFactors());
   return ret.retn();
@@ -719,12 +1206,17 @@ DataArrayDouble *MEDCouplingCartesianAMRMeshGen::createCellFieldOnPatch(int patc
  *
  * \sa createCellFieldOnPatch, fillCellFieldComingFromPatch
  */
-void MEDCouplingCartesianAMRMeshGen::fillCellFieldOnPatch(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch) const
+void MEDCouplingCartesianAMRMeshGen::fillCellFieldOnPatch(mcIdType patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, bool isConservative) const
 {
   if(!cellFieldOnThis || !cellFieldOnThis->isAllocated())
     throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::createCellFieldOnPatch : the input cell field array is NULL or not allocated !");
   const MEDCouplingCartesianAMRPatch *patch(getPatch(patchId));
   MEDCouplingIMesh::SpreadCoarseToFine(cellFieldOnThis,_mesh->getCellGridStructure(),cellFieldOnPatch,patch->getBLTRRange(),getFactors());
+  if(isConservative)
+    {
+      mcIdType fact(MEDCouplingStructuredMesh::DeduceNumberOfGivenStructure(getFactors()));
+      std::transform(cellFieldOnPatch->begin(),cellFieldOnPatch->end(),cellFieldOnPatch->getPointer(),std::bind2nd(std::multiplies<double>(),1./((double)fact)));
+    }
 }
 
 /*!
@@ -738,12 +1230,34 @@ void MEDCouplingCartesianAMRMeshGen::fillCellFieldOnPatch(int patchId, const Dat
  *
  * \sa fillCellFieldOnPatch, fillCellFieldOnPatchGhostAdv
  */
-void MEDCouplingCartesianAMRMeshGen::fillCellFieldOnPatchGhost(int patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, int ghostLev) const
+void MEDCouplingCartesianAMRMeshGen::fillCellFieldOnPatchGhost(mcIdType patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, mcIdType ghostLev, bool isConservative) const
 {
   if(!cellFieldOnThis || !cellFieldOnThis->isAllocated())
     throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::createCellFieldOnPatchGhost : the input cell field array is NULL or not allocated !");
   const MEDCouplingCartesianAMRPatch *patch(getPatch(patchId));
   MEDCouplingIMesh::SpreadCoarseToFineGhost(cellFieldOnThis,_mesh->getCellGridStructure(),cellFieldOnPatch,patch->getBLTRRange(),getFactors(),ghostLev);
+  if(isConservative)
+    {
+      mcIdType fact(MEDCouplingStructuredMesh::DeduceNumberOfGivenStructure(getFactors()));
+      std::transform(cellFieldOnPatch->begin(),cellFieldOnPatch->end(),cellFieldOnPatch->getPointer(),std::bind2nd(std::multiplies<double>(),1./((double)fact)));
+    }
+}
+
+/*!
+ * This method is equivalent to  fillCellFieldOnPatchGhost except that here \b ONLY \b the \b ghost \b zone will be updated
+ * in \a cellFieldOnPatch.
+ *
+ * \param [in] patchId - The id of the patch \a cellFieldOnThis has to be put on.
+ * \param [in] cellFieldOnThis - The array of the cell field on \c this->getImageMesh() to be projected to patch having id \a patchId.
+ * \param [in,out] cellFieldOnPatch - The array of the cell field on the requested patch to be filled \b only \b in \b the \b ghost \b zone.
+ * \param [in] ghostLev - The size of the ghost zone (must be >=0 !)
+ */
+void MEDCouplingCartesianAMRMeshGen::fillCellFieldOnPatchOnlyOnGhostZone(mcIdType patchId, const DataArrayDouble *cellFieldOnThis, DataArrayDouble *cellFieldOnPatch, mcIdType ghostLev) const
+{
+  if(!cellFieldOnThis || !cellFieldOnThis->isAllocated())
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::fillCellFieldOnPatchOnlyOnGhostZone : the input cell field array is NULL or not allocated !");
+  const MEDCouplingCartesianAMRPatch *patch(getPatch(patchId));
+  MEDCouplingIMesh::SpreadCoarseToFineGhostZone(cellFieldOnThis,_mesh->getCellGridStructure(),cellFieldOnPatch,patch->getBLTRRange(),getFactors(),ghostLev);
 }
 
 /*!
@@ -752,86 +1266,77 @@ void MEDCouplingCartesianAMRMeshGen::fillCellFieldOnPatchGhost(int patchId, cons
  *
  * \param [in] patchId - The id of the patch \a cellFieldOnThis has to be put on.
  * \param [in] cellFieldOnThis - The array of the cell field on \c this->getImageMesh() to be projected to patch having id \a patchId.
- * \param [in,out] cellFieldOnPatch - The array of the cell field on the requested patch to be filled.
  * \param [in] ghostLev - The size of the ghost zone (must be >=0 !)
  * \param [in] arrsOnPatches - \b WARNING arrsOnPatches[patchId] is \b NOT \b const. All others are const.
  *
  * \sa fillCellFieldOnPatchOnlyGhostAdv
  */
-void MEDCouplingCartesianAMRMeshGen::fillCellFieldOnPatchGhostAdv(int patchId, const DataArrayDouble *cellFieldOnThis, int ghostLev, const std::vector<const DataArrayDouble *>& arrsOnPatches) const
+void MEDCouplingCartesianAMRMeshGen::fillCellFieldOnPatchGhostAdv(mcIdType patchId, const DataArrayDouble *cellFieldOnThis, mcIdType ghostLev, const std::vector<const DataArrayDouble *>& arrsOnPatches, bool isConservative) const
 {
-  int nbp(getNumberOfPatches());
-  if(nbp!=(int)arrsOnPatches.size())
+  mcIdType nbp(getNumberOfPatches());
+  if(nbp!=ToIdType(arrsOnPatches.size()))
     {
       std::ostringstream oss; oss << "MEDCouplingCartesianAMRMesh::fillCellFieldOnPatchGhostAdv : there are " << nbp << " patches in this and " << arrsOnPatches.size() << " arrays in the last parameter !";
       throw INTERP_KERNEL::Exception(oss.str().c_str());
     }
   DataArrayDouble *theFieldToFill(const_cast<DataArrayDouble *>(arrsOnPatches[patchId]));
   // first, do as usual
-  fillCellFieldOnPatchGhost(patchId,cellFieldOnThis,theFieldToFill,ghostLev);
+  fillCellFieldOnPatchGhost(patchId,cellFieldOnThis,theFieldToFill,ghostLev,isConservative);
   fillCellFieldOnPatchOnlyGhostAdv(patchId,ghostLev,arrsOnPatches);
 }
 
