Salome HOME
NPAL 16548, 16820, 16218, 16547
[modules/geom.git] / src / GEOM_SWIG / geompy.py
index 4cfc0184f72b0d93033a525f43a944d1bab46dfa..aa985f00aa51b2a1726175e0724f8ba2d59db19c 100644 (file)
@@ -1,23 +1,23 @@
 #  GEOM GEOM_SWIG : binding of C++ omplementaion with Python
 #
 #  Copyright (C) 2003  OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-#  CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS 
-# 
-#  This library is free software; you can redistribute it and/or 
-#  modify it under the terms of the GNU Lesser General Public 
-#  License as published by the Free Software Foundation; either 
-#  version 2.1 of the License. 
-# 
-#  This library is distributed in the hope that it will be useful, 
-#  but WITHOUT ANY WARRANTY; without even the implied warranty of 
-#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
-#  Lesser General Public License for more details. 
-# 
-#  You should have received a copy of the GNU Lesser General Public 
-#  License along with this library; if not, write to the Free Software 
-#  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA 
-# 
-#  See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org 
+#  CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
+#
+#  This library is free software; you can redistribute it and/or
+#  modify it under the terms of the GNU Lesser General Public
+#  License as published by the Free Software Foundation; either
+#  version 2.1 of the License.
+#
+#  This library is distributed in the hope that it will be useful,
+#  but WITHOUT ANY WARRANTY; without even the implied warranty of
+#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+#  Lesser General Public License for more details.
+#
+#  You should have received a copy of the GNU Lesser General Public
+#  License along with this library; if not, write to the Free Software
+#  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
+#
+# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
 #
 #
 #
 #  $Header$
 
 import salome
-import SALOMEDS
-#import SALOMEDS_Attributes_idl
+salome.salome_init()
+from salome import *
+
+import GEOM
+
+"""
+    \namespace geompy
+    \brief Module geompy
+"""
+
+g = lcc.FindOrLoadComponent("FactoryServer", "GEOM")
+geom = g._narrow( GEOM.GEOM_Gen )
+#gg = ImportComponentGUI("GEOM")
+#gg.initGeomGen()
+
+#SRN: modified on Mar 18, 2005
+
+myBuilder = None
+myStudyId = 0
+father    = None
+
+BasicOp  = None
+CurvesOp = None
+PrimOp   = None
+ShapesOp = None
+HealOp   = None
+InsertOp = None
+BoolOp   = None
+TrsfOp   = None
+LocalOp  = None
+MeasuOp  = None
+BlocksOp = None
+GroupOp  = None
+
+def init_geom(theStudy):
+
+    global myStudy, myBuilder, myStudyId, BasicOp, CurvesOp, PrimOp, ShapesOp, HealOp
+    global InsertOp, BoolOp, TrsfOp, LocalOp, MeasuOp, BlocksOp, GroupOp, father
+
+    myStudy = theStudy
+    myStudyId = myStudy._get_StudyId()
+    myBuilder = myStudy.NewBuilder()
+    father = myStudy.FindComponent("GEOM")
+    if father is None:
+        father = myBuilder.NewComponent("GEOM")
+        A1 = myBuilder.FindOrCreateAttribute(father, "AttributeName")
+        FName = A1._narrow(SALOMEDS.AttributeName)
+        FName.SetValue("Geometry")
+       A2 = myBuilder.FindOrCreateAttribute(father, "AttributePixMap")
+       aPixmap = A2._narrow(SALOMEDS.AttributePixMap)
+       aPixmap.SetPixMap("ICON_OBJBROWSER_Geometry")
+       myBuilder.DefineComponentInstance(father,geom)
+        pass
+
+    # -----------------------------------------------------------------------------
+    # Assign Operations Interfaces
+    # -----------------------------------------------------------------------------
+
+    BasicOp  = geom.GetIBasicOperations    (myStudyId)
+    CurvesOp = geom.GetICurvesOperations   (myStudyId)
+    PrimOp   = geom.GetI3DPrimOperations   (myStudyId)
+    ShapesOp = geom.GetIShapesOperations   (myStudyId)
+    HealOp   = geom.GetIHealingOperations  (myStudyId)
+    InsertOp = geom.GetIInsertOperations   (myStudyId)
+    BoolOp   = geom.GetIBooleanOperations  (myStudyId)
+    TrsfOp   = geom.GetITransformOperations(myStudyId)
+    LocalOp  = geom.GetILocalOperations    (myStudyId)
+    MeasuOp  = geom.GetIMeasureOperations  (myStudyId)
+    BlocksOp = geom.GetIBlocksOperations   (myStudyId)
+    GroupOp  = geom.GetIGroupOperations   (myStudyId)
+    pass
+
+init_geom(myStudy)
+
+#SRN: end of modifications
+
+## Get name for sub-shape aSubObj of shape aMainObj
+#
+#  Example: see GEOM_TestAll.py
+def SubShapeName(aSubObj, aMainObj):
+    #aSubId  = orb.object_to_string(aSubObj)
+    #aMainId = orb.object_to_string(aMainObj)
+    #index = gg.getIndexTopology(aSubId, aMainId)
+    #name = gg.getShapeTypeString(aSubId) + "_%d"%(index)
+    index = ShapesOp.GetTopologyIndex(aMainObj, aSubObj)
+    name = ShapesOp.GetShapeTypeString(aSubObj) + "_%d"%(index)
+    return name
+
+## Publish in study aShape with name aName
+#
+#  Example: see GEOM_TestAll.py
+def addToStudy(aShape, aName):
+    try:
+        aSObject = geom.AddInStudy(myStudy, aShape, aName, None)
+    except:
+        print "addToStudy() failed"
+        return ""
+    return aShape.GetStudyEntry()
+
+## Publish in study aShape with name aName as sub-object of previously published aFather
+#
+#  Example: see GEOM_TestAll.py
+def addToStudyInFather(aFather, aShape, aName):
+    try:
+        aSObject = geom.AddInStudy(myStudy, aShape, aName, aFather)
+    except:
+        print "addToStudyInFather() failed"
+        return ""
+    return aShape.GetStudyEntry()
+
+# -----------------------------------------------------------------------------
+# Raise an Error if Operation is Failed
+# -----------------------------------------------------------------------------
+def RaiseIfFailed (method_name, operation):
+    if operation.IsDone() == 0:
+      raise RuntimeError, method_name + " : " + operation.GetErrorCode()
 
-#NRI : BugID 1682 : from libSALOME_Swig import *
+# -----------------------------------------------------------------------------
+# enumeration ShapeType as a dictionary
+# -----------------------------------------------------------------------------
 
-geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
-geom.GetCurrentStudy(salome.myStudyId)
-myBuilder = salome.myStudy.NewBuilder()
+ShapeType = {"COMPOUND":0, "COMPSOLID":1, "SOLID":2, "SHELL":3, "FACE":4, "WIRE":5, "EDGE":6, "VERTEX":7, "SHAPE":8}
 
-gg = salome.ImportComponentGUI("GEOM")
+# -----------------------------------------------------------------------------
+# enumeration shape_kind
+# -----------------------------------------------------------------------------
 
-father = salome.myStudy.FindComponent("GEOM")
-if father is None:
-        father = myBuilder.NewComponent("GEOM")
-        A1 = myBuilder.FindOrCreateAttribute(father, "AttributeName");
-        FName = A1._narrow(SALOMEDS.AttributeName)
-        FName.SetValue( salome.sg.getComponentUserName("GEOM") )
-       A2 = myBuilder.FindOrCreateAttribute(father, "AttributePixMap");
-       aPixmap = A2._narrow(SALOMEDS.AttributePixMap);
-       aPixmap.SetPixMap( "ICON_OBJBROWSER_Geometry" );
-       myBuilder.DefineComponentInstance(father,geom)
+kind = GEOM.GEOM_IKindOfShape
 
+class info:
+    UNKNOWN  = 0
+    CLOSED   = 1
+    UNCLOSED = 2
 
 # -----------------------------------------------------------------------------
-# add To Study  
+# Basic primitives
 # -----------------------------------------------------------------------------
 
-def SubShapeName(aSubId, aMainId):
-    index = gg.getIndexTopology(aSubId, aMainId)
-    name = gg.getShapeTypeString(aSubId) + "_%d"%(index)
-    return name
+## Create point by three coordinates.
+#  @param theX The X coordinate of the point.
+#  @param theY The Y coordinate of the point.
+#  @param theZ The Z coordinate of the point.
+#  @return New GEOM_Object, containing the created point.
+#
+#  Example: see GEOM_TestAll.py
+def MakeVertex(theX, theY, theZ):
+    anObj = BasicOp.MakePointXYZ(theX, theY, theZ)
+    RaiseIfFailed("MakePointXYZ", BasicOp)
+    return anObj
 
-def addArguments(aShape):
-    ListIOR = []
-    ListIOR = geom.GetReferencedObjects(aShape)
-
-    if aShape._get_StudyShapeId()!="":
-       father = salome.IDToSObject(aShape._get_StudyShapeId())
-
-       myBuilder.NewCommand()
-       if len(ListIOR) > 0:
-         Arg = myBuilder.NewObject(father)
-          A1 = myBuilder.FindOrCreateAttribute(Arg, "AttributeName");
-          ArgName = A1._narrow(SALOMEDS.AttributeName)
-          ArgName.SetValue("Arguments")
-         A2 = myBuilder.FindOrCreateAttribute(Arg, "AttributeSelectable");
-         SelAttr = A2._narrow(SALOMEDS.AttributeSelectable);
-         SelAttr.SetSelectable(0);
-       
-         OneObject = 0
-         for anIOR in ListIOR:
-            Shape = salome.orb.string_to_object(anIOR)
-            if Shape is not None:
-               if Shape._get_StudyShapeId()!="":
-                  Obj = salome.IDToSObject(Shape._get_StudyShapeId())
-                  if Obj is not None:
-                          Obj1 = myBuilder.NewObject(Arg)
-                          myBuilder.Addreference(Obj1,Obj)
-                          OneObject = 1
-
-         if OneObject == 0:
-            myBuilder.RemoveObject(Arg)
-
-    myBuilder.CommitCommand()
-    return 1   
+## Create a point, distant from the referenced point
+#  on the given distances along the coordinate axes.
+#  @param theReference The referenced point.
+#  @param theX Displacement from the referenced point along OX axis.
+#  @param theY Displacement from the referenced point along OY axis.
+#  @param theZ Displacement from the referenced point along OZ axis.
+#  @return New GEOM_Object, containing the created point.
+#
+#  Example: see GEOM_TestAll.py
+def MakeVertexWithRef(theReference, theX, theY, theZ):
+    anObj = BasicOp.MakePointWithReference(theReference, theX, theY, theZ)
+    RaiseIfFailed("MakePointWithReference", BasicOp)
+    return anObj
 
-def addToStudy(aShape, aName):
-    myBuilder.NewCommand()
-    newObj = myBuilder.NewObject(father)
-    ior = salome.orb.object_to_string(aShape)
-    A1 = myBuilder.FindOrCreateAttribute(newObj, "AttributeIOR");
-    ObjIOR = A1._narrow(SALOMEDS.AttributeIOR)
-    ObjIOR.SetValue(ior)
-    A2 = myBuilder.FindOrCreateAttribute(newObj, "AttributeName");
-    ObjName = A2._narrow(SALOMEDS.AttributeName)
-    ObjName.SetValue(aName)
-    A3 = myBuilder.FindOrCreateAttribute(newObj, "AttributePixMap");
-    ObjPixmap = A3._narrow(SALOMEDS.AttributePixMap)
-    anIcon = gg.getShapeTypeIcon(ior);
-    ObjPixmap.SetPixMap(anIcon)
-    id = newObj.GetID()
-    aShape._set_StudyShapeId(id)
-    myBuilder.CommitCommand()
-
-    addArguments( aShape )
-
-#NRI : BugID 1682 :     sg = SALOMEGUI_Swig()
-#NRI : BugID 1682 :     sg.updateObjBrowser(0)
-#    salome.sg.updateObjBrowser(0)
-    return id
+## Create a point, corresponding to the given parameter on the given curve.
+#  @param theRefCurve The referenced curve.
+#  @param theParameter Value of parameter on the referenced curve.
+#  @return New GEOM_Object, containing the created point.
+#
+#  Example: see GEOM_TestAll.py
+def MakeVertexOnCurve(theRefCurve, theParameter):
+    anObj = BasicOp.MakePointOnCurve(theRefCurve, theParameter)
+    RaiseIfFailed("MakePointOnCurve", BasicOp)
+    return anObj
 
-def addToStudyInFather(aFather, aShape, aName):
+## Create a point on intersection of two lines.
+#  @param theRefLine1, theRefLine2 The referenced lines.
+#  @return New GEOM_Object, containing the created point.
+#
+#  Example: see GEOM_TestAll.py
+def MakeVertexOnLinesIntersection(theRefLine1, theRefLine2):
+    anObj = BasicOp.MakePointOnCurve(theRefLine1, theRefLine2)
+    RaiseIfFailed("MakePointOnLinesIntersection", BasicOp)
+    return anObj
+
+## Create a tangent, corresponding to the given parameter on the given curve.
+#  @param theRefCurve The referenced curve.
+#  @param theParameter Value of parameter on the referenced curve.
+#  @return New GEOM_Object, containing the created tangent.
+def MakeTangentOnCurve(theRefCurve, theParameter):
+    anObj = BasicOp.MakeTangentOnCurve(theRefCurve, theParameter)
+    RaiseIfFailed("MakeTangentOnCurve", BasicOp)
+    return anObj
+
+## Create a vector with the given components.
+#  @param theDX X component of the vector.
+#  @param theDY Y component of the vector.
+#  @param theDZ Z component of the vector.
+#  @return New GEOM_Object, containing the created vector.
+#
+#  Example: see GEOM_TestAll.py
+def MakeVectorDXDYDZ(theDX, theDY, theDZ):
+    anObj = BasicOp.MakeVectorDXDYDZ(theDX, theDY, theDZ)
+    RaiseIfFailed("MakeVectorDXDYDZ", BasicOp)
+    return anObj
+
+## Create a vector between two points.
+#  @param thePnt1 Start point for the vector.
+#  @param thePnt2 End point for the vector.
+#  @return New GEOM_Object, containing the created vector.
+
+#  Example: see GEOM_TestAll.py
+def MakeVector(thePnt1, thePnt2):
+    anObj = BasicOp.MakeVectorTwoPnt(thePnt1, thePnt2)
+    RaiseIfFailed("MakeVectorTwoPnt", BasicOp)
+    return anObj
+
+## Create a line, passing through the given point
+#  and parrallel to the given direction
+#  @param thePnt Point. The resulting line will pass through it.
+#  @param theDir Direction. The resulting line will be parallel to it.
+#  @return New GEOM_Object, containing the created line.
+#
+#  Example: see GEOM_TestAll.py
+def MakeLine(thePnt, theDir):
+    anObj = BasicOp.MakeLine(thePnt, theDir)
+    RaiseIfFailed("MakeLine", BasicOp)
+    return anObj
+
+## Create a line, passing through the given points
+#  @param thePnt1 First of two points, defining the line.
+#  @param thePnt2 Second of two points, defining the line.
+#  @return New GEOM_Object, containing the created line.
+#
+#  Example: see GEOM_TestAll.py
+def MakeLineTwoPnt(thePnt1, thePnt2):
+    anObj = BasicOp.MakeLineTwoPnt(thePnt1, thePnt2)
+    RaiseIfFailed("MakeLineTwoPnt", BasicOp)
+    return anObj
+
+## Create a line on two faces intersection. 
+#  @param theFace1 First of two faces, defining the line.
+#  @param theFace2 Second of two faces, defining the line.
+#  @return New GEOM_Object, containing the created line.
+#
+#  Example: see GEOM_TestAll.py
+def MakeLineTwoFaces(theFace1, theFace2):
+    anObj = BasicOp.MakeLineTwoFaces(theFace1, theFace2)
+    RaiseIfFailed("MakeLineTwoFaces", BasicOp)
+    return anObj
+
+## Create a plane, passing through the given point
+#  and normal to the given vector.
+#  @param thePnt Point, the plane has to pass through.
+#  @param theVec Vector, defining the plane normal direction.
+#  @param theTrimSize Half size of a side of quadrangle face, representing the plane.
+#  @return New GEOM_Object, containing the created plane.
+#
+#  Example: see GEOM_TestAll.py
+def MakePlane(thePnt, theVec, theTrimSize):
+    anObj = BasicOp.MakePlanePntVec(thePnt, theVec, theTrimSize)
+    RaiseIfFailed("MakePlanePntVec", BasicOp)
+    return anObj
+
+## Create a plane, passing through the three given points
+#  @param thePnt1 First of three points, defining the plane.
+#  @param thePnt2 Second of three points, defining the plane.
+#  @param thePnt3 Fird of three points, defining the plane.
+#  @param theTrimSize Half size of a side of quadrangle face, representing the plane.
+#  @return New GEOM_Object, containing the created plane.
+#
+#  Example: see GEOM_TestAll.py
+def MakePlaneThreePnt(thePnt1, thePnt2, thePnt3, theTrimSize):
+    anObj = BasicOp.MakePlaneThreePnt(thePnt1, thePnt2, thePnt3, theTrimSize)
+    RaiseIfFailed("MakePlaneThreePnt", BasicOp)
+    return anObj
 
