Salome HOME
Intersector: optim for SegSeg and ArcCSeg when an extremity is shared.
[tools/medcoupling.git] / src / INTERP_KERNEL / Geometric2D / InterpKernelGeo2DEdge.cxx
index 08103e39e00539677f6a6cf772f5f2cef0b11197..5d815d9478c70e8d24fc549426112ea3e56eabcd 100644 (file)
@@ -340,7 +340,7 @@ bool IntersectElement::isIncludedByBoth() const
   return _e1.isIn(_chararct_val_for_e1) && _e2.isIn(_chararct_val_for_e2);
 }
 
-bool EdgeIntersector::intersect(const Bounds *whereToFind, std::vector<Node *>& newNodes, bool& order, MergePoints& commonNode)
+bool EdgeIntersector::intersect(std::vector<Node *>& newNodes, bool& order, MergePoints& commonNode)
 {
   std::list< IntersectElement > listOfIntesc=getIntersectionsCharacteristicVal();
   std::list< IntersectElement >::iterator iter;
@@ -391,6 +391,37 @@ bool EdgeIntersector::intersect(const Bounds *whereToFind, std::vector<Node *>&
   return true;
 }
 
+/*! If the 2 edges share one extremity, we can optimize since we already know where is the intersection.
+ *  In the case of ArcCSegIntersector, this also helps avoid degenerated cases.
+ */
+void EdgeIntersector::identifyEarlyIntersection(bool& i1S2S, bool& i1E2S, bool& i1S2E, bool& i1E2E)
+{
+  i1S2S = _e1.getStartNode() == _e2.getStartNode();
+  i1E2S = _e1.getEndNode() == _e2.getStartNode();
+  i1S2E = _e1.getStartNode() == _e2.getEndNode();
+  i1E2E = _e1.getEndNode() == _e2.getEndNode();
+  if (i1S2S || i1E2S || i1S2E || i1E2E)
+    {
+      Node * node;
+      bool i_1S(false),i_1E(false),i_2S(false),i_2E(false);
+      if (i1S2S || i1E2S)   // Common node is e2 start
+        {
+          node = _e2.getStartNode();
+          i_1S = i1S2S;        i_2S = true;
+          i_1E = i1E2S;        i_2E = false;
+        }
+      else                  // Common node is e2 end
+        {
+          node = _e2.getEndNode();
+          i_1S = i1S2E;        i_2S = false;
+          i_1E = i1E2E;        i_2E = true;
+        }
+      node->incrRef();
+      _earlyInter = new IntersectElement(_e1.getCharactValue(*node), _e2.getCharactValue(*node),
+          i_1S,i_1E,i_2S,i_2E,node,_e1,_e2,keepOrder());
+    }
+}
+
 /*!
  * Locates 'node' regarding edge this->_e1. If node is located close to (with distant lt epsilon) start or end point of _e1,
  * 'node' takes its place. In this case 'obvious' is set to true and 'commonNode' stores information of merge point and finally 'where' is set.
@@ -631,7 +662,7 @@ bool Edge::intersectWith(const Edge *other, MergePoints& commonNode,
   delete merge;
   merge=0;
   EdgeIntersector *intersector=BuildIntersectorWith(this,other);
-  ret=Intersect(this,other,intersector,merge,commonNode,outVal1,outVal2);
+  ret=Intersect(this,other,intersector,commonNode,outVal1,outVal2);
   delete intersector;
   return ret;
 }
@@ -674,7 +705,7 @@ void Edge::Interpolate1DLin(const std::vector<double>& distrib1, const std::vect
                   ComposedEdge *f2=new ComposedEdge;
                   SegSegIntersector inters(*e1,*e2);
                   bool b1,b2;
-                  inters.areOverlappedOrOnlyColinears(0,b1,b2);
+                  inters.areOverlappedOrOnlyColinears(b1,b2);
                   if(IntersectOverlapped(e1,e2,&inters,commonNode,*f1,*f2))
                     {
                       result[i][j]=f1->getCommonLengthWith(*f2)/e1->getCurveLength();
@@ -734,19 +765,19 @@ void Edge::getMiddleOfPointsOriented(const double *p1, const double *p2, double
   return getMiddleOfPoints(p1, p2, mid);
 }
 
-bool Edge::Intersect(const Edge *f1, const Edge *f2, EdgeIntersector *intersector, const Bounds *whereToFind, MergePoints& commonNode,
+bool Edge::Intersect(const Edge *f1, const Edge *f2, EdgeIntersector *intersector, MergePoints& commonNode,
                      ComposedEdge& outValForF1, ComposedEdge& outValForF2)
 {
   bool obviousNoIntersection;
   bool areOverlapped;
-  intersector->areOverlappedOrOnlyColinears(whereToFind,obviousNoIntersection,areOverlapped);
+  intersector->areOverlappedOrOnlyColinears(obviousNoIntersection,areOverlapped);
   if(areOverlapped)
     return IntersectOverlapped(f1,f2,intersector,commonNode,outValForF1,outValForF2);
   if(obviousNoIntersection)
     return false;
   std::vector<Node *> newNodes;
   bool order;
-  if(intersector->intersect(whereToFind,newNodes,order,commonNode))
+  if(intersector->intersect(newNodes,order,commonNode))
     {
       if(newNodes.empty())
         throw Exception("Internal error occurred - error in intersector implementation!");// This case should never happen
@@ -771,7 +802,7 @@ bool Edge::Intersect(const Edge *f1, const Edge *f2, EdgeIntersector *intersecto
         }
       return true;
     }
-  else//no intersection inside whereToFind
+  else
     return false;
 }