-void MEDCouplingCartesianAMRMeshGen::fillCellFieldOnPatchOnlyGhostAdv(int patchId, int ghostLev, const std::vector<const DataArrayDouble *>& arrsOnPatches) const
+/*!
+ * This method updates the patch with id \a patchId considering the only the all the patches in \a this to fill ghost zone.
+ * So \b warning, the DataArrayDouble instance \a arrsOnPatches[patchId] is non const.
+ *
+ * \sa getPatchIdsInTheNeighborhoodOf
+ */
+void MEDCouplingCartesianAMRMeshGen::fillCellFieldOnPatchOnlyGhostAdv(mcIdType patchId, mcIdType ghostLev, const std::vector<const DataArrayDouble *>& arrsOnPatches) const
 {
-  int nbp(getNumberOfPatches()),dim(getSpaceDimension());
-  if(nbp!=(int)arrsOnPatches.size())
+  mcIdType nbp(getNumberOfPatches());
+  if(nbp!=ToIdType(arrsOnPatches.size()))
     {
       std::ostringstream oss; oss << "MEDCouplingCartesianAMRMesh::fillCellFieldOnPatchOnlyGhostAdv : there are " << nbp << " patches in this and " << arrsOnPatches.size() << " arrays in the last parameter !";
       throw INTERP_KERNEL::Exception(oss.str().c_str());
     }
-  DataArrayDouble *theFieldToFill(const_cast<DataArrayDouble *>(arrsOnPatches[patchId]));
   const MEDCouplingCartesianAMRPatch *refP(getPatch(patchId));
-  const std::vector< std::pair<int,int> >& refBLTR(refP->getBLTRRange());//[(1,4),(2,4)]
-  std::vector<int> dimsCoarse(MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(refBLTR));//[3,2]
-  std::transform(dimsCoarse.begin(),dimsCoarse.end(),_factors.begin(),dimsCoarse.begin(),std::multiplies<int>());//[12,8]
-  std::transform(dimsCoarse.begin(),dimsCoarse.end(),dimsCoarse.begin(),std::bind2nd(std::plus<int>(),2*ghostLev));//[14,10]
-  std::vector< std::pair<int,int> > rangeCoarse(MEDCouplingStructuredMesh::GetCompactFrmtFromDimensions(dimsCoarse));//[(0,14),(0,10)]
-  std::vector<int> fakeFactors(dim,1);
-  //
-  for(int i=0;i<nbp;i++)
+  DataArrayDouble *theFieldToFill(const_cast<DataArrayDouble *>(arrsOnPatches[patchId]));
+  std::vector<mcIdType> ids(getPatchIdsInTheNeighborhoodOf(patchId,ghostLev));
+  for(std::vector<mcIdType>::const_iterator it=ids.begin();it!=ids.end();it++)
     {
-      if(i!=patchId)
-        if(isPatchInNeighborhoodOf(i,patchId,ghostLev))
-          {
-            const MEDCouplingCartesianAMRPatch *otherP(getPatch(i));
-            const std::vector< std::pair<int,int> >& otherBLTR(otherP->getBLTRRange());//[(4,5),(3,4)]
-            std::vector< std::pair<int,int> > tmp0,tmp1,tmp2;
-            MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(refBLTR,otherBLTR,tmp0,false);//tmp0=[(3,4),(1,2)]
-            ApplyFactorsOnCompactFrmt(tmp0,_factors);//tmp0=[(12,16),(4,8)]
-            ApplyGhostOnCompactFrmt(tmp0,ghostLev);//tmp0=[(13,17),(5,9)]
-            std::vector< std::pair<int,int> > interstRange(MEDCouplingStructuredMesh::IntersectRanges(tmp0,rangeCoarse));//interstRange=[(13,14),(5,9)]
-            MEDCouplingStructuredMesh::ChangeReferenceFromGlobalOfCompactFrmt(otherBLTR,refBLTR,tmp1,false);//tmp1=[(-3,0),(-1,1)]
-            ApplyFactorsOnCompactFrmt(tmp1,_factors);//tmp1=[(-12,-4),(-4,0)]
-            MEDCouplingStructuredMesh::ChangeReferenceToGlobalOfCompactFrmt(tmp1,interstRange,tmp2,false);//tmp2=[(1,2),(1,5)]
-            //
-            std::vector< std::pair<int,int> > dimsFine(otherBLTR);
-            ApplyFactorsOnCompactFrmt(dimsFine,_factors);
-            ApplyAllGhostOnCompactFrmt(dimsFine,ghostLev);
-            //
-            MEDCouplingAutoRefCountObjectPtr<DataArrayDouble> ghostVals(MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom(MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(dimsFine),arrsOnPatches[i],tmp2));
-            MEDCouplingIMesh::CondenseFineToCoarse(dimsCoarse,ghostVals,interstRange,fakeFactors,theFieldToFill);
-          }
+      const MEDCouplingCartesianAMRPatch *otherP(getPatch(*it));
+      MEDCouplingCartesianAMRPatch::UpdateNeighborsOfOneWithTwo(ghostLev,_factors,refP,otherP,theFieldToFill,arrsOnPatches[*it]);
     }
 }
 
+void MEDCouplingCartesianAMRMeshGen::fillCellFieldOnPatchOnlyOnGhostZoneWith(mcIdType ghostLev, const MEDCouplingCartesianAMRPatch *patchToBeModified, const MEDCouplingCartesianAMRPatch *neighborPatch, DataArrayDouble *cellFieldOnPatch, const DataArrayDouble *cellFieldNeighbor) const
+{
+  MEDCouplingCartesianAMRPatch::UpdateNeighborsOfOneWithTwo(ghostLev,_factors,patchToBeModified,neighborPatch,cellFieldOnPatch,cellFieldNeighbor);
+}
+
 /*!
  * This method updates \a cellFieldOnThis part of values coming from the cell field \a cellFieldOnPatch lying on patch having id \a patchId.
  *
  * \param [in] patchId - The id of the patch \a cellFieldOnThis has to be put on.
  * \param [in] cellFieldOnPatch - The array of the cell field on patch with id \a patchId.
  * \param [in,out] cellFieldOnThis The array of the cell field on \a this to be updated only on the part concerning the patch with id \a patchId.
+ * \param [in] isConservative - true if the field needs to be conserved. false if maximum principle has to be applied.
  *
  * \throw if \a patchId is not in [ 0 , \c this->getNumberOfPatches() )
  * \throw if \a cellFieldOnPatch is NULL or not allocated
  * \sa createCellFieldOnPatch, MEDCouplingIMesh::CondenseFineToCoarse,fillCellFieldComingFromPatchGhost
  */
-void MEDCouplingCartesianAMRMeshGen::fillCellFieldComingFromPatch(int patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis) const
+void MEDCouplingCartesianAMRMeshGen::fillCellFieldComingFromPatch(mcIdType patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, bool isConservative) const
 {
   if(!cellFieldOnPatch || !cellFieldOnPatch->isAllocated())
       throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::fillCellFieldComingFromPatch : the input cell field array is NULL or not allocated !");
   const MEDCouplingCartesianAMRPatch *patch(getPatch(patchId));
   MEDCouplingIMesh::CondenseFineToCoarse(_mesh->getCellGridStructure(),cellFieldOnPatch,patch->getBLTRRange(),getFactors(),cellFieldOnThis);
+  if(!isConservative)
+    {
+      mcIdType fact(MEDCouplingStructuredMesh::DeduceNumberOfGivenStructure(getFactors()));
+      MEDCouplingStructuredMesh::MultiplyPartOf(_mesh->getCellGridStructure(),patch->getBLTRRange(),1./((double)fact),cellFieldOnThis);
+    }
 }
 