-#NRI : BugID 1682 :     sg = SALOMEGUI_Swig()
-    myBuilder.NewCommand()
-    newObj = myBuilder.NewObject( salome.IDToSObject(aFather._get_StudyShapeId()) )
-    ior = salome.orb.object_to_string(aShape)
-    A1 = myBuilder.FindOrCreateAttribute(newObj, "AttributeIOR");
-    ObjIOR = A1._narrow(SALOMEDS.AttributeIOR)
-    ObjIOR.SetValue(ior)
-    A2 = myBuilder.FindOrCreateAttribute(newObj, "AttributeName");
-    ObjName = A2._narrow(SALOMEDS.AttributeName)
-    ObjName.SetValue(aName)
-    A3 = myBuilder.FindOrCreateAttribute(newObj, "AttributePixMap");
-    ObjPixmap = A3._narrow(SALOMEDS.AttributePixMap)
-    anIcon = gg.getShapeTypeIcon(ior);
-    ObjPixmap.SetPixMap(anIcon)
-    id = newObj.GetID()
-    aShape._set_StudyShapeId(id)
-    myBuilder.CommitCommand()
+## Create a plane, similar to the existing one, but with another size of representing face.
+#  @param theFace Referenced plane or LCS(Marker).
+#  @param theTrimSize New half size of a side of quadrangle face, representing the plane.
+#  @return New GEOM_Object, containing the created plane.
+#
+#  Example: see GEOM_TestAll.py
+def MakePlaneFace(theFace, theTrimSize):
+    anObj = BasicOp.MakePlaneFace(theFace, theTrimSize)
+    RaiseIfFailed("MakePlaneFace", BasicOp)
+    return anObj
 
-    addArguments( aShape )
+## Create a local coordinate system.
+#  @param OX,OY,OZ Three coordinates of coordinate system origin.
+#  @param XDX,XDY,XDZ Three components of OX direction
+#  @param YDX,YDY,YDZ Three components of OY direction
+#  @return New GEOM_Object, containing the created coordinate system.
+#
+#  Example: see GEOM_TestAll.py
+def MakeMarker(OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ):
+    anObj = BasicOp.MakeMarker(OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ)
+    RaiseIfFailed("MakeMarker", BasicOp)
+    return anObj
 
-#NRI : BugID 1682 :     sg.updateObjBrowser(0)
-#    salome.sg.updateObjBrowser(0)
-    return id
+## Create a local coordinate system.
+#  @param theOrigin Point of coordinate system origin.
+#  @param theXVec Vector of X direction
+#  @param theYVec Vector of Y direction
+#  @return New GEOM_Object, containing the created coordinate system.
+def MakeMarkerPntTwoVec(theOrigin, theXVec, theYVec):
+    O = PointCoordinates( theOrigin )
+    OXOY = []
+    for vec in [ theXVec, theYVec ]:
+        v1, v2 = SubShapeAll( vec, ShapeType["VERTEX"] )
+        p1 = PointCoordinates( v1 )
+        p2 = PointCoordinates( v2 )
+        for i in range( 0, 3 ):
+             OXOY.append( p2[i] - p1[i] )
+    #
+    anObj = BasicOp.MakeMarker( O[0], O[1], O[2],
+                                OXOY[0], OXOY[1], OXOY[2],
+                                OXOY[3], OXOY[4], OXOY[5], )
+    RaiseIfFailed("MakeMarker", BasicOp)
+    return anObj
 
 # -----------------------------------------------------------------------------
-# Create Geometry 2D
+# Curves
 # -----------------------------------------------------------------------------
 
-def MakeVertex(x,y,z):
-    anObj = geom.MakeVertex(x,y,z)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+##  Create an arc of circle, passing through three given points.
+#  @param thePnt1 Start point of the arc.
+#  @param thePnt2 Middle point of the arc.
+#  @param thePnt3 End point of the arc.
+#  @return New GEOM_Object, containing the created arc.
+#
+#  Example: see GEOM_TestAll.py
+def MakeArc(thePnt1, thePnt2, thePnt3):
+    anObj = CurvesOp.MakeArc(thePnt1, thePnt2, thePnt3)
+    RaiseIfFailed("MakeArc", CurvesOp)
+    return anObj
+
+##  Create an arc of circle from a center and 2 points.
+#  @param thePnt1 Center of the arc
+#  @param thePnt2 Start point of the arc. (Gives also the radius of the arc)
+#  @param thePnt3 End point of the arc (Gives also a direction)
+#  @return New GEOM_Object, containing the created arc.
+#
+#  Example: see GEOM_TestAll.py
+def MakeArcCenter(thePnt1, thePnt2, thePnt3,theSense):
+    anObj = CurvesOp.MakeArcCenter(thePnt1, thePnt2, thePnt3,theSense)
+    RaiseIfFailed("MakeArcCenter", CurvesOp)
+    return anObj
+
+## Create a circle with given center, normal vector and radius.
+#  @param thePnt Circle center.
+#  @param theVec Vector, normal to the plane of the circle.
+#  @param theR Circle radius.
+#  @return New GEOM_Object, containing the created circle.
+#
+#  Example: see GEOM_TestAll.py
+def MakeCircle(thePnt, theVec, theR):
+    anObj = CurvesOp.MakeCirclePntVecR(thePnt, theVec, theR)
+    RaiseIfFailed("MakeCirclePntVecR", CurvesOp)
+    return anObj
+
+## Create a circle, passing through three given points
+#  @param thePnt1,thePnt2,thePnt3 Points, defining the circle.
+#  @return New GEOM_Object, containing the created circle.
+#
+#  Example: see GEOM_TestAll.py
+def MakeCircleThreePnt(thePnt1, thePnt2, thePnt3):
+    anObj = CurvesOp.MakeCircleThreePnt(thePnt1, thePnt2, thePnt3)
+    RaiseIfFailed("MakeCircleThreePnt", CurvesOp)
+    return anObj
+
+## Create a circle, with given point1 as center,
+#  passing through the point2 as radius and laying in the plane,
+#  defined by all three given points.
+#  @param thePnt1,thePnt2,thePnt3 Points, defining the circle.
+#  @return New GEOM_Object, containing the created circle.
+#
+#  Example: see GEOM_example6.py
+def MakeCircleCenter2Pnt(thePnt1, thePnt2, thePnt3):
+    anObj = CurvesOp.MakeCircleCenter2Pnt(thePnt1, thePnt2, thePnt3)
+    RaiseIfFailed("MakeCircleCenter2Pnt", CurvesOp)
     return anObj
 
-def MakeVector(p1,p2):
-    anObj = geom.MakeVector(p1,p2)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create an ellipse with given center, normal vector and radiuses.
+#  @param thePnt Ellipse center.
+#  @param theVec Vector, normal to the plane of the ellipse.
+#  @param theRMajor Major ellipse radius.
+#  @param theRMinor Minor ellipse radius.
+#  @return New GEOM_Object, containing the created ellipse.
+#
+#  Example: see GEOM_TestAll.py
+def MakeEllipse(thePnt, theVec, theRMajor, theRMinor):
+    anObj = CurvesOp.MakeEllipse(thePnt, theVec, theRMajor, theRMinor)
+    RaiseIfFailed("MakeEllipse", CurvesOp)
     return anObj
 
-def MakeLine(p1,d1):
-    anObj = geom.MakeLine(p1,d1)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a polyline on the set of points.
+#  @param thePoints Sequence of points for the polyline.
+#  @return New GEOM_Object, containing the created polyline.
+#
+#  Example: see GEOM_TestAll.py
+def MakePolyline(thePoints):
+    anObj = CurvesOp.MakePolyline(thePoints)
+    RaiseIfFailed("MakePolyline", CurvesOp)
     return anObj
 
-def MakeArc(p1,p2,p3):
-    anObj = geom.MakeArc(p1,p2,p3)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create bezier curve on the set of points.
+#  @param thePoints Sequence of points for the bezier curve.
+#  @return New GEOM_Object, containing the created bezier curve.
+#
+#  Example: see GEOM_TestAll.py
+def MakeBezier(thePoints):
+    anObj = CurvesOp.MakeSplineBezier(thePoints)
+    RaiseIfFailed("MakeSplineBezier", CurvesOp)
     return anObj
 
-def MakeCircle(p1,d1,radius):  
-    anObj = geom.MakeCircle(p1,d1,radius)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create B-Spline curve on the set of points.
+#  @param thePoints Sequence of points for the B-Spline curve.
+#  @return New GEOM_Object, containing the created B-Spline curve.
+#
+#  Example: see GEOM_TestAll.py
+def MakeInterpol(thePoints):
+    anObj = CurvesOp.MakeSplineInterpolation(thePoints)
+    RaiseIfFailed("MakeSplineInterpolation", CurvesOp)
     return anObj
 
-def MakePlane(p1,d1,trimsize): 
-    anObj = geom.MakePlane(p1,d1,trimsize)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a sketcher (wire or face), following the textual description,
+#  passed through \a theCommand argument. \n
+#  Edges of the resulting wire or face will be arcs of circles and/or linear segments. \n
+#  Format of the description string have to be the following:
+#
+#  "Sketcher[:F x1 y1]:CMD[:CMD[:CMD...]]"
+#
+#  Where:
+#  - x1, y1 are coordinates of the first sketcher point (zero by default),
+#  - CMD is one of
+#     - "R angle" : Set the direction by angle
+#     - "D dx dy" : Set the direction by DX & DY
+#     .
+#       \n
+#     - "TT x y" : Create segment by point at X & Y
+#     - "T dx dy" : Create segment by point with DX & DY
+#     - "L length" : Create segment by direction & Length
+#     - "IX x" : Create segment by direction & Intersect. X
+#     - "IY y" : Create segment by direction & Intersect. Y
+#     .
+#       \n
+#     - "C radius length" : Create arc by direction, radius and length(in degree)
+#     .
+#       \n
+#     - "WW" : Close Wire (to finish)
+#     - "WF" : Close Wire and build face (to finish)
+#
+#  @param theCommand String, defining the sketcher in local
+#                    coordinates of the working plane.
+#  @param theWorkingPlane Nine double values, defining origin,
+#                         OZ and OX directions of the working plane.
+#  @return New GEOM_Object, containing the created wire.
+#
+#  Example: see GEOM_TestAll.py
+def MakeSketcher(theCommand, theWorkingPlane = [0,0,0, 0,0,1, 1,0,0]):
+    anObj = CurvesOp.MakeSketcher(theCommand, theWorkingPlane)
+    RaiseIfFailed("MakeSketcher", CurvesOp)
+    return anObj
+
+## Create a sketcher (wire or face), following the textual description,
+#  passed through \a theCommand argument. \n
+#  For format of the description string see the previous method.\n
+#  @param theCommand String, defining the sketcher in local
+#                    coordinates of the working plane.
+#  @param theWorkingPlane Planar Face or LCS(Marker) of the working plane.
+#  @return New GEOM_Object, containing the created wire.
+def MakeSketcherOnPlane(theCommand, theWorkingPlane):
+    anObj = CurvesOp.MakeSketcherOnPlane(theCommand, theWorkingPlane)
+    RaiseIfFailed("MakeSketcherOnPlane", CurvesOp)
     return anObj
 
 # -----------------------------------------------------------------------------
-# Create Geometry 3D
+# Create 3D Primitives
 # -----------------------------------------------------------------------------
 
+## Create a box by coordinates of two opposite vertices.
+#
+#  Example: see GEOM_TestAll.py
 def MakeBox(x1,y1,z1,x2,y2,z2):
-    anObj = geom.MakeBox(x1,y1,z1,x2,y2,z2)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+    pnt1 = MakeVertex(x1,y1,z1)
+    pnt2 = MakeVertex(x2,y2,z2)
+    return MakeBoxTwoPnt(pnt1,pnt2)
+
+## Create a box with specified dimensions along the coordinate axes
+#  and with edges, parallel to the coordinate axes.
+#  Center of the box will be at point (DX/2, DY/2, DZ/2).
+#  @param theDX Length of Box edges, parallel to OX axis.
+#  @param theDY Length of Box edges, parallel to OY axis.
+#  @param theDZ Length of Box edges, parallel to OZ axis.
+#  @return New GEOM_Object, containing the created box.
+#
+#  Example: see GEOM_TestAll.py
+def MakeBoxDXDYDZ(theDX, theDY, theDZ):
+    anObj = PrimOp.MakeBoxDXDYDZ(theDX, theDY, theDZ)
+    RaiseIfFailed("MakeBoxDXDYDZ", PrimOp)
     return anObj
 
-def MakeCylinder(p1,d1,radius,height):
-    anObj = geom.MakeCylinder(p1,d1,radius,height)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a box with two specified opposite vertices,
+#  and with edges, parallel to the coordinate axes
+#  @param thePnt1 First of two opposite vertices.
+#  @param thePnt2 Second of two opposite vertices.
+#  @return New GEOM_Object, containing the created box.
+#
+#  Example: see GEOM_TestAll.py
+def MakeBoxTwoPnt(thePnt1, thePnt2):
+    anObj = PrimOp.MakeBoxTwoPnt(thePnt1, thePnt2)
+    RaiseIfFailed("MakeBoxTwoPnt", PrimOp)
     return anObj
 