 /*!
@@ -842,17 +1347,23 @@ void MEDCouplingCartesianAMRMeshGen::fillCellFieldComingFromPatch(int patchId, c
  * \param [in] cellFieldOnPatch - The array of the cell field on patch with id \a patchId.
  * \param [in,out] cellFieldOnThis The array of the cell field on \a this to be updated only on the part concerning the patch with id \a patchId.
  * \param [in] ghostLev The size of ghost zone (must be >= 0 !)
+ * \param [in] isConservative - true if the field needs to be conserved. false if maximum principle has to be applied.
  *
  * \throw if \a patchId is not in [ 0 , \c this->getNumberOfPatches() )
  * \throw if \a cellFieldOnPatch is NULL or not allocated
  * \sa fillCellFieldComingFromPatch
  */
-void MEDCouplingCartesianAMRMeshGen::fillCellFieldComingFromPatchGhost(int patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, int ghostLev) const
+void MEDCouplingCartesianAMRMeshGen::fillCellFieldComingFromPatchGhost(mcIdType patchId, const DataArrayDouble *cellFieldOnPatch, DataArrayDouble *cellFieldOnThis, mcIdType ghostLev, bool isConservative) const
 {
   if(!cellFieldOnPatch || !cellFieldOnPatch->isAllocated())
     throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::fillCellFieldComingFromPatchGhost : the input cell field array is NULL or not allocated !");
   const MEDCouplingCartesianAMRPatch *patch(getPatch(patchId));
   MEDCouplingIMesh::CondenseFineToCoarseGhost(_mesh->getCellGridStructure(),cellFieldOnPatch,patch->getBLTRRange(),getFactors(),cellFieldOnThis,ghostLev);
+  if(!isConservative)
+    {
+      mcIdType fact(MEDCouplingStructuredMesh::DeduceNumberOfGivenStructure(getFactors()));
+      MEDCouplingStructuredMesh::MultiplyPartOfByGhost(_mesh->getCellGridStructure(),patch->getBLTRRange(),ghostLev,1./((double)fact),cellFieldOnThis);
+    }
 }
 
 /*!
@@ -861,13 +1372,13 @@ void MEDCouplingCartesianAMRMeshGen::fillCellFieldComingFromPatchGhost(int patch
  *
  * \param [in] patchId - the id of the considered patch.
  * \param [in] ghostLev - the size of the neighborhood.
- * \return DataArrayInt * - the newly allocated array containing the list of patches in the neighborhood of the considered patch. This array is to be deallocated by the caller.
+ * \return DataArrayIdType * - the newly allocated array containing the list of patches in the neighborhood of the considered patch. This array is to be deallocated by the caller.
  */
-DataArrayInt *MEDCouplingCartesianAMRMeshGen::findPatchesInTheNeighborhoodOf(int patchId, int ghostLev) const
+DataArrayIdType *MEDCouplingCartesianAMRMeshGen::findPatchesInTheNeighborhoodOf(mcIdType patchId, mcIdType ghostLev) const
 {
-  int nbp(getNumberOfPatches());
-  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> ret(DataArrayInt::New()); ret->alloc(0,1);
-  for(int i=0;i<nbp;i++)
+  mcIdType nbp(getNumberOfPatches());
+  MCAuto<DataArrayIdType> ret(DataArrayIdType::New()); ret->alloc(0,1);
+  for(mcIdType i=0;i<nbp;i++)
     {
       if(i!=patchId)
         if(isPatchInNeighborhoodOf(i,patchId,ghostLev))
@@ -878,17 +1389,17 @@ DataArrayInt *MEDCouplingCartesianAMRMeshGen::findPatchesInTheNeighborhoodOf(int
 
 MEDCouplingUMesh *MEDCouplingCartesianAMRMeshGen::buildUnstructured() const
 {
-  MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> part(_mesh->buildUnstructured());
+  MCAuto<MEDCouplingUMesh> part(_mesh->buildUnstructured());
   std::vector<bool> bs(_mesh->getNumberOfCells(),false);
-  std::vector<int> cgs(_mesh->getCellGridStructure());
-  std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingUMesh> > msSafe(_patches.size()+1);
+  std::vector<mcIdType> cgs(_mesh->getCellGridStructure());
+  std::vector< MCAuto<MEDCouplingUMesh> > msSafe(_patches.size()+1);
   std::size_t ii(0);
-  for(std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++,ii++)
+  for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++,ii++)
     {
       MEDCouplingStructuredMesh::SwitchOnIdsFrom(cgs,(*it)->getBLTRRange(),bs);
       msSafe[ii+1]=(*it)->getMesh()->buildUnstructured();
     }
-  MEDCouplingAutoRefCountObjectPtr<DataArrayInt> eltsOff(DataArrayInt::BuildListOfSwitchedOff(bs));
+  MCAuto<DataArrayIdType> eltsOff(DataArrayIdType::BuildListOfSwitchedOff(bs));
   msSafe[0]=static_cast<MEDCouplingUMesh *>(part->buildPartOfMySelf(eltsOff->begin(),eltsOff->end(),false));
   std::vector< const MEDCouplingUMesh * > ms(msSafe.size());
   for(std::size_t i=0;i<msSafe.size();i++)
@@ -905,14 +1416,14 @@ MEDCouplingUMesh *MEDCouplingCartesianAMRMeshGen::buildUnstructured() const
 MEDCoupling1SGTUMesh *MEDCouplingCartesianAMRMeshGen::buildMeshFromPatchEnvelop() const
 {
   std::vector<const MEDCoupling1SGTUMesh *> cells;
-  std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCoupling1SGTUMesh> > cellsSafe;
-  for(std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
+  std::vector< MCAuto<MEDCoupling1SGTUMesh> > cellsSafe;
+  for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
     {
       const MEDCouplingCartesianAMRPatch *patch(*it);
       if(patch)
         {
-          MEDCouplingAutoRefCountObjectPtr<MEDCouplingIMesh> cell(patch->getMesh()->getImageMesh()->asSingleCell());
-          MEDCouplingAutoRefCountObjectPtr<MEDCoupling1SGTUMesh> cell1SGT(cell->build1SGTUnstructured());
+          MCAuto<MEDCouplingIMesh> cell(patch->getMesh()->getImageMesh()->asSingleCell());
+          MCAuto<MEDCoupling1SGTUMesh> cell1SGT(cell->build1SGTUnstructured());
           cellsSafe.push_back(cell1SGT); cells.push_back(cell1SGT);
         }
     }
@@ -922,38 +1433,143 @@ MEDCoupling1SGTUMesh *MEDCouplingCartesianAMRMeshGen::buildMeshFromPatchEnvelop(
 MEDCoupling1SGTUMesh *MEDCouplingCartesianAMRMeshGen::buildMeshOfDirectChildrenOnly() const
 {
   std::vector<const MEDCoupling1SGTUMesh *> patches;
-  std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCoupling1SGTUMesh> > patchesSafe;
-  for(std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
+  std::vector< MCAuto<MEDCoupling1SGTUMesh> > patchesSafe;
+  for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
       {
         const MEDCouplingCartesianAMRPatch *patch(*it);
         if(patch)
           {
-            MEDCouplingAutoRefCountObjectPtr<MEDCoupling1SGTUMesh> patchMesh(patch->getMesh()->getImageMesh()->build1SGTUnstructured());
+            MCAuto<MEDCoupling1SGTUMesh> patchMesh(patch->getMesh()->getImageMesh()->build1SGTUnstructured());
             patchesSafe.push_back(patchMesh); patches.push_back(patchMesh);
           }
       }
     return MEDCoupling1SGTUMesh::Merge1SGTUMeshes(patches);
 }
 