-def MakeSphere(x,y,z,radius):
-    anObj = geom.MakeSphere(x,y,z,radius)      
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a cylinder with given base point, axis, radius and height.
+#  @param thePnt Central point of cylinder base.
+#  @param theAxis Cylinder axis.
+#  @param theR Cylinder radius.
+#  @param theH Cylinder height.
+#  @return New GEOM_Object, containing the created cylinder.
+#
+#  Example: see GEOM_TestAll.py
+def MakeCylinder(thePnt, theAxis, theR, theH):
+    anObj = PrimOp.MakeCylinderPntVecRH(thePnt, theAxis, theR, theH)
+    RaiseIfFailed("MakeCylinderPntVecRH", PrimOp)
     return anObj
 
-def MakeCone(p1,d1,radius1,radius2,height):
-    anObj = geom.MakeCone(p1,d1,radius1,radius2,height)        
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a cylinder with given radius and height at
+#  the origin of coordinate system. Axis of the cylinder
+#  will be collinear to the OZ axis of the coordinate system.
+#  @param theR Cylinder radius.
+#  @param theH Cylinder height.
+#  @return New GEOM_Object, containing the created cylinder.
+#
+#  Example: see GEOM_TestAll.py
+def MakeCylinderRH(theR, theH):
+    anObj = PrimOp.MakeCylinderRH(theR, theH)
+    RaiseIfFailed("MakeCylinderRH", PrimOp)
     return anObj
 
-def MakeTorus(p1,d1,major_radius,minor_radius):
-    anObj = geom.MakeTorus(p1,d1,major_radius,minor_radius)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a sphere with given center and radius.
+#  @param thePnt Sphere center.
+#  @param theR Sphere radius.
+#  @return New GEOM_Object, containing the created sphere.
+#
+#  Example: see GEOM_TestAll.py
+def MakeSpherePntR(thePnt, theR):
+    anObj = PrimOp.MakeSpherePntR(thePnt, theR)
+    RaiseIfFailed("MakeSpherePntR", PrimOp)
     return anObj
 
-# -----------------------------------------------------------------------------
-# Create base objects
-# -----------------------------------------------------------------------------
+## Create a sphere with given center and radius.
+#  @param x,y,z Coordinates of sphere center.
+#  @param theR Sphere radius.
+#  @return New GEOM_Object, containing the created sphere.
+#
+#  Example: see GEOM_TestAll.py
+def MakeSphere(x, y, z, theR):
+    point = MakeVertex(x, y, z)
+    anObj = MakeSpherePntR(point, theR)
+    return anObj
 
-def MakeEdge(p1,p2):
-    anObj = geom.MakeEdge(p1,p2)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a sphere with given radius at the origin of coordinate system.
+#  @param theR Sphere radius.
+#  @return New GEOM_Object, containing the created sphere.
+#
+#  Example: see GEOM_TestAll.py
+def MakeSphereR(theR):
+    anObj = PrimOp.MakeSphereR(theR)
+    RaiseIfFailed("MakeSphereR", PrimOp)
     return anObj
 
-def MakeWire(ListShape):
-    anObj = geom.MakeWire(ListShape)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a cone with given base point, axis, height and radiuses.
+#  @param thePnt Central point of the first cone base.
+#  @param theAxis Cone axis.
+#  @param theR1 Radius of the first cone base.
+#  @param theR2 Radius of the second cone base.
+#    \note If both radiuses are non-zero, the cone will be truncated.
+#    \note If the radiuses are equal, a cylinder will be created instead.
+#  @param theH Cone height.
+#  @return New GEOM_Object, containing the created cone.
+#
+#  Example: see GEOM_TestAll.py
+def MakeCone(thePnt, theAxis, theR1, theR2, theH):
+    anObj = PrimOp.MakeConePntVecR1R2H(thePnt, theAxis, theR1, theR2, theH)
+    RaiseIfFailed("MakeConePntVecR1R2H", PrimOp)
     return anObj
 
-def MakeFace(aShapeWire,WantPlanarFace):
-    anObj = geom.MakeFace(aShapeWire,WantPlanarFace)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a cone with given height and radiuses at
+#  the origin of coordinate system. Axis of the cone will
+#  be collinear to the OZ axis of the coordinate system.
+#  @param theR1 Radius of the first cone base.
+#  @param theR2 Radius of the second cone base.
+#    \note If both radiuses are non-zero, the cone will be truncated.
+#    \note If the radiuses are equal, a cylinder will be created instead.
+#  @param theH Cone height.
+#  @return New GEOM_Object, containing the created cone.
+#
+#  Example: see GEOM_TestAll.py
+def MakeConeR1R2H(theR1, theR2, theH):
+    anObj = PrimOp.MakeConeR1R2H(theR1, theR2, theH)
+    RaiseIfFailed("MakeConeR1R2H", PrimOp)
     return anObj
 
-def MakeCompound(ListShape):
-    anObj = geom.MakeCompound(ListShape)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a torus with given center, normal vector and radiuses.
+#  @param thePnt Torus central point.
+#  @param theVec Torus axis of symmetry.
+#  @param theRMajor Torus major radius.
+#  @param theRMinor Torus minor radius.
+#  @return New GEOM_Object, containing the created torus.
+#
+#  Example: see GEOM_TestAll.py
+def MakeTorus(thePnt, theVec, theRMajor, theRMinor):
+    anObj = PrimOp.MakeTorusPntVecRR(thePnt, theVec, theRMajor, theRMinor)
+    RaiseIfFailed("MakeTorusPntVecRR", PrimOp)
+    return anObj
+
+## Create a torus with given radiuses at the origin of coordinate system.
+#  @param theRMajor Torus major radius.
+#  @param theRMinor Torus minor radius.
+#  @return New GEOM_Object, containing the created torus.
+#
+#  Example: see GEOM_TestAll.py
+def MakeTorusRR(theRMajor, theRMinor):
+    anObj = PrimOp.MakeTorusRR(theRMajor, theRMinor)
+    RaiseIfFailed("MakeTorusRR", PrimOp)
     return anObj
 
+## Create a shape by extrusion of the base shape along a vector, defined by two points.
+#  @param theBase Base shape to be extruded.
+#  @param thePoint1 First end of extrusion vector.
+#  @param thePoint2 Second end of extrusion vector.
+#  @return New GEOM_Object, containing the created prism.
+#
+#  Example: see GEOM_TestAll.py
+def MakePrism(theBase, thePoint1, thePoint2):
+    anObj = PrimOp.MakePrismTwoPnt(theBase, thePoint1, thePoint2)
+    RaiseIfFailed("MakePrismTwoPnt", PrimOp)
+    return anObj
+## The same prism but in two directions forward&backward.
+def MakePrism2Ways(theBase, thePoint1, thePoint2):
+    anObj = PrimOp.MakePrismTwoPnt2Ways(theBase, thePoint1, thePoint2)
+    RaiseIfFailed("MakePrismTwoPnt2Ways", PrimOp)
+    return anObj
+
+## Create a shape by extrusion of the base shape along the vector,
+#  i.e. all the space, transfixed by the base shape during its translation
+#  along the vector on the given distance.
+#  @param theBase Base shape to be extruded.
+#  @param theVec Direction of extrusion.
+#  @param theH Prism dimension along theVec.
+#  @return New GEOM_Object, containing the created prism.
+#
+#  Example: see GEOM_TestAll.py
+def MakePrismVecH(theBase, theVec, theH):
+    anObj = PrimOp.MakePrismVecH(theBase, theVec, theH)
+    RaiseIfFailed("MakePrismVecH", PrimOp)
+    return anObj
+
+## Create a shape by extrusion of the base shape along the vector,
+#  i.e. all the space, transfixed by the base shape during its translation
+#  along the vector on the given distance in 2 Ways (forward/backward) .
+#  @param theBase Base shape to be extruded.
+#  @param theVec Direction of extrusion.
+#  @param theH Prism dimension along theVec in forward direction.
+#  @return New GEOM_Object, containing the created prism.
+#
+#  Example: see GEOM_TestAll.py
+def MakePrismVecH2Ways(theBase, theVec, theH):
+    anObj = PrimOp.MakePrismVecH2Ways(theBase, theVec, theH)
+    RaiseIfFailed("MakePrismVecH2Ways", PrimOp)
+    return anObj
+
+## Create a shape by extrusion of the base shape along
+#  the path shape. The path shape can be a wire or an edge.
+#  @param theBase Base shape to be extruded.
+#  @param thePath Path shape to extrude the base shape along it.
+#  @return New GEOM_Object, containing the created pipe.
+#
+#  Example: see GEOM_TestAll.py
+def MakePipe(theBase, thePath):
+    anObj = PrimOp.MakePipe(theBase, thePath)
+    RaiseIfFailed("MakePipe", PrimOp)
+    return anObj
+
+## Create a shape by revolution of the base shape around the axis
+#  on the given angle, i.e. all the space, transfixed by the base
+#  shape during its rotation around the axis on the given angle.
+#  @param theBase Base shape to be rotated.
+#  @param theAxis Rotation axis.
+#  @param theAngle Rotation angle in radians.
+#  @return New GEOM_Object, containing the created revolution.
+#
+#  Example: see GEOM_TestAll.py
+def MakeRevolution(theBase, theAxis, theAngle):
+    anObj = PrimOp.MakeRevolutionAxisAngle(theBase, theAxis, theAngle)
+    RaiseIfFailed("MakeRevolutionAxisAngle", PrimOp)
+    return anObj
+## The Same Revolution but in both ways forward&backward.
+def MakeRevolution2Ways(theBase, theAxis, theAngle):
+    anObj = PrimOp.MakeRevolutionAxisAngle2Ways(theBase, theAxis, theAngle)
+    RaiseIfFailed("MakeRevolutionAxisAngle2Ways", PrimOp)
+    return anObj
+
+## Create a shell or solid passing through set of sections.Sections should be wires,edges or vertices.
+#  @param theSeqSections - set of specified sections.
+#  @param theModeSolid - mode defining building solid or shell
+#  @param thePreci - precision 3D used for smoothing by default 1.e-6
+#  @param theRuled - mode defining type of the result surfaces (ruled or smoothed).
+#  @return New GEOM_Object, containing the created shell or solid.
+#
+#  Example: see GEOM_TestAll.py
+def MakeThruSections(theSeqSections,theModeSolid,thePreci,theRuled):
+    anObj = PrimOp.MakeThruSections(theSeqSections,theModeSolid,thePreci,theRuled)
+    RaiseIfFailed("MakeThruSections", PrimOp)
+    return anObj
+
+## Create a shape by extrusion of the profile shape along
+#  the path shape. The path shape can be a wire or an edge.
+#  the several profiles can be specified in the several locations of path.     
+#  @param theSeqBases - list of  Bases shape to be extruded.
+#  @param theLocations - list of locations on the path corresponding
+#                        specified list of the Bases shapes. Number of locations
+#                        should be equal to number of bases or list of locations can be empty.
+#  @param thePath - Path shape to extrude the base shape along it.
+#  @param theWithContact - the mode defining that the section is translated to be in
+#                          contact with the spine.
+#  @param - WithCorrection - defining that the section is rotated to be
+#                            orthogonal to the spine tangent in the correspondent point
+#  @return New GEOM_Object, containing the created pipe.
+#
+def MakePipeWithDifferentSections(theSeqBases, theLocations,thePath,theWithContact,theWithCorrection):
+    anObj = PrimOp.MakePipeWithDifferentSections(theSeqBases, theLocations,thePath,theWithContact,theWithCorrection)
+    RaiseIfFailed("MakePipeWithDifferentSections", PrimOp)
+    return anObj
+
+## Create a shape by extrusion of the profile shape along
+#  the path shape. The path shape can be a shell or a face.
+#  the several profiles can be specified in the several locations of path.     
+#  @param theSeqBases - list of  Bases shape to be extruded.
+#  @param theSeqSubBases - list of corresponding subshapes of section shapes.
+#  @param theLocations - list of locations on the path corresponding
+#                        specified list of the Bases shapes. Number of locations
+#                        should be equal to number of bases. First and last
+#                        locations must be coincided with first and last vertexes
+#                        of path correspondingly.
+#  @param thePath - Path shape to extrude the base shape along it.
+#  @param theWithContact - the mode defining that the section is translated to be in
+#                          contact with the spine.
+#  @param - WithCorrection - defining that the section is rotated to be
+#                            orthogonal to the spine tangent in the correspondent point
+#  @return New GEOM_Object, containing the created solids.
+#
+def MakePipeWithShellSections(theSeqBases, theSeqSubBases,
+                              theLocations, thePath,
+                              theWithContact, theWithCorrection):
+    anObj = PrimOp.MakePipeWithShellSections(theSeqBases, theSeqSubBases,
+                                             theLocations, thePath,
+                                             theWithContact, theWithCorrection)
+    RaiseIfFailed("MakePipeWithShellSections", PrimOp)
+    return anObj
+
+def MakePipeWithShellSectionsBySteps(theSeqBases, theSeqSubBases,
+                                     theLocations, thePath,
+                                     theWithContact, theWithCorrection):
+    res = []
+    nbsect = len(theSeqBases)
+    nbsubsect = len(theSeqSubBases)
+    #print "nbsect = ",nbsect
+    for i in range(1,nbsect):
+        #print "  i = ",i
+        tmpSeqBases = [ theSeqBases[i-1], theSeqBases[i] ]
+        tmpLocations = [ theLocations[i-1], theLocations[i] ]
+        tmpSeqSubBases = []
+        if nbsubsect>0: tmpSeqSubBases = [ theSeqSubBases[i-1], theSeqSubBases[i] ]
+        anObj = PrimOp.MakePipeWithShellSections(tmpSeqBases, tmpSeqSubBases,
+                                                 tmpLocations, thePath,
+                                                 theWithContact, theWithCorrection)
+        if PrimOp.IsDone() == 0:
+            print "Problems with pipe creation between ",i," and ",i+1," sections"
+            RaiseIfFailed("MakePipeWithShellSections", PrimOp)
+            break
+        else:
+            print "Pipe between ",i," and ",i+1," sections is OK"
+            res.append(anObj)
+            pass
+        pass
+
+    resc = MakeCompound(res)
+    #resc = MakeSewing(res, 0.001)
+    #print "resc: ",resc
+    return resc
+
+
+## Create solids between given sections
+#  @param theSeqBases - list of sections (shell or face).
+#  @param theLocations - list of corresponding vertexes
+#  @return New GEOM_Object, containing the created solids.
+#
+def MakePipeShellsWithoutPath(theSeqBases, theLocations):
+    anObj = PrimOp.MakePipeShellsWithoutPath(theSeqBases, theLocations)
+    RaiseIfFailed("MakePipeShellsWithoutPath", PrimOp)
+    return anObj
+
+
 # -----------------------------------------------------------------------------
-# Create advanced objects
+# Create base shapes
 # -----------------------------------------------------------------------------
 
-def MakeCopy(aShape):
-    anObj = geom.MakeCopy(aShape)      
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a linear edge with specified ends.
+#  @param thePnt1 Point for the first end of edge.
+#  @param thePnt2 Point for the second end of edge.
+#  @return New GEOM_Object, containing the created edge.
+#
+#  Example: see GEOM_TestAll.py
+def MakeEdge(thePnt1, thePnt2):
+    anObj = ShapesOp.MakeEdge(thePnt1, thePnt2)
+    RaiseIfFailed("MakeEdge", ShapesOp)
     return anObj
 