-MEDCouplingCartesianAMRMeshGen::MEDCouplingCartesianAMRMeshGen(const std::string& meshName, int spaceDim, const int *nodeStrctStart, const int *nodeStrctStop,
-                                                               const double *originStart, const double *originStop, const double *dxyzStart, const double *dxyzStop):_father(0)
+/*!
+ * This method works same as buildUnstructured except that arrays are given in input to build a field on cell in output.
+ * \return MEDCouplingFieldDouble * - a newly created instance the caller has reponsability to deal with.
+ * \sa buildUnstructured
+ */
+MEDCouplingFieldDouble *MEDCouplingCartesianAMRMeshGen::buildCellFieldOnRecurseWithoutOverlapWithoutGhost(mcIdType ghostSz, const std::vector<const DataArrayDouble *>& recurseArrs) const
+{
+  if(recurseArrs.empty())
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::buildCellFieldOnRecurseWithoutOverlapWithoutGhost : array is empty ! Should never happen !");
+  //
+  std::vector<bool> bs(_mesh->getNumberOfCells(),false);
+  std::vector<mcIdType> cgs(_mesh->getCellGridStructure());
+  std::vector< MCAuto<MEDCouplingFieldDouble> > msSafe(_patches.size()+1);
+  std::size_t ii(0);
+  for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++,ii++)
+    {
+      MEDCouplingStructuredMesh::SwitchOnIdsFrom(cgs,(*it)->getBLTRRange(),bs);
+      std::vector<const DataArrayDouble *> tmpArrs(extractSubTreeFromGlobalFlatten((*it)->getMesh(),recurseArrs));
+      msSafe[ii+1]=(*it)->getMesh()->buildCellFieldOnRecurseWithoutOverlapWithoutGhost(ghostSz,tmpArrs);
+    }
+  MCAuto<DataArrayIdType> eltsOff(DataArrayIdType::BuildListOfSwitchedOff(bs));
+  //
+  MCAuto<MEDCouplingFieldDouble> ret(MEDCouplingFieldDouble::New(ON_CELLS));
+  MCAuto<DataArrayDouble> arr2(extractGhostFrom(ghostSz,recurseArrs[0]));
+  arr2=arr2->selectByTupleIdSafe(eltsOff->begin(),eltsOff->end());
+  ret->setArray(arr2);
+  ret->setName(arr2->getName());
+  MCAuto<MEDCouplingUMesh> part(_mesh->buildUnstructured());
+  MCAuto<MEDCouplingMesh> mesh(part->buildPartOfMySelf(eltsOff->begin(),eltsOff->end(),false));
+  ret->setMesh(mesh);
+  msSafe[0]=ret;
+  //
+  std::vector< const MEDCouplingFieldDouble * > ms(msSafe.size());
+  for(std::size_t i=0;i<msSafe.size();i++)
+    ms[i]=msSafe[i];
+  //
+  return MEDCouplingFieldDouble::MergeFields(ms);
+}
+
+/*!
+ * This method extracts from \arr arr the part inside \a arr by cutting the \a ghostSz external part.
+ * \arr is expected to be an array having a number of tuples equal to \c getImageMesh()->buildWithGhost(ghostSz).
+ */
+DataArrayDouble *MEDCouplingCartesianAMRMeshGen::extractGhostFrom(mcIdType ghostSz, const DataArrayDouble *arr) const
+{
+  std::vector<mcIdType> st(_mesh->getCellGridStructure());
+  std::vector< std::pair<mcIdType,mcIdType> > p(MEDCouplingStructuredMesh::GetCompactFrmtFromDimensions(st));
+  std::transform(st.begin(),st.end(),st.begin(),std::bind2nd(std::plus<mcIdType>(),2*ghostSz));
+  MEDCouplingStructuredMesh::ApplyGhostOnCompactFrmt(p,ghostSz);
+  MCAuto<DataArrayDouble> ret(MEDCouplingStructuredMesh::ExtractFieldOfDoubleFrom(st,arr,p));
+  return ret.retn();
+}
+
+/*!
+ * This method returns all the patches in \a this not equal to \a patchId that are in neighborhood of patch with id \a patchId.
+ *
+ * \sa fillCellFieldOnPatchOnlyGhostAdv
+ */
+std::vector<mcIdType> MEDCouplingCartesianAMRMeshGen::getPatchIdsInTheNeighborhoodOf(mcIdType patchId, mcIdType ghostLev) const
+{
+  std::vector<mcIdType> ret;
+  mcIdType nbp(getNumberOfPatches());
+  //
+  for(mcIdType i=0;i<nbp;i++)
+    {
+      if(i!=patchId)
+        if(isPatchInNeighborhoodOf(i,patchId,ghostLev))
+          ret.push_back(i);
+    }
+  return ret;
+}
+
+/*!
+ * This method returns a dump python of \a this. It is useful for users of createPatchesFromCriterion method for debugging.
+ *
+ * \sa dumpPatchesOf, createPatchesFromCriterion, createPatchesFromCriterionML
+ */
+std::string MEDCouplingCartesianAMRMeshGen::buildPythonDumpOfThis() const
+{
+  std::ostringstream oss;
+  oss << "amr=MEDCouplingCartesianAMRMesh(\""<< getImageMesh()->getName() << "\"," << getSpaceDimension() << ",[";
+  std::vector<mcIdType> ngs(getImageMesh()->getNodeGridStructure());
+  std::vector<double> orig(getImageMesh()->getOrigin()),dxyz(getImageMesh()->getDXYZ());
+  std::copy(ngs.begin(),ngs.end(),std::ostream_iterator<mcIdType>(oss,","));
+  oss <<  "],[";
+  std::copy(orig.begin(),orig.end(),std::ostream_iterator<double>(oss,","));
+  oss << "],[";
+  std::copy(dxyz.begin(),dxyz.end(),std::ostream_iterator<double>(oss,","));
+  oss << "])\n";
+  dumpPatchesOf("amr",oss);
+  return oss.str();
+}
+
+MEDCouplingCartesianAMRMeshGen::MEDCouplingCartesianAMRMeshGen(const MEDCouplingCartesianAMRMeshGen& other):RefCountObject(other),_mesh(other._mesh),_patches(other._patches),_factors(other._factors)
+{
+  const MEDCouplingIMesh *mesh(other._mesh);
+  if(mesh)
+    _mesh=static_cast<MEDCouplingIMesh *>(mesh->deepCopy());
+  std::size_t sz(other._patches.size());
+  for(std::size_t i=0;i<sz;i++)
+    {
+      const MEDCouplingCartesianAMRPatch *patch(other._patches[i]);
+      if(patch)
+        _patches[i]=patch->deepCopy(this);
+    }
+}
+
+MEDCouplingCartesianAMRMeshGen::MEDCouplingCartesianAMRMeshGen(const std::string& meshName, int spaceDim, const mcIdType *nodeStrctStart, const mcIdType *nodeStrctStop,
+                                                               const double *originStart, const double *originStop, const double *dxyzStart, const double *dxyzStop)
 {
   _mesh=MEDCouplingIMesh::New(meshName,spaceDim,nodeStrctStart,nodeStrctStop,originStart,originStop,dxyzStart,dxyzStop);
 }
 