-def MakePrism(baseShape,p1,p2):
-    anObj = geom.MakePrism(baseShape,p1,p2)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a wire from the set of edges and wires.
+#  @param theEdgesAndWires List of edges and/or wires.
+#  @return New GEOM_Object, containing the created wire.
+#
+#  Example: see GEOM_TestAll.py
+def MakeWire(theEdgesAndWires):
+    anObj = ShapesOp.MakeWire(theEdgesAndWires)
+    RaiseIfFailed("MakeWire", ShapesOp)
     return anObj
 
-def MakeRevolution(aShape,axis,angle):    
-    anObj = geom.MakeRevolution(aShape,axis,angle)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a face on the given wire.
+#  @param theWire closed Wire or Edge to build the face on.
+#  @param isPlanarWanted If TRUE, only planar face will be built.
+#                        If impossible, NULL object will be returned.
+#  @return New GEOM_Object, containing the created face.
+#
+#  Example: see GEOM_TestAll.py
+def MakeFace(theWire, isPlanarWanted):
+    anObj = ShapesOp.MakeFace(theWire, isPlanarWanted)
+    RaiseIfFailed("MakeFace", ShapesOp)
     return anObj
 
-def MakeFilling(aShape,mindeg,maxdeg,tol3d,tol2d,nbiter):
-    anObj = geom.MakeFilling(aShape,mindeg,maxdeg,tol3d,tol2d,nbiter)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a face on the given wires set.
+#  @param theWires List of closed wires or edges to build the face on.
+#  @param isPlanarWanted If TRUE, only planar face will be built.
+#                        If impossible, NULL object will be returned.
+#  @return New GEOM_Object, containing the created face.
+#
+#  Example: see GEOM_TestAll.py
+def MakeFaceWires(theWires, isPlanarWanted):
+    anObj = ShapesOp.MakeFaceWires(theWires, isPlanarWanted)
+    RaiseIfFailed("MakeFaceWires", ShapesOp)
     return anObj
 
-def MakePipe(pathShape,baseShape):
-    anObj = geom.MakePipe(pathShape,baseShape)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Shortcut to MakeFaceWires()
+#
+#  Example: see GEOM_TestOthers.py
+def MakeFaces(theWires, isPlanarWanted):
+    anObj = MakeFaceWires(theWires, isPlanarWanted)
     return anObj
 
-def MakeSewing(ListShape,precision):
-    anObj = geom.MakeSewing(ListShape,precision)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a shell from the set of faces and shells.
+#  @param theFacesAndShells List of faces and/or shells.
+#  @return New GEOM_Object, containing the created shell.
+#
+#  Example: see GEOM_TestAll.py
+def MakeShell(theFacesAndShells):
+    anObj = ShapesOp.MakeShell(theFacesAndShells)
+    RaiseIfFailed("MakeShell", ShapesOp)
+    return anObj
+
+## Create a solid, bounded by the given shells.
+#  @param theShells Sequence of bounding shells.
+#  @return New GEOM_Object, containing the created solid.
+#
+#  Example: see GEOM_TestAll.py
+def MakeSolid(theShells):
+    anObj = ShapesOp.MakeSolidShells(theShells)
+    RaiseIfFailed("MakeSolidShells", ShapesOp)
+    return anObj
+
+## Create a compound of the given shapes.
+#  @param theShapes List of shapes to put in compound.
+#  @return New GEOM_Object, containing the created compound.
+#
+#  Example: see GEOM_TestAll.py
+def MakeCompound(theShapes):
+    anObj = ShapesOp.MakeCompound(theShapes)
+    RaiseIfFailed("MakeCompound", ShapesOp)
+    return anObj
+
+## Gives quantity of faces in the given shape.
+#  @param theShape Shape to count faces of.
+#  @return Quantity of faces.
+#
+#  Example: see GEOM_TestOthers.py
+def NumberOfFaces(theShape):
+    nb_faces = ShapesOp.NumberOfFaces(theShape)
+    RaiseIfFailed("NumberOfFaces", ShapesOp)
+    return nb_faces
+
+## Gives quantity of edges in the given shape.
+#  @param theShape Shape to count edges of.
+#  @return Quantity of edges.
+#
+#  Example: see GEOM_TestOthers.py
+def NumberOfEdges(theShape):
+    nb_edges = ShapesOp.NumberOfEdges(theShape)
+    RaiseIfFailed("NumberOfEdges", ShapesOp)
+    return nb_edges
+
+## Reverses an orientation the given shape.
+#  @param theShape Shape to be reversed.
+#  @return The reversed copy of theShape.
+#
+#  Example: see GEOM_TestAll.py
+def ChangeOrientation(theShape):
+    anObj = ShapesOp.ChangeOrientation(theShape)
+    RaiseIfFailed("ChangeOrientation", ShapesOp)
+    return anObj
+
+## Shortcut to ChangeOrientation()
+#
+#  Example: see GEOM_TestOthers.py
+def OrientationChange(theShape):
+    anObj = ChangeOrientation(theShape)
+    return anObj
+
+## Retrieve all free faces from the given shape.
+#  Free face is a face, which is not shared between two shells of the shape.
+#  @param theShape Shape to find free faces in.
+#  @return List of IDs of all free faces, contained in theShape.
+#
+#  Example: see GEOM_TestOthers.py
+def GetFreeFacesIDs(theShape):
+    anIDs = ShapesOp.GetFreeFacesIDs(theShape)
+    RaiseIfFailed("GetFreeFacesIDs", ShapesOp)
+    return anIDs
+
+## Get all sub-shapes of theShape1 of the given type, shared with theShape2.
+#  @param theShape1 Shape to find sub-shapes in.
+#  @param theShape2 Shape to find shared sub-shapes with.
+#  @param theShapeType Type of sub-shapes to be retrieved.
+#  @return List of sub-shapes of theShape1, shared with theShape2.
+#
+#  Example: see GEOM_TestOthers.py
+def GetSharedShapes(theShape1, theShape2, theShapeType):
+    aList = ShapesOp.GetSharedShapes(theShape1, theShape2, theShapeType)
+    RaiseIfFailed("GetSharedShapes", ShapesOp)
+    return aList
+
+## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
+#  the specified plane by the certain way, defined through \a theState parameter.
+#  @param theShape Shape to find sub-shapes of.
+#  @param theShapeType Type of sub-shapes to be retrieved.
+#  @param theAx1 Vector (or line, or linear edge), specifying normal
+#                direction and location of the plane to find shapes on.
+#  @param theState The state of the subshapes to find. It can be one of
+#   ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
+#  @return List of all found sub-shapes.
+#
+#  Example: see GEOM_TestOthers.py
+def GetShapesOnPlane(theShape, theShapeType, theAx1, theState):
+    aList = ShapesOp.GetShapesOnPlane(theShape, theShapeType, theAx1, theState)
+    RaiseIfFailed("GetShapesOnPlane", ShapesOp)
+    return aList
+
+## Works like the above method, but returns list of sub-shapes indices
+#
+#  Example: see GEOM_TestOthers.py
+def GetShapesOnPlaneIDs(theShape, theShapeType, theAx1, theState):
+    aList = ShapesOp.GetShapesOnPlaneIDs(theShape, theShapeType, theAx1, theState)
+    RaiseIfFailed("GetShapesOnPlaneIDs", ShapesOp)
+    return aList
+
+## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
+#  the specified plane by the certain way, defined through \a theState parameter.
+#  @param theShape Shape to find sub-shapes of.
+#  @param theShapeType Type of sub-shapes to be retrieved.
+#  @param theAx1 Vector (or line, or linear edge), specifying normal
+#                direction of the plane to find shapes on.
+#  @param thePnt Point specifying location of the plane to find shapes on.
+#  @param theState The state of the subshapes to find. It can be one of
+#   ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
+#  @return List of all found sub-shapes.
+#
+#  Example: see GEOM_TestOthers.py
+def GetShapesOnPlaneWithLocation(theShape, theShapeType, theAx1, thePnt, theState):
+    aList = ShapesOp.GetShapesOnPlaneWithLocation(theShape, theShapeType, theAx1, thePnt, theState)
+    RaiseIfFailed("GetShapesOnPlaneWithLocation", ShapesOp)
+    return aList
+
+## Works like the above method, but returns list of sub-shapes indices
+#
+#  Example: see GEOM_TestOthers.py
+def GetShapesOnPlaneWithLocationIDs(theShape, theShapeType, theAx1, thePnt, theState):
+    aList = ShapesOp.GetShapesOnPlaneWithLocationIDs(theShape, theShapeType, theAx1, thePnt, theState)
+    RaiseIfFailed("GetShapesOnPlaneWithLocationIDs", ShapesOp)
+    return aList
+
+## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
+#  the specified cylinder by the certain way, defined through \a theState parameter.
+#  @param theShape Shape to find sub-shapes of.
+#  @param theShapeType Type of sub-shapes to be retrieved.
+#  @param theAxis Vector (or line, or linear edge), specifying
+#                 axis of the cylinder to find shapes on.
+#  @param theRadius Radius of the cylinder to find shapes on.
+#  @param theState The state of the subshapes to find. It can be one of
+#   ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
+#  @return List of all found sub-shapes.
+#
+#  Example: see GEOM_TestOthers.py
+def GetShapesOnCylinder(theShape, theShapeType, theAxis, theRadius, theState):
+    aList = ShapesOp.GetShapesOnCylinder(theShape, theShapeType, theAxis, theRadius, theState)
+    RaiseIfFailed("GetShapesOnCylinder", ShapesOp)
+    return aList
+
+## Works like the above method, but returns list of sub-shapes indices
+#
+#  Example: see GEOM_TestOthers.py
+def GetShapesOnCylinderIDs(theShape, theShapeType, theAxis, theRadius, theState):
+    aList = ShapesOp.GetShapesOnCylinderIDs(theShape, theShapeType, theAxis, theRadius, theState)
+    RaiseIfFailed("GetShapesOnCylinderIDs", ShapesOp)
+    return aList
+
+## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
+#  the specified sphere by the certain way, defined through \a theState parameter.
+#  @param theShape Shape to find sub-shapes of.
+#  @param theShapeType Type of sub-shapes to be retrieved.
+#  @param theCenter Point, specifying center of the sphere to find shapes on.
+#  @param theRadius Radius of the sphere to find shapes on.
+#  @param theState The state of the subshapes to find. It can be one of
+#   ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
+#  @return List of all found sub-shapes.
+#
+#  Example: see GEOM_TestOthers.py
+def GetShapesOnSphere(theShape, theShapeType, theCenter, theRadius, theState):
+    aList = ShapesOp.GetShapesOnSphere(theShape, theShapeType, theCenter, theRadius, theState)
+    RaiseIfFailed("GetShapesOnSphere", ShapesOp)
+    return aList
+
+## Works like the above method, but returns list of sub-shapes indices
+#
+#  Example: see GEOM_TestOthers.py
+def GetShapesOnSphereIDs(theShape, theShapeType, theCenter, theRadius, theState):
+    aList = ShapesOp.GetShapesOnSphereIDs(theShape, theShapeType, theCenter, theRadius, theState)
+    RaiseIfFailed("GetShapesOnSphereIDs", ShapesOp)
+    return aList
+
+## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
+#  the specified quadrangle by the certain way, defined through \a theState parameter.
+#  @param theShape Shape to find sub-shapes of.
+#  @param theShapeType Type of sub-shapes to be retrieved.
+#  @param theTopLeftPoint Point, specifying top left corner of a quadrangle
+#  @param theTopRigthPoint Point, specifying top right corner of a quadrangle
+#  @param theBottomLeftPoint Point, specifying bottom left corner of a quadrangle
+#  @param theBottomRigthPoint Point, specifying bottom right corner of a quadrangle
+#  @param theState The state of the subshapes to find. It can be one of
+#   ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
+#  @return List of all found sub-shapes.
+#
+#  Example: see GEOM_TestOthers.py
+def GetShapesOnQuadrangle(theShape, theShapeType, theTopLeftPoint, theTopRigthPoint, theBottomLeftPoint, theBottomRigthPoint, theState):
+    aList = ShapesOp.GetShapesOnQuadrangle(theShape, theShapeType, theTopLeftPoint, theTopRigthPoint, theBottomLeftPoint, theBottomRigthPoint, theState)
+    RaiseIfFailed("GetShapesOnQuadrangle", ShapesOp)
+    return aList
+
+## Works like the above method, but returns list of sub-shapes indices
+#
+#  Example: see GEOM_TestOthers.py
+def GetShapesOnQuadrangleIDs(theShape, theShapeType, theTopLeftPoint, theTopRigthPoint, theBottomLeftPoint, theBottomRigthPoint, theState):
+    aList = ShapesOp.GetShapesOnQuadrangleIDs(theShape, theShapeType, theTopLeftPoint, theTopRigthPoint, theBottomLeftPoint, theBottomRigthPoint, theState)
+    RaiseIfFailed("GetShapesOnQuadrangleIDs", ShapesOp)
+    return aList
+
+## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
+#  the specified \a theBox by the certain way, defined through \a theState parameter.
+#  @param theBox Shape for relative comparing.
+#  @param theShape Shape to find sub-shapes of.
+#  @param theShapeType Type of sub-shapes to be retrieved.
+#  @param theState The state of the subshapes to find. It can be one of
+#   ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
+#  @return List of all found sub-shapes.
+#
+def GetShapesOnBox(theBox, theShape, theShapeType, theState):
+    aList = ShapesOp.GetShapesOnBox(theBox, theShape, theShapeType, theState)
+    RaiseIfFailed("GetShapesOnBox", ShapesOp)
+    return aList
+
+## Works like the above method, but returns list of sub-shapes indices
+#
+def GetShapesOnBoxIDs(theBox, theShape, theShapeType, theState):
+    aList = ShapesOp.GetShapesOnBoxIDs(theBox, theShape, theShapeType, theState)
+    RaiseIfFailed("GetShapesOnBoxIDs", ShapesOp)
+    return aList
+
+## Get sub-shape(s) of theShapeWhere, which are
+#  coincident with \a theShapeWhat or could be a part of it.
+#  @param theShapeWhere Shape to find sub-shapes of.
+#  @param theShapeWhat Shape, specifying what to find (must be in the
+#                      building history of the ShapeWhere).
+#  @return Group of all found sub-shapes or a single found sub-shape.
+#
+#  Example: see GEOM_TestOthers.py
+def GetInPlace(theShapeWhere, theShapeWhat):
+    anObj = ShapesOp.GetInPlace(theShapeWhere, theShapeWhat)
+    RaiseIfFailed("GetInPlace", ShapesOp)
+    return anObj
+
+## Get sub-shape(s) of \a theShapeWhere, which are
+#  coincident with \a theShapeWhat or could be a part of it.
+#
+#  Implementation of this method is based on a saved history of an operation,
+#  produced \a theShapeWhere. The \a theShapeWhat must be among this operation's
+#  arguments (an argument shape or a sub-shape of an argument shape).
+#  The operation could be the Partition or one of boolean operations,
+#  performed on simple shapes (not on compounds).
+#
+#  @param theShapeWhere Shape to find sub-shapes of.
+#  @param theShapeWhat Shape, specifying what to find (must be in the
+#                      building history of the ShapeWhere).
+#  @return Group of all found sub-shapes or a single found sub-shape.
+#
+#  Example: see GEOM_TestOthers.py
+def GetInPlaceByHistory(theShapeWhere, theShapeWhat):
+    anObj = ShapesOp.GetInPlaceByHistory(theShapeWhere, theShapeWhat)
+    RaiseIfFailed("GetInPlaceByHistory", ShapesOp)
+    return anObj
+
+## Get sub-shape of theShapeWhere, which is
+#  equal to \a theShapeWhat.
+#  @param theShapeWhere Shape to find sub-shape of.
+#  @param theShapeWhat Shape, specifying what to find
+#                      (must be usual shape).
+#  @return New GEOM_Object for found sub-shape.
+#
+def GetSame(theShapeWhere, theShapeWhat):
+    anObj = ShapesOp.GetSame(theShapeWhere, theShapeWhat)
+    RaiseIfFailed("GetSame", ShapesOp)
     return anObj
 