-MEDCouplingCartesianAMRMeshGen::MEDCouplingCartesianAMRMeshGen(MEDCouplingCartesianAMRMeshGen *father, MEDCouplingIMesh *mesh):_father(father)
+MEDCouplingCartesianAMRMeshGen::MEDCouplingCartesianAMRMeshGen(MEDCouplingIMesh *mesh)
 {
-  if(!_father)
-    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen(MEDCouplingIMesh *mesh) constructor : empty father !");
   if(!mesh)
     throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen(MEDCouplingIMesh *mesh) constructor : The input mesh is null !");
-  mesh->checkCoherency();
+  mesh->checkConsistencyLight();
   _mesh=mesh; _mesh->incrRef();
 }
 
-void MEDCouplingCartesianAMRMeshGen::checkPatchId(int patchId) const
+void MEDCouplingCartesianAMRMeshGen::checkPatchId(mcIdType patchId) const
 {
-  int sz(getNumberOfPatches());
+  mcIdType sz(getNumberOfPatches());
   if(patchId<0 || patchId>=sz)
     {
       std::ostringstream oss; oss << "MEDCouplingCartesianAMRMeshGen::checkPatchId : invalid patchId (" << patchId << ") ! Must be in [0," << sz << ") !";
@@ -961,9 +1577,9 @@ void MEDCouplingCartesianAMRMeshGen::checkPatchId(int patchId) const
     }
 }
 
-void MEDCouplingCartesianAMRMeshGen::checkFactorsAndIfNotSetAssign(const std::vector<int>& factors)
+void MEDCouplingCartesianAMRMeshGen::checkFactorsAndIfNotSetAssign(const std::vector<mcIdType>& factors)
 {
-  if(getSpaceDimension()!=(int)factors.size())
+  if(getSpaceDimension()!=ToIdType(factors.size()))
     throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::checkFactorsAndIfNotSetAssign : invalid size of factors ! size must be equal to the spaceDimension !");
   if(_factors.empty())
     {
@@ -976,29 +1592,29 @@ void MEDCouplingCartesianAMRMeshGen::checkFactorsAndIfNotSetAssign(const std::ve
     }
 }
 
-void MEDCouplingCartesianAMRMeshGen::retrieveGridsAtInternal(int lev, std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatchGen> >& grids) const
+void MEDCouplingCartesianAMRMeshGen::retrieveGridsAtInternal(mcIdType lev, std::vector< MCAuto<MEDCouplingCartesianAMRPatchGen> >& grids) const
 {
   if(lev==0)
     {
       const MEDCouplingCartesianAMRMesh *thisc(dynamic_cast<const MEDCouplingCartesianAMRMesh *>(this));//tony
-      MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatchGF> elt(new MEDCouplingCartesianAMRPatchGF(const_cast<MEDCouplingCartesianAMRMesh *>(thisc)));
+      MCAuto<MEDCouplingCartesianAMRPatchGF> elt(new MEDCouplingCartesianAMRPatchGF(const_cast<MEDCouplingCartesianAMRMesh *>(thisc)));
       grids.push_back(DynamicCastSafe<MEDCouplingCartesianAMRPatchGF,MEDCouplingCartesianAMRPatchGen>(elt));
     }
   else if(lev==1)
     {
-      for(std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
+      for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
         {
           const MEDCouplingCartesianAMRPatch *pt(*it);
           if(pt)
             {
-              MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> tmp1(*it);
+              MCAuto<MEDCouplingCartesianAMRPatch> tmp1(*it);
               grids.push_back(DynamicCastSafe<MEDCouplingCartesianAMRPatch,MEDCouplingCartesianAMRPatchGen>(tmp1));
             }
         }
     }
   else
     {
-      for(std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
+      for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
         {
           const MEDCouplingCartesianAMRPatch *pt(*it);
           if(pt)
@@ -1007,53 +1623,80 @@ void MEDCouplingCartesianAMRMeshGen::retrieveGridsAtInternal(int lev, std::vecto
     }
 }
 
-/*!
- * \param [in,out] partBeforeFact - the part of a image mesh in compact format that will be put in refined reference.
- * \param [in] factors - the factors per axis.
- */
-void MEDCouplingCartesianAMRMeshGen::ApplyFactorsOnCompactFrmt(std::vector< std::pair<int,int> >& partBeforeFact, const std::vector<int>& factors)
+mcIdType MEDCouplingCartesianAMRMeshGen::GetGhostLevelInFineRef(mcIdType ghostLev, const std::vector<mcIdType>& factors)
 {
-  std::size_t sz(factors.size());
-  if(sz!=partBeforeFact.size())
-    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::ApplyFactorsOnCompactFrmt : size of input vectors must be the same !");
-  for(std::size_t i=0;i<sz;i++)
+  if(ghostLev<0)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::GetGhostLevelInFineRef : the ghost size must be >=0 !");
+  if(factors.empty())
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::GetGhostLevelInFineRef : no factors defined !");
+  mcIdType ghostLevInPatchRef;
+  if(ghostLev==0)
+    ghostLevInPatchRef=0;
+  else
     {
-      partBeforeFact[i].first*=factors[i];
-      partBeforeFact[i].second*=factors[i];
+      ghostLevInPatchRef=(ghostLev-1)/factors[0]+1;
+      for(std::size_t i=0;i<factors.size();i++)
+        ghostLevInPatchRef=std::max(ghostLevInPatchRef,(ghostLev-1)/factors[i]+1);
     }
+  return ghostLevInPatchRef;
 }
 
 /*!
- * \param [in,out] partBeforeFact - the part of a image mesh in compact format that will be put in ghost reference.
- * \param [in] ghostSize - the ghost size of zone for all axis.
+ * This method returns a sub set of \a all. The subset is defined by the \a head in the tree defined by \a this.
+ * Elements in \a all are expected to be sorted from god father to most refined structure.
  */
-void MEDCouplingCartesianAMRMeshGen::ApplyGhostOnCompactFrmt(std::vector< std::pair<int,int> >& partBeforeFact, int ghostSize)
+std::vector<const DataArrayDouble *> MEDCouplingCartesianAMRMeshGen::extractSubTreeFromGlobalFlatten(const MEDCouplingCartesianAMRMeshGen *head, const std::vector<const DataArrayDouble *>& all) const
 {
-  if(ghostSize<0)
-    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::ApplyGhostOnCompactFrmt : ghost size must be >= 0 !");
-  std::size_t sz(partBeforeFact.size());
-  for(std::size_t i=0;i<sz;i++)
+  mcIdType maxLev(getMaxNumberOfLevelsRelativeToThis());
+  std::vector<const DataArrayDouble *> ret;
+  std::vector<const MEDCouplingCartesianAMRMeshGen *> meshes(1,this);
+  std::size_t kk(0);
+  for(mcIdType i=0;i<maxLev;i++)
     {
-      partBeforeFact[i].first+=ghostSize;
-      partBeforeFact[i].second+=ghostSize;
+      std::vector<const MEDCouplingCartesianAMRMeshGen *> meshesTmp;
+      for(std::vector<const MEDCouplingCartesianAMRMeshGen *>::const_iterator it=meshes.begin();it!=meshes.end();it++)
+        {
+          if((*it)==head || head->isObjectInTheProgeny(*it))
+            ret.push_back(all[kk]);
+          kk++;
+          std::vector< const MEDCouplingCartesianAMRPatch *> ps((*it)->getPatches());
+          for(std::vector< const MEDCouplingCartesianAMRPatch *>::const_iterator it0=ps.begin();it0!=ps.end();it0++)
+            {
+              const MEDCouplingCartesianAMRMeshGen *mesh((*it0)->getMesh());
+              meshesTmp.push_back(mesh);
+            }
+        }
+      meshes=meshesTmp;
     }
+  if(kk!=all.size())
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::extractSubTreeFromGlobalFlatten : the size of input vector is not compatible with number of leaves in this !");
+  return ret;
 }
 
-/*!
- * This method is different than ApplyGhostOnCompactFrmt
- *
- * \param [in,out] partBeforeFact - the part of a image mesh in compact format that will be put in ghost reference.
- * \param [in] ghostSize - the ghost size of zone for all axis.
- */
-void MEDCouplingCartesianAMRMeshGen::ApplyAllGhostOnCompactFrmt(std::vector< std::pair<int,int> >& partBeforeFact, int ghostSize)
+void MEDCouplingCartesianAMRMeshGen::dumpPatchesOf(const std::string& varName, std::ostream& oss) const
 {
-  if(ghostSize<0)
-    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshGen::ApplyAllGhostOnCompactFrmt : ghost size must be >= 0 !");
-  std::size_t sz(partBeforeFact.size());
-  for(std::size_t i=0;i<sz;i++)
+  std::size_t j(0);
+  for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
     {
-      partBeforeFact[i].first-=ghostSize;
-      partBeforeFact[i].second+=ghostSize;
+      const MEDCouplingCartesianAMRPatch *patch(*it);
+      if(patch)
+        {
+          std::ostringstream oss2; oss2 << varName << ".addPatch([";
+          const std::vector< std::pair<mcIdType,mcIdType> >& bltr(patch->getBLTRRange());
+          std::size_t sz(bltr.size());
+          for(std::size_t i=0;i<sz;i++)
+            {
+              oss2 << "(" << bltr[i].first << "," << bltr[i].second << ")";
+              if(i!=sz-1)
+                oss2 << ",";
+            }
+          oss2 << "],[";
+          std::copy(_factors.begin(),_factors.end(),std::ostream_iterator<mcIdType>(oss2,","));
+          oss2 << "])\n";
+          oss << oss2.str();
+          std::ostringstream oss3; oss3 << varName << "[" << j++ << "]";
+          patch->getMesh()->dumpPatchesOf(oss3.str(),oss);
+        }
     }
 }
 
@@ -1062,16 +1705,12 @@ std::size_t MEDCouplingCartesianAMRMeshGen::getHeapMemorySizeWithoutChildren() c
   return sizeof(MEDCouplingCartesianAMRMeshGen);
 }
 
-std::vector<const BigMemoryObject *> MEDCouplingCartesianAMRMeshGen::getDirectChildren() const
+std::vector<const BigMemoryObject *> MEDCouplingCartesianAMRMeshGen::getDirectChildrenWithNull() const
 {
   std::vector<const BigMemoryObject *> ret;
-  if((const MEDCouplingIMesh *)_mesh)
-    ret.push_back((const MEDCouplingIMesh *)_mesh);
-  for(std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
-    {
-      if((const MEDCouplingCartesianAMRPatch*)*it)
-        ret.push_back((const MEDCouplingCartesianAMRPatch*)*it);
-    }
+  ret.push_back((const MEDCouplingIMesh *)_mesh);
+  for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
+    ret.push_back((const MEDCouplingCartesianAMRPatch*)*it);
   return ret;
 }
 
@@ -1079,7 +1718,7 @@ void MEDCouplingCartesianAMRMeshGen::updateTime() const
 {
   if((const MEDCouplingIMesh *)_mesh)
     updateTimeWith(*_mesh);
-  for(std::vector< MEDCouplingAutoRefCountObjectPtr<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
+  for(std::vector< MCAuto<MEDCouplingCartesianAMRPatch> >::const_iterator it=_patches.begin();it!=_patches.end();it++)
     {
       const MEDCouplingCartesianAMRPatch *elt(*it);
       if(!elt)
@@ -1090,64 +1729,250 @@ void MEDCouplingCartesianAMRMeshGen::updateTime() const
     }
 }
 