 # -----------------------------------------------------------------------------
-# Boolean (Common, Cut, Fuse, Section)
+# Access to sub-shapes by their unique IDs inside the main shape.
 # -----------------------------------------------------------------------------
 
-def MakeBoolean(shape1,shape2,operation):
-    anObj = geom.MakeBoolean(shape1,shape2,operation)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Obtain a composite sub-shape of <aShape>, composed from sub-shapes
+#  of <aShape>, selected by their unique IDs inside <aShape>
+#
+#  Example: see GEOM_TestAll.py
+def GetSubShape(aShape, ListOfID):
+    anObj = geom.AddSubShape(aShape,ListOfID)
     return anObj
 
+## Obtain unique ID of sub-shape <aSubShape> inside <aShape>
+#
+#  Example: see GEOM_TestAll.py
+def GetSubShapeID(aShape, aSubShape):
+    anID = LocalOp.GetSubShapeIndex(aShape, aSubShape)
+    RaiseIfFailed("GetSubShapeIndex", LocalOp)
+    return anID
+
 # -----------------------------------------------------------------------------
-# Transform objects
+# Decompose objects
+# -----------------------------------------------------------------------------
+
+## Explode a shape on subshapes of a given type.
+#  @param theShape Shape to be exploded.
+#  @param theShapeType Type of sub-shapes to be retrieved.
+#  @return List of sub-shapes of type theShapeType, contained in theShape.
+#
+#  Example: see GEOM_TestAll.py
+def SubShapeAll(aShape, aType):
+    ListObj = ShapesOp.MakeExplode(aShape,aType,0)
+    RaiseIfFailed("MakeExplode", ShapesOp)
+    return ListObj
+
+## Explode a shape on subshapes of a given type.
+#  @param theShape Shape to be exploded.
+#  @param theShapeType Type of sub-shapes to be retrieved.
+#  @return List of IDs of sub-shapes.
+def SubShapeAllIDs(aShape, aType):
+    ListObj = ShapesOp.SubShapeAllIDs(aShape,aType,0)
+    RaiseIfFailed("SubShapeAllIDs", ShapesOp)
+    return ListObj
+
+## Explode a shape on subshapes of a given type.
+#  Sub-shapes will be sorted by coordinates of their gravity centers.
+#  @param theShape Shape to be exploded.
+#  @param theShapeType Type of sub-shapes to be retrieved.
+#  @return List of sub-shapes of type theShapeType, contained in theShape.
+#
+#  Example: see GEOM_TestAll.py
+def SubShapeAllSorted(aShape, aType):
+    ListObj = ShapesOp.MakeExplode(aShape,aType,1)
+    RaiseIfFailed("MakeExplode", ShapesOp)
+    return ListObj
+
+## Explode a shape on subshapes of a given type.
+#  Sub-shapes will be sorted by coordinates of their gravity centers.
+#  @param theShape Shape to be exploded.
+#  @param theShapeType Type of sub-shapes to be retrieved.
+#  @return List of IDs of sub-shapes.
+def SubShapeAllSortedIDs(aShape, aType):
+    ListIDs = ShapesOp.SubShapeAllIDs(aShape,aType,1)
+    RaiseIfFailed("SubShapeAllIDs", ShapesOp)
+    return ListIDs
+
+## Obtain a compound of sub-shapes of <aShape>,
+#  selected by they indices in list of all sub-shapes of type <aType>.
+#  Each index is in range [1, Nb_Sub-Shapes_Of_Given_Type]
+#
+#  Example: see GEOM_TestAll.py
+def SubShape(aShape, aType, ListOfInd):
+    ListOfIDs = []
+    AllShapeList = SubShapeAll(aShape, aType)
+    for ind in ListOfInd:
+        ListOfIDs.append(GetSubShapeID(aShape, AllShapeList[ind - 1]))
+    anObj = GetSubShape(aShape, ListOfIDs)
+    return anObj
+
+## Obtain a compound of sub-shapes of <aShape>,
+#  selected by they indices in sorted list of all sub-shapes of type <aType>.
+#  Each index is in range [1, Nb_Sub-Shapes_Of_Given_Type]
+#
+#  Example: see GEOM_TestAll.py
+def SubShapeSorted(aShape, aType, ListOfInd):
+    ListOfIDs = []
+    AllShapeList = SubShapeAllSorted(aShape, aType)
+    for ind in ListOfInd:
+        ListOfIDs.append(GetSubShapeID(aShape, AllShapeList[ind - 1]))
+    anObj = GetSubShape(aShape, ListOfIDs)
+    return anObj
+
+# -----------------------------------------------------------------------------
+# Healing operations
 # -----------------------------------------------------------------------------
 
-def MakeTranslation(aShape,x,y,z):
-    anObj = geom.MakeTranslation(aShape,x,y,z) 
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Apply a sequence of Shape Healing operators to the given object.
+#  @param theShape Shape to be processed.
+#  @param theOperators List of names of operators ("FixShape", "SplitClosedFaces", etc.).
+#  @param theParameters List of names of parameters
+#                    ("FixShape.Tolerance3d", "SplitClosedFaces.NbSplitPoints", etc.).
+#  @param theValues List of values of parameters, in the same order
+#                    as parameters are listed in \a theParameters list.
+#  @return New GEOM_Object, containing processed shape.
+#
+#  Example: see GEOM_TestHealing.py
+def ProcessShape(theShape, theOperators, theParameters, theValues):
+    anObj = HealOp.ProcessShape(theShape, theOperators, theParameters, theValues)
+    RaiseIfFailed("ProcessShape", HealOp)
     return anObj
 
-def MakeRotation(aShape,axis,angle):
-    anObj = geom.MakeRotation(aShape,axis,angle)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Remove faces from the given object (shape).
+#  @param theObject Shape to be processed.
+#  @param theFaces Indices of faces to be removed, if EMPTY then the method
+#                  removes ALL faces of the given object.
+#  @return New GEOM_Object, containing processed shape.
+#
+#  Example: see GEOM_TestHealing.py
+def SuppressFaces(theObject, theFaces):
+    anObj = HealOp.SuppressFaces(theObject, theFaces)
+    RaiseIfFailed("SuppressFaces", HealOp)
     return anObj
 
-def MakeScaleTransform(aShape,theCenterofScale,factor): 
-    anObj = geom.MakeScaleTransform(aShape,theCenterofScale,factor)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Sewing of some shapes into single shape.
+#
+#  Example: see GEOM_TestHealing.py
+def MakeSewing(ListShape, theTolerance):
+    comp = MakeCompound(ListShape)
+    anObj = Sew(comp, theTolerance)
     return anObj
 
-def MakeMirrorByPlane(aShape,aPlane):
-    anObj = geom.MakeMirrorByPlane(aShape,aPlane)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Sewing of the given object.
+#  @param theObject Shape to be processed.
+#  @param theTolerance Required tolerance value.
+#  @return New GEOM_Object, containing processed shape.
+#
+#  Example: see MakeSewing() above
+def Sew(theObject, theTolerance):
+    anObj = HealOp.Sew(theObject, theTolerance)
+    RaiseIfFailed("Sew", HealOp)
     return anObj
 
-def OrientationChange(aShape):
-    anObj = geom.OrientationChange(aShape)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Remove internal wires and edges from the given object (face).
+#  @param theObject Shape to be processed.
+#  @param theWires Indices of wires to be removed, if EMPTY then the method
+#                  removes ALL internal wires of the given object.
+#  @return New GEOM_Object, containing processed shape.
+#
+#  Example: see GEOM_TestHealing.py
+def SuppressInternalWires(theObject, theWires):
+    anObj = HealOp.RemoveIntWires(theObject, theWires)
+    RaiseIfFailed("RemoveIntWires", HealOp)
     return anObj
 
-def MakeFillet(aShape,radius,ShapeType,ListShape):
-    anObj = geom.MakeFillet(aShape,radius,ShapeType,ListShape)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Remove internal closed contours (holes) from the given object.
+#  @param theObject Shape to be processed.
+#  @param theWires Indices of wires to be removed, if EMPTY then the method
+#                  removes ALL internal holes of the given object
+#  @return New GEOM_Object, containing processed shape.
+#
+#  Example: see GEOM_TestHealing.py
+def SuppressHoles(theObject, theWires):
+    anObj = HealOp.FillHoles(theObject, theWires)
+    RaiseIfFailed("FillHoles", HealOp)
+    return anObj
+
+## Close an open wire.
+#  @param theObject Shape to be processed.
+#  @param theWires Indexes of edge(s) and wire(s) to be closed within <VAR>theObject</VAR>'s shape,
+#                  if -1, then theObject itself is a wire.
+#  @param isCommonVertex If TRUE : closure by creation of a common vertex,
+#                        If FALS : closure by creation of an edge between ends.
+#  @return New GEOM_Object, containing processed shape.
+#
+#  Example: see GEOM_TestHealing.py
+def CloseContour(theObject, theWires, isCommonVertex):
+    anObj = HealOp.CloseContour(theObject, theWires, isCommonVertex)
+    RaiseIfFailed("CloseContour", HealOp)
+    return anObj
+
+## Addition of a point to a given edge object.
+#  @param theObject Shape to be processed.
+#  @param theEdgeIndex Index of edge to be divided within theObject's shape,
+#                      if -1, then theObject itself is the edge.
+#  @param theValue Value of parameter on edge or length parameter,
+#                  depending on \a isByParameter.
+#  @param isByParameter If TRUE : \a theValue is treated as a curve parameter [0..1],
+#                       if FALSE : \a theValue is treated as a length parameter [0..1]
+#  @return New GEOM_Object, containing processed shape.
+#
+#  Example: see GEOM_TestHealing.py
+def DivideEdge(theObject, theEdgeIndex, theValue, isByParameter):
+    anObj = HealOp.DivideEdge(theObject, theEdgeIndex, theValue, isByParameter)
+    RaiseIfFailed("DivideEdge", HealOp)
     return anObj
 
-def MakeChamfer(aShape,d1,d2,ShapeType,ListShape):
-    anObj = geom.MakeChamfer(aShape,d1,d2,ShapeType,ListShape)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Change orientation of the given object.
+#  @param theObject Shape to be processed.
+#  @update given shape
+def ChangeOrientationShell(theObject):
+    theObject = HealOp.ChangeOrientation(theObject)
+    RaiseIfFailed("ChangeOrientation", HealOp)
+
+## Change orientation of the given object.
+#  @param theObject Shape to be processed.
+#  @return New GEOM_Object, containing processed shape.
+def ChangeOrientationShellCopy(theObject):
+    anObj = HealOp.ChangeOrientationCopy(theObject)
+    RaiseIfFailed("ChangeOrientationCopy", HealOp)
+    return anObj
+
+## Get a list of wires (wrapped in GEOM_Object-s),
+#  that constitute a free boundary of the given shape.
+#  @param theObject Shape to get free boundary of.
+#  @return [status, theClosedWires, theOpenWires]
+#  status: FALSE, if an error(s) occured during the method execution.
+#  theClosedWires: Closed wires on the free boundary of the given shape.
+#  theOpenWires: Open wires on the free boundary of the given shape.
+#
+#  Example: see GEOM_TestHealing.py
+def GetFreeBoundary(theObject):
+    anObj = HealOp.GetFreeBoundary(theObject)
+    RaiseIfFailed("GetFreeBoundary", HealOp)
     return anObj
 
 # -----------------------------------------------------------------------------
-# Decompose objects
+# Create advanced objects
 # -----------------------------------------------------------------------------
 
-def SubShape(aShape,type,ListOfId):
-    anObj = geom.SubShape(aShape,type, ListOfId)       
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Create a copy of the given object
+#
+#  Example: see GEOM_TestAll.py
+def MakeCopy(theOriginal):
+    anObj = InsertOp.MakeCopy(theOriginal)
+    RaiseIfFailed("MakeCopy", InsertOp)
     return anObj
 
-def SubShapeAll(aShape,type):
-    ListObj = geom.SubShapeAll(aShape,type)
-    for anObj in ListObj :
-           ior = salome.orb.object_to_string(anObj)
-           anObj._set_Name(ior)
-    return ListObj
+## Create a filling from the given compound of contours.
+#  @param theShape the compound of contours
+#  @param theMinDeg a minimal degree
+#  @param theMaxDeg a maximal degree
+#  @param theTol2D a 2d tolerance
+#  @param theTol3D a 3d tolerance
+#  @param theNbIter a number of iteration
+#  @return New GEOM_Object, containing the created filling surface.
+#
+#  Example: see GEOM_TestAll.py
+def MakeFilling(theShape, theMinDeg, theMaxDeg, theTol2D, theTol3D, theNbIter):
+    anObj = PrimOp.MakeFilling(theShape, theMinDeg, theMaxDeg, theTol2D, theTol3D, theNbIter)
+    RaiseIfFailed("MakeFilling", PrimOp)
+    return anObj
 
-def SubShapeSorted(aShape,type,ListOfId):
-    anObj = geom.SubShapeSorted(aShape,type, ListOfId) 
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Replace coincident faces in theShape by one face.
+#  @param theShape Initial shape.
+#  @param theTolerance Maximum distance between faces, which can be considered as coincident.
+#  @param doKeepNonSolids If FALSE, only solids will present in the result, otherwise all initial shapes.
+#  @return New GEOM_Object, containing a copy of theShape without coincident faces.
+#
+#  Example: see GEOM_Spanner.py
+def MakeGlueFaces(theShape, theTolerance, doKeepNonSolids=True):
+    anObj = ShapesOp.MakeGlueFaces(theShape, theTolerance, doKeepNonSolids)
+    if anObj is None:
+      raise RuntimeError, "MakeGlueFaces : " + ShapesOp.GetErrorCode()
     return anObj
 
-def SubShapeAllSorted(aShape,type):
-    ListObj = geom.SubShapeAllSorted(aShape,type)
-    for anObj in ListObj :
-           ior = salome.orb.object_to_string(anObj)
-           anObj._set_Name(ior)
-    return ListObj
 
-# -- enumeration ShapeType as a dictionary --
-ShapeType = {"COMPOUND":0, "COMPSOLID":1, "SOLID":2, "SHELL":3, "FACE":4, "WIRE":5, "EDGE":6, "VERTEX":7, "SHAPE":8}
+## Find coincident faces in theShape for possible gluing.
+#  @param theShape Initial shape.
+#  @param theTolerance Maximum distance between faces,
+#                      which can be considered as coincident.
+#  @return ListOfGO.
+#
+#  Example: see GEOM_Spanner.py
+def GetGlueFaces(theShape, theTolerance):
+    anObj = ShapesOp.GetGlueFaces(theShape, theTolerance)
+    RaiseIfFailed("GetGlueFaces", ShapesOp)
+    return anObj
 