-MEDCouplingCartesianAMRMeshSub::MEDCouplingCartesianAMRMeshSub(MEDCouplingCartesianAMRMeshGen *father, MEDCouplingIMesh *mesh):MEDCouplingCartesianAMRMeshGen(father,mesh)
+MEDCouplingCartesianAMRMeshSub::MEDCouplingCartesianAMRMeshSub(MEDCouplingCartesianAMRMeshGen *father, MEDCouplingIMesh *mesh):MEDCouplingCartesianAMRMeshGen(mesh),_father(father)
+{
+  if(!_father)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshSub(MEDCouplingCartesianAMRMeshGen *father, MEDCouplingIMesh *mesh) constructor : empty father !");
+}
+
+const MEDCouplingCartesianAMRMeshGen *MEDCouplingCartesianAMRMeshSub::getFather() const
+{
+  return _father;
+}
+
+const MEDCouplingCartesianAMRMeshGen *MEDCouplingCartesianAMRMeshSub::getGodFather() const
+{
+  if(!_father)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshSub::getGodFather : Impossible to find a god father because there is a hole in chain !");
+  return _father->getGodFather();
+}
+
+/*!
+ * This method returns the level of \a this. 0 for god father. 1 for children of god father ...
+ */
+mcIdType MEDCouplingCartesianAMRMeshSub::getAbsoluteLevel() const
+{
+  if(!_father)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshSub::getAbsoluteLevel : Impossible to find a god father because there is a hole in chain !");
+  return _father->getAbsoluteLevel()+1;
+}
+
+void MEDCouplingCartesianAMRMeshSub::detachFromFather()
+{
+  _father=0;
+  declareAsNew();
+}
+
+std::vector< std::pair<mcIdType,mcIdType> > MEDCouplingCartesianAMRMeshSub::positionRelativeToGodFather(std::vector<mcIdType>& st) const
+{
+  st=_father->getFactors();
+  std::size_t dim(st.size());
+  std::vector<mcIdType> prev(st);
+  mcIdType id(_father->getPatchIdFromChildMesh(this));
+  const MEDCouplingCartesianAMRPatch *p(_father->getPatch(id));
+  std::vector< std::pair<mcIdType,mcIdType> > ret(p->getBLTRRange());
+  std::vector<mcIdType> delta(MEDCouplingStructuredMesh::GetDimensionsFromCompactFrmt(ret)),start(dim);
+  std::transform(delta.begin(),delta.end(),prev.begin(),delta.begin(),std::multiplies<mcIdType>());
+  for(std::size_t i=0;i<dim;i++)
+    start[i]=ret[i].first;
+  std::transform(start.begin(),start.end(),prev.begin(),start.begin(),std::multiplies<mcIdType>());
+  const MEDCouplingCartesianAMRMeshGen *it(_father);
+  while(!dynamic_cast<const MEDCouplingCartesianAMRMesh *>(it))
+    {
+      const MEDCouplingCartesianAMRMeshSub *itc(static_cast<const MEDCouplingCartesianAMRMeshSub *>(it));
+      mcIdType id2(itc->_father->getPatchIdFromChildMesh(itc));
+      const MEDCouplingCartesianAMRPatch *p2(itc->_father->getPatch(id2));
+      const std::vector< std::pair<mcIdType,mcIdType> >& start2(p2->getBLTRRange());
+      std::vector<mcIdType> tmp(dim);
+      for(std::size_t i=0;i<dim;i++)
+        tmp[i]=start2[i].first;
+      //
+      prev=itc->_father->getFactors();
+      std::transform(st.begin(),st.end(),prev.begin(),st.begin(),std::multiplies<mcIdType>());
+      std::transform(st.begin(),st.end(),tmp.begin(),tmp.begin(),std::multiplies<mcIdType>());
+      std::transform(start.begin(),start.end(),tmp.begin(),start.begin(),std::plus<mcIdType>());
+      it=itc->_father;
+    }
+  for(std::size_t i=0;i<dim;i++)
+    {
+      ret[i].first=start[i];
+      ret[i].second=start[i]+delta[i];
+    }
+  return ret;
+}
+
+mcIdType MEDCouplingCartesianAMRMeshSub::getAbsoluteLevelRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const
 {
+  if(this==ref)
+    return 0;
+  if(_father==0)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshSub::getAbsoluteLevelRelativeTo : ref is not in the progeny of this !");
+  else
+    return _father->getAbsoluteLevelRelativeTo(ref)+1;
+}
+
+MEDCouplingCartesianAMRMeshSub::MEDCouplingCartesianAMRMeshSub(const MEDCouplingCartesianAMRMeshSub& other, MEDCouplingCartesianAMRMeshGen *father):MEDCouplingCartesianAMRMeshGen(other),_father(father)
+{
+}
+
+MEDCouplingCartesianAMRMeshSub *MEDCouplingCartesianAMRMeshSub::deepCopy(MEDCouplingCartesianAMRMeshGen *fath) const
+{
+  return new MEDCouplingCartesianAMRMeshSub(*this,fath);
+}
+
+/*!
+ * \sa getPositionRelativeTo
+ */
+void MEDCouplingCartesianAMRMeshSub::getPositionRelativeToInternal(const MEDCouplingCartesianAMRMeshGen *ref, std::vector<mcIdType>& ret) const
+{
+  if(this==ref)
+    return ;
+  if(!_father)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMeshSub::getPositionRelativeToInternal : ref is not in the progeny of this !");
+  mcIdType myId(_father->getPatchIdFromChildMesh(this));
+  ret.push_back(myId);
+  _father->getPositionRelativeToInternal(ref,ret);
 }
 
-MEDCouplingCartesianAMRMesh *MEDCouplingCartesianAMRMesh::New(const std::string& meshName, int spaceDim, const int *nodeStrctStart, const int *nodeStrctStop,
+MEDCouplingCartesianAMRMesh *MEDCouplingCartesianAMRMesh::New(const std::string& meshName, int spaceDim, const mcIdType *nodeStrctStart, const mcIdType *nodeStrctStop,
                                                               const double *originStart, const double *originStop, const double *dxyzStart, const double *dxyzStop)
 {
   return new MEDCouplingCartesianAMRMesh(meshName,spaceDim,nodeStrctStart,nodeStrctStop,originStart,originStop,dxyzStart,dxyzStop);
 }
 