-def Partition(ListShapes, ListTools=[], ListKeepInside=[], ListRemoveInside=[], Limit=ShapeType["SHAPE"]):
-    anObj = geom.Partition(ListShapes, ListTools, ListKeepInside, ListRemoveInside, Limit);
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+
+## Replace coincident faces in theShape by one face
+#  in compliance with given list of faces
+#  @param theShape Initial shape.
+#  @param theTolerance Maximum distance between faces,
+#                      which can be considered as coincident.
+#  @param theFaces List of faces for gluing.
+#  @param doKeepNonSolids If FALSE, only solids will present in the result, otherwise all initial shapes.
+#  @return New GEOM_Object, containing a copy of theShape
+#          without some faces.
+#
+#  Example: see GEOM_Spanner.py
+def MakeGlueFacesByList(theShape, theTolerance, theFaces, doKeepNonSolids=True):
+    anObj = ShapesOp.MakeGlueFacesByList(theShape, theTolerance, theFaces, doKeepNonSolids)
+    if anObj is None:
+      raise RuntimeError, "MakeGlueFacesByList : " + ShapesOp.GetErrorCode()
+    return anObj
+
+
+# -----------------------------------------------------------------------------
+# Boolean (Common, Cut, Fuse, Section)
+# -----------------------------------------------------------------------------
+
+## Perform one of boolean operations on two given shapes.
+#  @param theShape1 First argument for boolean operation.
+#  @param theShape2 Second argument for boolean operation.
+#  @param theOperation Indicates the operation to be done:
+#                      1 - Common, 2 - Cut, 3 - Fuse, 4 - Section.
+#  @return New GEOM_Object, containing the result shape.
+#
+#  Example: see GEOM_TestAll.py
+def MakeBoolean(theShape1, theShape2, theOperation):
+    anObj = BoolOp.MakeBoolean(theShape1, theShape2, theOperation)
+    RaiseIfFailed("MakeBoolean", BoolOp)
+    return anObj
+
+## Shortcut to MakeBoolean(s1, s2, 1)
+#
+#  Example: see GEOM_TestOthers.py
+def MakeCommon(s1, s2):
+    return MakeBoolean(s1, s2, 1)
+
+## Shortcut to MakeBoolean(s1, s2, 2)
+#
+#  Example: see GEOM_TestOthers.py
+def MakeCut(s1, s2):
+    return MakeBoolean(s1, s2, 2)
+
+## Shortcut to MakeBoolean(s1, s2, 3)
+#
+#  Example: see GEOM_TestOthers.py
+def MakeFuse(s1, s2):
+    return MakeBoolean(s1, s2, 3)
+
+## Shortcut to MakeBoolean(s1, s2, 4)
+#
+#  Example: see GEOM_TestOthers.py
+def MakeSection(s1, s2):
+    return MakeBoolean(s1, s2, 4)
+
+## Perform partition operation.
+#  @param ListShapes Shapes to be intersected.
+#  @param ListTools Shapes to intersect theShapes.
+#  !!!NOTE: Each compound from ListShapes and ListTools will be exploded
+#           in order to avoid possible intersection between shapes from
+#           this compound.
+#  @param Limit Type of resulting shapes (corresponding to TopAbs_ShapeEnum).
+#  @param KeepNonlimitShapes: if this parameter == 0 - only shapes with
+#                             type <= Limit are kept in the result,
+#                             else - shapes with type > Limit are kept
+#                             also (if they exist)
+#
+#  After implementation new version of PartitionAlgo (October 2006)
+#  other parameters are ignored by current functionality. They are kept
+#  in this function only for support old versions.
+#  Ignored parameters:
+#      @param ListKeepInside Shapes, outside which the results will be deleted.
+#         Each shape from theKeepInside must belong to theShapes also.
+#      @param ListRemoveInside Shapes, inside which the results will be deleted.
+#         Each shape from theRemoveInside must belong to theShapes also.
+#      @param RemoveWebs If TRUE, perform Glue 3D algorithm.
+#      @param ListMaterials Material indices for each shape. Make sence,
+#         only if theRemoveWebs is TRUE.
+#
+#  @return New GEOM_Object, containing the result shapes.
+#
+#  Example: see GEOM_TestAll.py
+def MakePartition(ListShapes, ListTools=[], ListKeepInside=[], ListRemoveInside=[],
+                  Limit=ShapeType["SHAPE"], RemoveWebs=0, ListMaterials=[],
+                  KeepNonlimitShapes=0):
+    anObj = BoolOp.MakePartition(ListShapes, ListTools,
+                                 ListKeepInside, ListRemoveInside,
+                                 Limit, RemoveWebs, ListMaterials,
+                                 KeepNonlimitShapes);
+    RaiseIfFailed("MakePartition", BoolOp)
     return anObj
 
-def SuppressFaces(aShape,ListOfId):
-    anObj = geom.SuppressFaces(aShape,ListOfId)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Perform partition operation.
+#  This method may be useful if it is needed to make a partition for
+#  compound contains nonintersected shapes. Performance will be better
+#  since intersection between shapes from compound is not performed.
+#
+#  Description of all parameters as in previous method MakePartition()
+#
+#  !!!NOTE: Passed compounds (via ListShapes or via ListTools)
+#           have to consist of nonintersecting shapes.
+#
+#  @return New GEOM_Object, containing the result shapes.
+#
+def MakePartitionNonSelfIntersectedShape(ListShapes, ListTools=[],
+                                         ListKeepInside=[], ListRemoveInside=[],
+                                         Limit=ShapeType["SHAPE"], RemoveWebs=0,
+                                         ListMaterials=[], KeepNonlimitShapes=0):
+    anObj = BoolOp.MakePartitionNonSelfIntersectedShape(ListShapes, ListTools,
+                                                        ListKeepInside, ListRemoveInside,
+                                                        Limit, RemoveWebs, ListMaterials,
+                                                        KeepNonlimitShapes);
+    RaiseIfFailed("MakePartitionNonSelfIntersectedShape", BoolOp)
     return anObj
 
-def SuppressHole(aShape,ListOfFace,ListOfWire,ListOfEndFace):
-    anObj = geom.SuppressHole(aShape,ListOfFace,ListOfWire,ListOfEndFace)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Shortcut to MakePartition()
+#
+#  Example: see GEOM_TestOthers.py
+def Partition(ListShapes, ListTools=[], ListKeepInside=[], ListRemoveInside=[],
+              Limit=ShapeType["SHAPE"], RemoveWebs=0, ListMaterials=[],
+              KeepNonlimitShapes=0):
+    anObj = MakePartition(ListShapes, ListTools,
+                          ListKeepInside, ListRemoveInside,
+                          Limit, RemoveWebs, ListMaterials,
+                          KeepNonlimitShapes);
+    return anObj
+
+## Perform partition of the Shape with the Plane
+#  @param theShape Shape to be intersected.
+#  @param thePlane Tool shape, to intersect theShape.
+#  @return New GEOM_Object, containing the result shape.
+#
+#  Example: see GEOM_TestAll.py
+def MakeHalfPartition(theShape, thePlane):
+    anObj = BoolOp.MakeHalfPartition(theShape, thePlane)
+    RaiseIfFailed("MakeHalfPartition", BoolOp)
+    return anObj
+
+# -----------------------------------------------------------------------------
+# Transform objects
+# -----------------------------------------------------------------------------
+
+## Translate the given object along the vector, specified
+#  by its end points, creating its copy before the translation.
+#  @param theObject The object to be translated.
+#  @param thePoint1 Start point of translation vector.
+#  @param thePoint2 End point of translation vector.
+#  @return New GEOM_Object, containing the translated object.
+#
+#  Example: see GEOM_TestAll.py
+def MakeTranslationTwoPoints(theObject, thePoint1, thePoint2):
+    anObj = TrsfOp.TranslateTwoPointsCopy(theObject, thePoint1, thePoint2)
+    RaiseIfFailed("TranslateTwoPointsCopy", TrsfOp)
+    return anObj
+
+## Translate the given object along the vector, specified
+#  by its components, creating its copy before the translation.
+#  @param theObject The object to be translated.
+#  @param theDX,theDY,theDZ Components of translation vector.
+#  @return New GEOM_Object, containing the translated object.
+#
+#  Example: see GEOM_TestAll.py
+def MakeTranslation(theObject, theDX, theDY, theDZ):
+    anObj = TrsfOp.TranslateDXDYDZCopy(theObject, theDX, theDY, theDZ)
+    RaiseIfFailed("TranslateDXDYDZCopy", TrsfOp)
+    return anObj
+
+## Translate the given object along the given vector,
+#  creating its copy before the translation.
+#  @param theObject The object to be translated.
+#  @param theVector The translation vector.
+#  @return New GEOM_Object, containing the translated object.
+#
+#  Example: see GEOM_TestAll.py
+def MakeTranslationVector(theObject, theVector):
+    anObj = TrsfOp.TranslateVectorCopy(theObject, theVector)
+    RaiseIfFailed("TranslateVectorCopy", TrsfOp)
+    return anObj
+
+## Rotate the given object around the given axis
+#  on the given angle, creating its copy before the rotatation.
+#  @param theObject The object to be rotated.
+#  @param theAxis Rotation axis.
+#  @param theAngle Rotation angle in radians.
+#  @return New GEOM_Object, containing the rotated object.
+#
+#  Example: see GEOM_TestAll.py
+def MakeRotation(theObject, theAxis, theAngle):
+    anObj = TrsfOp.RotateCopy(theObject, theAxis, theAngle)
+    RaiseIfFailed("RotateCopy", TrsfOp)
+    return anObj
+
+## Rotate given object around vector perpendicular to plane
+#  containing three points, creating its copy before the rotatation.
+#  @param theObject The object to be rotated.
+#  @param theCentPoint central point - the axis is the vector perpendicular to the plane
+#  containing the three points.
+#  @param thePoint1 and thePoint2 - in a perpendicular plan of the axis.
+#  @return New GEOM_Object, containing the rotated object.
+#
+#  Example: see GEOM_TestAll.py
+def MakeRotationThreePoints(theObject, theCentPoint, thePoint1, thePoint2):
+    anObj = TrsfOp.RotateThreePointsCopy(theObject, theCentPoint, thePoint1, thePoint2)
+    RaiseIfFailed("RotateThreePointsCopy", TrsfOp)
+    return anObj
+
+## Scale the given object by the factor, creating its copy before the scaling.
+#  @param theObject The object to be scaled.
+#  @param thePoint Center point for scaling.
+#  @param theFactor Scaling factor value.
+#  @return New GEOM_Object, containing the scaled shape.
+#
+#  Example: see GEOM_TestAll.py
+def MakeScaleTransform(theObject, thePoint, theFactor):
+    anObj = TrsfOp.ScaleShapeCopy(theObject, thePoint, theFactor)
+    RaiseIfFailed("ScaleShapeCopy", TrsfOp)
+    return anObj
+
+## Create an object, symmetrical
+#  to the given one relatively the given plane.
+#  @param theObject The object to be mirrored.
+#  @param thePlane Plane of symmetry.
+#  @return New GEOM_Object, containing the mirrored shape.
+#
+#  Example: see GEOM_TestAll.py
+def MakeMirrorByPlane(theObject, thePlane):
+    anObj = TrsfOp.MirrorPlaneCopy(theObject, thePlane)
+    RaiseIfFailed("MirrorPlaneCopy", TrsfOp)
+    return anObj
+
+## Create an object, symmetrical
+#  to the given one relatively the given axis.
+#  @param theObject The object to be mirrored.
+#  @param theAxis Axis of symmetry.
+#  @return New GEOM_Object, containing the mirrored shape.
+#
+#  Example: see GEOM_TestAll.py
+def MakeMirrorByAxis(theObject, theAxis):
+    anObj = TrsfOp.MirrorAxisCopy(theObject, theAxis)
+    RaiseIfFailed("MirrorAxisCopy", TrsfOp)
+    return anObj
+
+## Create an object, symmetrical
+#  to the given one relatively the given point.
+#  @param theObject The object to be mirrored.
+#  @param thePoint Point of symmetry.
+#  @return New GEOM_Object, containing the mirrored shape.
+#
+#  Example: see GEOM_TestAll.py
+def MakeMirrorByPoint(theObject, thePoint):
+    anObj = TrsfOp.MirrorPointCopy(theObject, thePoint)
+    RaiseIfFailed("MirrorPointCopy", TrsfOp)
+    return anObj
+
+## Modify the Location of the given object by LCS,
+#  creating its copy before the setting.
+#  @param theObject The object to be displaced.
+#  @param theStartLCS Coordinate system to perform displacement from it.
+#                     If \a theStartLCS is NULL, displacement
+#                     will be performed from global CS.
+#                     If \a theObject itself is used as \a theStartLCS,
+#                     its location will be changed to \a theEndLCS.
+#  @param theEndLCS Coordinate system to perform displacement to it.
+#  @return New GEOM_Object, containing the displaced shape.
+#
+#  Example: see GEOM_TestAll.py
+def MakePosition(theObject, theStartLCS, theEndLCS):
+    anObj = TrsfOp.PositionShapeCopy(theObject, theStartLCS, theEndLCS)
+    RaiseIfFailed("PositionShapeCopy", TrsfOp)
+    return anObj
+
+## Create new object as offset of the given one.
+#  @param theObject The base object for the offset.
+#  @param theOffset Offset value.
+#  @return New GEOM_Object, containing the offset object.
+#
+#  Example: see GEOM_TestAll.py
+def MakeOffset(theObject, theOffset):
+    anObj = TrsfOp.OffsetShapeCopy(theObject, theOffset)
+    RaiseIfFailed("OffsetShapeCopy", TrsfOp)
     return anObj
 
 # -----------------------------------------------------------------------------
 # Patterns
 # -----------------------------------------------------------------------------
 
-def MakeMultiTranslation1D(aShape,aDir,aStep,aNbTimes):
-    anObj = geom.MakeMultiTranslation1D(aShape,aDir,aStep,aNbTimes)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Translate the given object along the given vector a given number times
+#  @param theObject The object to be translated.
+#  @param theVector Direction of the translation.
+#  @param theStep Distance to translate on.
+#  @param theNbTimes Quantity of translations to be done.
+#  @return New GEOM_Object, containing compound of all
+#          the shapes, obtained after each translation.
+#
+#  Example: see GEOM_TestAll.py
+def MakeMultiTranslation1D(theObject, theVector, theStep, theNbTimes):
+    anObj = TrsfOp.MultiTranslate1D(theObject, theVector, theStep, theNbTimes)
+    RaiseIfFailed("MultiTranslate1D", TrsfOp)
     return anObj
 
-def MakeMultiTranslation2D(aShape,d1,step1,nbtimes1,d2,step2,nbtimes2):
-    anObj = geom.MakeMultiTranslation2D(aShape,d1,step1,nbtimes1,d2,step2,nbtimes2)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Conseqently apply two specified translations to theObject specified number of times.
+#  @param theObject The object to be translated.
+#  @param theVector1 Direction of the first translation.
+#  @param theStep1 Step of the first translation.
+#  @param theNbTimes1 Quantity of translations to be done along theVector1.
+#  @param theVector2 Direction of the second translation.
+#  @param theStep2 Step of the second translation.
+#  @param theNbTimes2 Quantity of translations to be done along theVector2.
+#  @return New GEOM_Object, containing compound of all
+#          the shapes, obtained after each translation.
+#
+#  Example: see GEOM_TestAll.py
+def MakeMultiTranslation2D(theObject, theVector1, theStep1, theNbTimes1,
+                                     theVector2, theStep2, theNbTimes2):
+    anObj = TrsfOp.MultiTranslate2D(theObject, theVector1, theStep1, theNbTimes1,
+                                              theVector2, theStep2, theNbTimes2)
+    RaiseIfFailed("MultiTranslate2D", TrsfOp)
     return anObj
 
+## Rotate the given object around the given axis a given number times.
+#  Rotation angle will be 2*PI/theNbTimes.
+#  @param theObject The object to be rotated.
+#  @param theAxis The rotation axis.
+#  @param theNbTimes Quantity of rotations to be done.
+#  @return New GEOM_Object, containing compound of all the
+#          shapes, obtained after each rotation.
+#
+#  Example: see GEOM_TestAll.py
+def MultiRotate1D(theObject, theAxis, theNbTimes):
+    anObj = TrsfOp.MultiRotate1D(theObject, theAxis, theNbTimes)
+    RaiseIfFailed("MultiRotate1D", TrsfOp)
+    return anObj
+
+## Rotate the given object around the
+#  given axis on the given angle a given number
+#  times and multi-translate each rotation result.
+#  Translation direction passes through center of gravity
+#  of rotated shape and its projection on the rotation axis.
+#  @param theObject The object to be rotated.
+#  @param theAxis Rotation axis.
+#  @param theAngle Rotation angle in graduces.
+#  @param theNbTimes1 Quantity of rotations to be done.
+#  @param theStep Translation distance.
+#  @param theNbTimes2 Quantity of translations to be done.
+#  @return New GEOM_Object, containing compound of all the
+#          shapes, obtained after each transformation.
+#
+#  Example: see GEOM_TestAll.py
+def MultiRotate2D(theObject, theAxis, theAngle, theNbTimes1, theStep, theNbTimes2):
+    anObj = TrsfOp.MultiRotate2D(theObject, theAxis, theAngle, theNbTimes1, theStep, theNbTimes2)
+    RaiseIfFailed("MultiRotate2D", TrsfOp)
+    return anObj
+
+## The same, as MultiRotate1D(), but axis is given by direction and point
+#
+#  Example: see GEOM_TestOthers.py
 def MakeMultiRotation1D(aShape,aDir,aPoint,aNbTimes):
-    anObj = geom.MakeMultiRotation1D(aShape,aDir,aPoint,aNbTimes)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+    aVec = MakeLine(aPoint,aDir)
+    anObj = MultiRotate1D(aShape,aVec,aNbTimes)
     return anObj
 
+## The same, as MultiRotate2D(), but axis is given by direction and point
+#
+#  Example: see GEOM_TestOthers.py
 def MakeMultiRotation2D(aShape,aDir,aPoint,anAngle,nbtimes1,aStep,nbtimes2):
-    anObj = geom.MakeMultiRotation2D(aShape,aDir,aPoint,anAngle,nbtimes1,aStep,nbtimes2)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+    aVec = MakeLine(aPoint,aDir)
+    anObj = MultiRotate2D(aShape,aVec,anAngle,nbtimes1,aStep,nbtimes2)
+    return anObj
+
+# -----------------------------------------------------------------------------
+# Local operations
+# -----------------------------------------------------------------------------
+
+## Perform a fillet on all edges of the given shape.
+#  @param theShape Shape, to perform fillet on.
+#  @param theR Fillet radius.
+#  @return New GEOM_Object, containing the result shape.
+#
+#  Example: see GEOM_TestOthers.py
+def MakeFilletAll(theShape, theR):
+    anObj = LocalOp.MakeFilletAll(theShape, theR)
+    RaiseIfFailed("MakeFilletAll", LocalOp)
+    return anObj
+
+## Perform a fillet on the specified edges/faces of the given shape
+#  @param theShape Shape, to perform fillet on.
+#  @param theR Fillet radius.
+#  @param theShapeType Type of shapes in <theListShapes>.
+#  @param theListShapes Global indices of edges/faces to perform fillet on.
+#    \note Global index of sub-shape can be obtained, using method geompy.GetSubShapeID().
+#  @return New GEOM_Object, containing the result shape.
+#
+#  Example: see GEOM_TestAll.py
+def MakeFillet(theShape, theR, theShapeType, theListShapes):
+    anObj = None
+    if theShapeType == ShapeType["EDGE"]:
+        anObj = LocalOp.MakeFilletEdges(theShape, theR, theListShapes)
+        RaiseIfFailed("MakeFilletEdges", LocalOp)
+    else:
+        anObj = LocalOp.MakeFilletFaces(theShape, theR, theListShapes)
+        RaiseIfFailed("MakeFilletFaces", LocalOp)
+    return anObj
+
+## The same but with two Fillet Radius R1 and R2
+def MakeFilletR1R2(theShape, theR1, theR2, theShapeType, theListShapes):
+    anObj = None
+    if theShapeType == ShapeType["EDGE"]:
+        anObj = LocalOp.MakeFilletEdgesR1R2(theShape, theR1, theR2, theListShapes)
+        RaiseIfFailed("MakeFilletEdgesR1R2", LocalOp)
+    else:
+        anObj = LocalOp.MakeFilletFacesR1R2(theShape, theR1, theR2, theListShapes)
+        RaiseIfFailed("MakeFilletFacesR1R2", LocalOp)
+    return anObj
+
+## Perform a symmetric chamfer on all edges of the given shape.
+#  @param theShape Shape, to perform chamfer on.
+#  @param theD Chamfer size along each face.
+#  @return New GEOM_Object, containing the result shape.
+#
+#  Example: see GEOM_TestOthers.py
+def MakeChamferAll(theShape, theD):
+    anObj = LocalOp.MakeChamferAll(theShape, theD)
+    RaiseIfFailed("MakeChamferAll", LocalOp)
+    return anObj
+
+## Perform a chamfer on edges, common to the specified faces,
+#  with distance D1 on the Face1
+#  @param theShape Shape, to perform chamfer on.
+#  @param theD1 Chamfer size along \a theFace1.
+#  @param theD2 Chamfer size along \a theFace2.
+#  @param theFace1,theFace2 Global indices of two faces of \a theShape.
+#    \note Global index of sub-shape can be obtained, using method geompy.GetSubShapeID().
+#  @return New GEOM_Object, containing the result shape.
+#
+#  Example: see GEOM_TestAll.py
+def MakeChamferEdge(theShape, theD1, theD2, theFace1, theFace2):
+    anObj = LocalOp.MakeChamferEdge(theShape, theD1, theD2, theFace1, theFace2)
+    RaiseIfFailed("MakeChamferEdge", LocalOp)
+    return anObj
+
+## The Same chamfer but with params theD is chamfer lenght and
+#  theAngle is Angle of chamfer (angle in radians)
+def MakeChamferEdgeAD(theShape, theD, theAngle, theFace1, theFace2):
+    anObj = LocalOp.MakeChamferEdgeAD(theShape, theD, theAngle, theFace1, theFace2)
+    RaiseIfFailed("MakeChamferEdgeAD", LocalOp)
+    return anObj
+
+## Perform a chamfer on all edges of the specified faces,
+#  with distance D1 on the first specified face (if several for one edge)
+#  @param theShape Shape, to perform chamfer on.
+#  @param theD1 Chamfer size along face from \a theFaces. If both faces,
+#               connected to the edge, are in \a theFaces, \a theD1
+#               will be get along face, which is nearer to \a theFaces beginning.
+#  @param theD2 Chamfer size along another of two faces, connected to the edge.
+#  @param theFaces Sequence of global indices of faces of \a theShape.
+#    \note Global index of sub-shape can be obtained, using method geompy.GetSubShapeID().
+#  @return New GEOM_Object, containing the result shape.
+#
+#  Example: see GEOM_TestAll.py
+def MakeChamferFaces(theShape, theD1, theD2, theFaces):
+    anObj = LocalOp.MakeChamferFaces(theShape, theD1, theD2, theFaces)
+    RaiseIfFailed("MakeChamferFaces", LocalOp)
+    return anObj
+
+## The Same chamfer but with params theD is chamfer lenght and
+#  theAngle is Angle of chamfer (angle in radians)
+def MakeChamferFacesAD(theShape, theD, theAngle, theFaces):
+    anObj = LocalOp.MakeChamferFacesAD(theShape, theD, theAngle, theFaces)
+    RaiseIfFailed("MakeChamferFacesAD", LocalOp)
+    return anObj
+
+## Perform a chamfer on edges,
+#  with distance D1 on the first specified face (if several for one edge)
+#  @param theShape Shape, to perform chamfer on.
+#  @param theD1 and theD2 Chamfer size 
+#  @param theEdges Sequence of edges of \a theShape.
+#  @return New GEOM_Object, containing the result shape.
+#
+#  Example:
+def MakeChamferEdges(theShape, theD1, theD2, theEdges):
+    anObj = LocalOp.MakeChamferEdges(theShape, theD1, theD2, theEdges)
+    RaiseIfFailed("MakeChamferEdges", LocalOp)
+    return anObj
+
+## The Same chamfer but with params theD is chamfer lenght and
+#  theAngle is Angle of chamfer (angle in radians)
+def MakeChamferEdgesAD(theShape, theD, theAngle, theEdges):
+    anObj = LocalOp.MakeChamferEdgesAD(theShape, theD, theAngle, theEdges)
+    RaiseIfFailed("MakeChamferEdgesAD", LocalOp)
+    return anObj
+
+## Shortcut to MakeChamferEdge() and MakeChamferFaces()
+#
+#  Example: see GEOM_TestOthers.py
+def MakeChamfer(aShape,d1,d2,aShapeType,ListShape):
+    anObj = None
+    if aShapeType == ShapeType["EDGE"]:
+        anObj = MakeChamferEdge(aShape,d1,d2,ListShape[0],ListShape[1])
+    else:
+        anObj = MakeChamferFaces(aShape,d1,d2,ListShape)
+    return anObj
+
+## Perform an Archimde operation on the given shape with given parameters.
+#  The object presenting the resulting face is returned.
+#  @param theShape Shape to be put in water.
+#  @param theWeight Weight og the shape.
+#  @param theWaterDensity Density of the water.
+#  @param theMeshDeflection Deflection of the mesh, using to compute the section.
+#  @return New GEOM_Object, containing a section of \a theShape
+#          by a plane, corresponding to water level.
+#
+#  Example: see GEOM_TestAll.py
+def Archimede(theShape, theWeight, theWaterDensity, theMeshDeflection):
+    anObj = LocalOp.MakeArchimede(theShape, theWeight, theWaterDensity, theMeshDeflection)
+    RaiseIfFailed("MakeArchimede", LocalOp)
     return anObj
 
 # -----------------------------------------------------------------------------
-# Import objects
+# Information objects
 # -----------------------------------------------------------------------------
 
-def ImportBREP(filename):
-    anObj = geom.ImportBREP(filename)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Get point coordinates
+#  @return [x, y, z]
+#
+#  Example: see GEOM_TestMeasures.py
+def PointCoordinates(Point):
+    aTuple = MeasuOp.PointCoordinates(Point)
+    RaiseIfFailed("PointCoordinates", MeasuOp)
+    return aTuple
+
+## Get summarized length of all wires,
+#  area of surface and volume of the given shape.
+#  @param theShape Shape to define properties of.
+#  @return [theLength, theSurfArea, theVolume]
+#  theLength:   Summarized length of all wires of the given shape.
+#  theSurfArea: Area of surface of the given shape.
+#  theVolume:   Volume of the given shape.
+#
+#  Example: see GEOM_TestMeasures.py
+def BasicProperties(theShape):
+    aTuple = MeasuOp.GetBasicProperties(theShape)
+    RaiseIfFailed("GetBasicProperties", MeasuOp)
+    return aTuple
+
+## Get parameters of bounding box of the given shape
+#  @param theShape Shape to obtain bounding box of.
+#  @return [Xmin,Xmax, Ymin,Ymax, Zmin,Zmax]
+#  Xmin,Xmax: Limits of shape along OX axis.
+#  Ymin,Ymax: Limits of shape along OY axis.
+#  Zmin,Zmax: Limits of shape along OZ axis.
+#
+#  Example: see GEOM_TestMeasures.py
+def BoundingBox(theShape):
+    aTuple = MeasuOp.GetBoundingBox(theShape)
+    RaiseIfFailed("GetBoundingBox", MeasuOp)
+    return aTuple
+
+## Get inertia matrix and moments of inertia of theShape.
+#  @param theShape Shape to calculate inertia of.
+#  @return [I11,I12,I13, I21,I22,I23, I31,I32,I33, Ix,Iy,Iz]
+#  I(1-3)(1-3): Components of the inertia matrix of the given shape.
+#  Ix,Iy,Iz:    Moments of inertia of the given shape.
+#
+#  Example: see GEOM_TestMeasures.py
+def Inertia(theShape):
+    aTuple = MeasuOp.GetInertia(theShape)
+    RaiseIfFailed("GetInertia", MeasuOp)
+    return aTuple
+
+## Get minimal distance between the given shapes.
+#  @param theShape1,theShape2 Shapes to find minimal distance between.
+#  @return Value of the minimal distance between the given shapes.
+#
+#  Example: see GEOM_TestMeasures.py
+def MinDistance(theShape1, theShape2):
+    aTuple = MeasuOp.GetMinDistance(theShape1, theShape2)
+    RaiseIfFailed("GetMinDistance", MeasuOp)
+    return aTuple[0]
+
+## Get minimal distance between the given shapes.
+#  @param theShape1,theShape2 Shapes to find minimal distance between.
+#  @return Value of the minimal distance between the given shapes.
+#
+#  Example: see GEOM_TestMeasures.py
+def MinDistanceComponents(theShape1, theShape2):
+    aTuple = MeasuOp.GetMinDistance(theShape1, theShape2)
+    RaiseIfFailed("GetMinDistance", MeasuOp)
+    aRes = [aTuple[0], aTuple[4] - aTuple[1], aTuple[5] - aTuple[2], aTuple[6] - aTuple[3]]
+    return aRes
+
+## Get angle between the given shapes.
+#  @param theShape1,theShape2 Lines or linear edges to find angle between.
+#  @return Value of the angle between the given shapes.
+#
+#  Example: see GEOM_TestMeasures.py
+def GetAngle(theShape1, theShape2):
+    anAngle = MeasuOp.GetAngle(theShape1, theShape2)
+    RaiseIfFailed("GetAngle", MeasuOp)
+    return anAngle
+
+## Get min and max tolerances of sub-shapes of theShape
+#  @param theShape Shape, to get tolerances of.
+#  @return [FaceMin,FaceMax, EdgeMin,EdgeMax, VertMin,VertMax]
+#  FaceMin,FaceMax: Min and max tolerances of the faces.
+#  EdgeMin,EdgeMax: Min and max tolerances of the edges.
+#  VertMin,VertMax: Min and max tolerances of the vertices.
+#
+#  Example: see GEOM_TestMeasures.py
+def Tolerance(theShape):
+    aTuple = MeasuOp.GetTolerance(theShape)
+    RaiseIfFailed("GetTolerance", MeasuOp)
+    return aTuple
+
+## Obtain description of the given shape (number of sub-shapes of each type)
+#  @param theShape Shape to be described.
+#  @return Description of the given shape.
+#
+#  Example: see GEOM_TestMeasures.py
+def WhatIs(theShape):
+    aDescr = MeasuOp.WhatIs(theShape)
+    RaiseIfFailed("WhatIs", MeasuOp)
+    return aDescr
+
+## Get a point, situated at the centre of mass of theShape.
+#  @param theShape Shape to define centre of mass of.
+#  @return New GEOM_Object, containing the created point.
+#
+#  Example: see GEOM_TestMeasures.py
+def MakeCDG(theShape):
+    anObj = MeasuOp.GetCentreOfMass(theShape)
+    RaiseIfFailed("GetCentreOfMass", MeasuOp)
     return anObj
 