-void MEDCouplingCartesianAMRMesh::setData(MEDCouplingDataForGodFather *data)
+MEDCouplingCartesianAMRMesh *MEDCouplingCartesianAMRMesh::New(MEDCouplingIMesh *mesh)
 {
-  MEDCouplingDataForGodFather *myData(_data);
-  if(myData==data)
+  return new MEDCouplingCartesianAMRMesh(mesh);
+}
+
+const MEDCouplingCartesianAMRMeshGen *MEDCouplingCartesianAMRMesh::getFather() const
+{
+  //I'm god father ! No father !
+  return 0;
+}
+
+const MEDCouplingCartesianAMRMeshGen *MEDCouplingCartesianAMRMesh::getGodFather() const
+{
+  return this;
+}
+
+mcIdType MEDCouplingCartesianAMRMesh::getAbsoluteLevel() const
+{
+  return 0;
+}
+
+void MEDCouplingCartesianAMRMesh::detachFromFather()
+{//not a bug - do nothing
+}
+
+std::vector< std::pair<mcIdType,mcIdType> > MEDCouplingCartesianAMRMesh::positionRelativeToGodFather(std::vector<mcIdType>& st) const
+{
+  st=_mesh->getCellGridStructure();
+  return MEDCouplingStructuredMesh::GetCompactFrmtFromDimensions(st);
+}
+
+mcIdType MEDCouplingCartesianAMRMesh::getAbsoluteLevelRelativeTo(const MEDCouplingCartesianAMRMeshGen *ref) const
+{
+  if(this==ref)
+    return 0;
+  throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::getAbsoluteLevelRelativeTo : ref is not in the progeny of this !");
+}
+
+std::vector<MEDCouplingCartesianAMRPatchGen *> MEDCouplingCartesianAMRMesh::retrieveGridsAt(mcIdType absoluteLev) const
+{
+  std::vector< MCAuto<MEDCouplingCartesianAMRPatchGen> > rets;
+  retrieveGridsAtInternal(absoluteLev,rets);
+  std::vector< MEDCouplingCartesianAMRPatchGen * > ret(rets.size());
+  for(std::size_t i=0;i<rets.size();i++)
+    {
+      ret[i]=rets[i].retn();
+    }
+  return ret;
+}
+
+MEDCouplingCartesianAMRMesh *MEDCouplingCartesianAMRMesh::deepCopy(MEDCouplingCartesianAMRMeshGen *father) const
+{
+  if(father)
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::deepCopy : specifying a not null father for a God Father object !");
+  return new MEDCouplingCartesianAMRMesh(*this);
+}
+
+/*!
+ * This method creates a multi level patches split at once.
+ * This method calls as many times as size of \a bso createPatchesFromCriterion. Size of \a bso and size of \a factors must be the same !
+ * \b WARNING, after the call the number of levels in \a this is equal to bso.size() + 1 !
+ *
+ * \param [in] bso vector of BoxSplittingOptions
+ * \param [in] criterion DataArrayDouble
+ * \param [in] factors vector of vector of factors
+ * \param [in] eps - See DataArrayDouble::toVectorOfBool for more information about the semantic of eps.
+ *
+ * \sa createPatchesFromCriterion
+ */
+void MEDCouplingCartesianAMRMesh::createPatchesFromCriterionML(const std::vector<const INTERP_KERNEL::BoxSplittingOptions *>& bso, const DataArrayDouble *criterion, const std::vector< std::vector<mcIdType> >& factors, double eps)
+{
+  std::size_t nbOfLevs(bso.size());
+  if(nbOfLevs!=factors.size())
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::createPatchesFromCriterionML : size of vectors must be the same !");
+  if(nbOfLevs==0)
     return ;
-  if(myData)
-    myData->changeGodFather(0);
-  _data=data;
-  if(data)
-    data->incrRef();
+  if(!bso[0])
+    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::createPatchesFromCriterionML : pointers in 1st arg must be not NULL !");
+  createPatchesFromCriterion(*bso[0],criterion,factors[0],eps);
+  for(std::size_t i=1;i<nbOfLevs;i++)
+    {
+      if(!bso[i])
+        throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::createPatchesFromCriterionML : presence of a NULL BoxSplittingOptions in input vector !");
+      //
+      std::vector<MEDCouplingCartesianAMRPatchGen *> elts(retrieveGridsAt(ToIdType((i))));
+      std::size_t sz(elts.size());
+      std::vector< MCAuto<MEDCouplingCartesianAMRPatchGen> > elts2(sz);
+      std::vector< MCAuto<DataArrayDouble> > elts3(sz);
+      for(std::size_t ii=0;ii<sz;ii++)
+        elts2[ii]=elts[ii];
+      //
+      static const char TMP_STR[]="TMP";
+      std::vector< std::pair<std::string,int> > fieldNames(1); fieldNames[0].first=TMP_STR; fieldNames[0].second=1;
+      MCAuto<MEDCouplingAMRAttribute> att(MEDCouplingAMRAttribute::New(this,fieldNames,0));
+      att->alloc();
+      DataArrayDouble *tmpDa(const_cast<DataArrayDouble *>(att->getFieldOn(this,TMP_STR)));
+      tmpDa->deepCopyFrom(*criterion);
+      att->synchronizeCoarseToFine();
+      for(std::size_t ii=0;ii<sz;ii++)
+        {
+          const DataArrayDouble *critOnLeaf(att->getFieldOn(const_cast<MEDCouplingCartesianAMRMeshGen *>(elts[ii]->getMesh()),TMP_STR));
+          elts3[ii]=const_cast<DataArrayDouble *>(critOnLeaf); elts3[ii]->incrRef();
+        }
+      att=0;
+      for(std::size_t ii=0;ii<sz;ii++)
+        const_cast<MEDCouplingCartesianAMRMeshGen *>(elts[ii]->getMesh())->createPatchesFromCriterion(*bso[i],elts3[ii],factors[i],eps);
+    }
 }
 
-void MEDCouplingCartesianAMRMesh::allocData() const
+void MEDCouplingCartesianAMRMesh::getPositionRelativeToInternal(const MEDCouplingCartesianAMRMeshGen *ref, std::vector<mcIdType>& ret) const
 {
-  checkData();
-  _data->alloc();
+
 }
 
-void MEDCouplingCartesianAMRMesh::deallocData() const
+MEDCouplingCartesianAMRMesh::MEDCouplingCartesianAMRMesh(const MEDCouplingCartesianAMRMesh& other):MEDCouplingCartesianAMRMeshGen(other)
 {
-  checkData();
-  _data->dealloc();
 }
 
-MEDCouplingCartesianAMRMesh::MEDCouplingCartesianAMRMesh(const std::string& meshName, int spaceDim, const int *nodeStrctStart, const int *nodeStrctStop,
+MEDCouplingCartesianAMRMesh::MEDCouplingCartesianAMRMesh(const std::string& meshName, int spaceDim, const mcIdType *nodeStrctStart, const mcIdType *nodeStrctStop,
                                                          const double *originStart, const double *originStop, const double *dxyzStart, const double *dxyzStop):MEDCouplingCartesianAMRMeshGen(meshName,spaceDim,nodeStrctStart,nodeStrctStop,originStart,originStop,dxyzStart,dxyzStop)
 {
 }
 
-std::vector<const BigMemoryObject *> MEDCouplingCartesianAMRMesh::getDirectChildren() const
+MEDCouplingCartesianAMRMesh::MEDCouplingCartesianAMRMesh(MEDCouplingIMesh *mesh):MEDCouplingCartesianAMRMeshGen(mesh)
 {
-  std::vector<const BigMemoryObject *> ret(MEDCouplingCartesianAMRMeshGen::getDirectChildren());
-  const MEDCouplingDataForGodFather *pt(_data);
-  if(pt)
-    ret.push_back(pt);
-  return ret;
 }
 
-void MEDCouplingCartesianAMRMesh::checkData() const
+std::vector<const BigMemoryObject *> MEDCouplingCartesianAMRMesh::getDirectChildrenWithNull() const
 {
-  const MEDCouplingDataForGodFather *data(_data);
-  if(!data)
-    throw INTERP_KERNEL::Exception("MEDCouplingCartesianAMRMesh::checkData : no data set !");
+  std::vector<const BigMemoryObject *> ret(MEDCouplingCartesianAMRMeshGen::getDirectChildrenWithNull());
+  return ret;
 }
 
 MEDCouplingCartesianAMRMesh::~MEDCouplingCartesianAMRMesh()
 {
-  MEDCouplingDataForGodFather *data(_data);
-  if(!data)
-    data->changeGodFather(0);
 }