-def ImportIGES(filename):
-    anObj = geom.ImportIGES(filename)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Get a normale to the given face. If the point is not given,
+#  the normale is calculated at the center of mass.
+#  @param theFace Face to define normale of.
+#  @param theOptionalPoint Point to compute the normale at.
+#  @return New GEOM_Object, containing the created vector.
+#
+#  Example: see GEOM_TestMeasures.py
+def GetNormal(theFace, theOptionalPoint = None):
+    anObj = MeasuOp.GetNormal(theFace, theOptionalPoint)
+    RaiseIfFailed("GetNormal", MeasuOp)
     return anObj
 
-def ImportSTEP(filename):
-    anObj = geom.ImportSTEP(filename)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Check a topology of the given shape.
+#  @param theShape Shape to check validity of.
+#  @param theIsCheckGeom If FALSE, only the shape's topology will be checked,
+#                        if TRUE, the shape's geometry will be checked also.
+#  @return TRUE, if the shape "seems to be valid".
+#  If theShape is invalid, prints a description of problem.
+#
+#  Example: see GEOM_TestMeasures.py
+def CheckShape(theShape, theIsCheckGeom = 0):
+    if theIsCheckGeom:
+        (IsValid, Status) = MeasuOp.CheckShapeWithGeometry(theShape)
+        RaiseIfFailed("CheckShapeWithGeometry", MeasuOp)
+    else:
+        (IsValid, Status) = MeasuOp.CheckShape(theShape)
+        RaiseIfFailed("CheckShape", MeasuOp)
+    if IsValid == 0:
+        print Status
+    return IsValid
+
+## Get position (LCS) of theShape.
+#
+#  Origin of the LCS is situated at the shape's center of mass.
+#  Axes of the LCS are obtained from shape's location or,
+#  if the shape is a planar face, from position of its plane.
+#
+#  @param theShape Shape to calculate position of.
+#  @return [Ox,Oy,Oz, Zx,Zy,Zz, Xx,Xy,Xz].
+#          Ox,Oy,Oz: Coordinates of shape's LCS origin.
+#          Zx,Zy,Zz: Coordinates of shape's LCS normal(main) direction.
+#          Xx,Xy,Xz: Coordinates of shape's LCS X direction.
+#
+#  Example: see GEOM_TestMeasures.py
+def GetPosition(theShape):
+    aTuple = MeasuOp.GetPosition(theShape)
+    RaiseIfFailed("GetPosition", MeasuOp)
+    return aTuple
+
+## Get kind of theShape.
+#
+#  @param theShape Shape to get a kind of.
+#  @return Returns a kind of shape in terms of <VAR>GEOM_IKindOfShape.shape_kind</VAR> enumeration
+#          and a list of parameters, describing the shape.
+#  @note  Concrete meaning of each value, returned via \a theIntegers
+#         or \a theDoubles list depends on the kind of the shape.
+#         The full list of possible outputs is:
+#
+#  geompy.kind.COMPOUND              nb_solids  nb_faces  nb_edges  nb_vertices
+#  geompy.kind.COMPSOLID             nb_solids  nb_faces  nb_edges  nb_vertices
+#
+#  geompy.kind.SHELL       geompy.info.CLOSED   nb_faces  nb_edges  nb_vertices
+#  geompy.kind.SHELL       geompy.info.UNCLOSED nb_faces  nb_edges  nb_vertices
+#
+#  geompy.kind.WIRE        geompy.info.CLOSED             nb_edges  nb_vertices
+#  geompy.kind.WIRE        geompy.info.UNCLOSED           nb_edges  nb_vertices
+#
+#  geompy.kind.SPHERE       xc yc zc            R
+#  geompy.kind.CYLINDER     xb yb zb  dx dy dz  R         H
+#  geompy.kind.BOX          xc yc zc                      ax ay az
+#  geompy.kind.ROTATED_BOX  xc yc zc  zx zy zz  xx xy xz  ax ay az
+#  geompy.kind.TORUS        xc yc zc  dx dy dz  R_1  R_2
+#  geompy.kind.CONE         xb yb zb  dx dy dz  R_1  R_2  H
+#  geompy.kind.POLYHEDRON                       nb_faces  nb_edges  nb_vertices
+#  geompy.kind.SOLID                            nb_faces  nb_edges  nb_vertices
+#
+#  geompy.kind.SPHERE2D     xc yc zc            R
+#  geompy.kind.CYLINDER2D   xb yb zb  dx dy dz  R         H
+#  geompy.kind.TORUS2D      xc yc zc  dx dy dz  R_1  R_2
+#  geompy.kind.CONE2D       xc yc zc  dx dy dz  R_1  R_2  H
+#  geompy.kind.DISK_CIRCLE  xc yc zc  dx dy dz  R
+#  geompy.kind.DISK_ELLIPSE xc yc zc  dx dy dz  R_1  R_2
+#  geompy.kind.POLYGON      xo yo zo  dx dy dz            nb_edges  nb_vertices
+#  geompy.kind.PLANE        xo yo zo  dx dy dz
+#  geompy.kind.PLANAR       xo yo zo  dx dy dz            nb_edges  nb_vertices
+#  geompy.kind.FACE                                       nb_edges  nb_vertices
+#
+#  geompy.kind.CIRCLE       xc yc zc  dx dy dz  R
+#  geompy.kind.ARC_CIRCLE   xc yc zc  dx dy dz  R         x1 y1 z1  x2 y2 z2
+#  geompy.kind.ELLIPSE      xc yc zc  dx dy dz  R_1  R_2
+#  geompy.kind.ARC_ELLIPSE  xc yc zc  dx dy dz  R_1  R_2  x1 y1 z1  x2 y2 z2
+#  geompy.kind.LINE         xo yo zo  dx dy dz
+#  geompy.kind.SEGMENT      x1 y1 z1  x2 y2 z2
+#  geompy.kind.EDGE                                                 nb_vertices
+#
+#  geompy.kind.VERTEX       x  y  z
+#
+#  Example: see GEOM_TestMeasures.py
+def KindOfShape(theShape):
+    aRoughTuple = MeasuOp.KindOfShape(theShape)
+    RaiseIfFailed("KindOfShape", MeasuOp)
+
+    aKind  = aRoughTuple[0]
+    anInts = aRoughTuple[1]
+    aDbls  = aRoughTuple[2]
+
+    # Now there is no exception from this rule:
+    aKindTuple = [aKind] + aDbls + anInts
+
+    # If they are we will regroup parameters for such kind of shape.
+    # For example:
+    #if aKind == kind.SOME_KIND:
+    #    #  SOME_KIND     int int double int double double
+    #    aKindTuple = [aKind, anInts[0], anInts[1], aDbls[0], anInts[2], aDbls[1], aDbls[2]]
+
+    return aKindTuple
+
+# -----------------------------------------------------------------------------
+# Import/Export objects
+# -----------------------------------------------------------------------------
+
+## Import a shape from the BREP or IGES or STEP file
+#  (depends on given format) with given name.
+#  @param theFileName The file, containing the shape.
+#  @param theFormatName Specify format for the file reading.
+#         Available formats can be obtained with InsertOp.ImportTranslators() method.
+#  @return New GEOM_Object, containing the imported shape.
+#
+#  Example: see GEOM_TestOthers.py
+def Import(theFileName, theFormatName):
+    anObj = InsertOp.Import(theFileName, theFormatName)
+    RaiseIfFailed("Import", InsertOp)
     return anObj
 
+## Shortcut to Import() for BREP format
+#
+#  Example: see GEOM_TestOthers.py
+def ImportBREP(theFileName):
+    return Import(theFileName, "BREP")
+
+## Shortcut to Import() for IGES format
+#
+#  Example: see GEOM_TestOthers.py
+def ImportIGES(theFileName):
+    return Import(theFileName, "IGES")
+
+## Shortcut to Import() for STEP format
+#
+#  Example: see GEOM_TestOthers.py
+def ImportSTEP(theFileName):
+    return Import(theFileName, "STEP")
+
+## Export the given shape into a file with given name.
+#  @param theObject Shape to be stored in the file.
+#  @param theFileName Name of the file to store the given shape in.
+#  @param theFormatName Specify format for the shape storage.
+#         Available formats can be obtained with InsertOp.ImportTranslators() method.
+#
+#  Example: see GEOM_TestOthers.py
+def Export(theObject, theFileName, theFormatName):
+    InsertOp.Export(theObject, theFileName, theFormatName)
+    RaiseIfFailed("Export", InsertOp)
+
+## Shortcut to Export() for BREP format
+#
+#  Example: see GEOM_TestOthers.py
+def ExportBREP(theObject, theFileName):
+    return Export(theObject, theFileName, "BREP")
+
+## Shortcut to Export() for IGES format
+#
+#  Example: see GEOM_TestOthers.py
+def ExportIGES(theObject, theFileName):
+    return Export(theObject, theFileName, "IGES")
+
+## Shortcut to Export() for STEP format
+#
+#  Example: see GEOM_TestOthers.py
+def ExportSTEP(theObject, theFileName):
+    return Export(theObject, theFileName, "STEP")
+
 # -----------------------------------------------------------------------------
-# Export objects
+# Block operations
 # -----------------------------------------------------------------------------
-def ExportBREP(filename,aShape):
-    geom.ExportBREP(filename,aShape)
 
-def ExportIGES(filename,aShape):
-    geom.ExportIGES(filename,aShape)
+## Create a quadrangle face from four edges. Order of Edges is not
+#  important. It is  not necessary that edges share the same vertex.
+#  @param E1,E2,E3,E4 Edges for the face bound.
+#  @return New GEOM_Object, containing the created face.
+#
+#  Example: see GEOM_Spanner.py
+def MakeQuad(E1, E2, E3, E4):
+    anObj = BlocksOp.MakeQuad(E1, E2, E3, E4)
+    RaiseIfFailed("MakeQuad", BlocksOp)
+    return anObj
 
-def ExportSTEP(filename,aShape):
-    geom.ExportSTEP(filename,aShape)
+## Create a quadrangle face on two edges.
+#  The missing edges will be built by creating the shortest ones.
+#  @param E1,E2 Two opposite edges for the face.
+#  @return New GEOM_Object, containing the created face.
+#
+#  Example: see GEOM_Spanner.py
+def MakeQuad2Edges(E1, E2):
+    anObj = BlocksOp.MakeQuad2Edges(E1, E2)
+    RaiseIfFailed("MakeQuad2Edges", BlocksOp)
+    return anObj
+
+## Create a quadrangle face with specified corners.
+#  The missing edges will be built by creating the shortest ones.
+#  @param V1,V2,V3,V4 Corner vertices for the face.
+#  @return New GEOM_Object, containing the created face.
+#
+#  Example: see GEOM_Spanner.py
+def MakeQuad4Vertices(V1, V2, V3, V4):
+    anObj = BlocksOp.MakeQuad4Vertices(V1, V2, V3, V4)
+    RaiseIfFailed("MakeQuad4Vertices", BlocksOp)
+    return anObj
+
+## Create a hexahedral solid, bounded by the six given faces. Order of
+#  faces is not important. It is  not necessary that Faces share the same edge.
+#  @param F1,F2,F3,F4,F5,F6 Faces for the hexahedral solid.
+#  @return New GEOM_Object, containing the created solid.
+#
+#  Example: see GEOM_Spanner.py
+def MakeHexa(F1, F2, F3, F4, F5, F6):
+    anObj = BlocksOp.MakeHexa(F1, F2, F3, F4, F5, F6)
+    RaiseIfFailed("MakeHexa", BlocksOp)
+    return anObj
+
+## Create a hexahedral solid between two given faces.
+#  The missing faces will be built by creating the smallest ones.
+#  @param F1,F2 Two opposite faces for the hexahedral solid.
+#  @return New GEOM_Object, containing the created solid.
+#
+#  Example: see GEOM_Spanner.py
+def MakeHexa2Faces(F1, F2):
+    anObj = BlocksOp.MakeHexa2Faces(F1, F2)
+    RaiseIfFailed("MakeHexa2Faces", BlocksOp)
+    return anObj
+
+## Get a vertex, found in the given shape by its coordinates.
+#  @param theShape Block or a compound of blocks.
+#  @param theX,theY,theZ Coordinates of the sought vertex.
+#  @param theEpsilon Maximum allowed distance between the resulting
+#                    vertex and point with the given coordinates.
+#  @return New GEOM_Object, containing the found vertex.
+#
+#  Example: see GEOM_TestOthers.py
+def GetPoint(theShape, theX, theY, theZ, theEpsilon):
+    anObj = BlocksOp.GetPoint(theShape, theX, theY, theZ, theEpsilon)
+    RaiseIfFailed("GetPoint", BlocksOp)
+    return anObj
+
+## Get an edge, found in the given shape by two given vertices.
+#  @param theShape Block or a compound of blocks.
+#  @param thePoint1,thePoint2 Points, close to the ends of the desired edge.
+#  @return New GEOM_Object, containing the found edge.
+#
+#  Example: see GEOM_Spanner.py
+def GetEdge(theShape, thePoint1, thePoint2):
+    anObj = BlocksOp.GetEdge(theShape, thePoint1, thePoint2)
+    RaiseIfFailed("GetEdge", BlocksOp)
+    return anObj
+
+## Find an edge of the given shape, which has minimal distance to the given point.
+#  @param theShape Block or a compound of blocks.
+#  @param thePoint Point, close to the desired edge.
+#  @return New GEOM_Object, containing the found edge.
+#
+#  Example: see GEOM_TestOthers.py
+def GetEdgeNearPoint(theShape, thePoint):
+    anObj = BlocksOp.GetEdgeNearPoint(theShape, thePoint)
+    RaiseIfFailed("GetEdgeNearPoint", BlocksOp)
+    return anObj
+
+## Returns a face, found in the given shape by four given corner vertices.
+#  @param theShape Block or a compound of blocks.
+#  @param thePoint1-thePoint4 Points, close to the corners of the desired face.
+#  @return New GEOM_Object, containing the found face.
+#
+#  Example: see GEOM_Spanner.py
+def GetFaceByPoints(theShape, thePoint1, thePoint2, thePoint3, thePoint4):
+    anObj = BlocksOp.GetFaceByPoints(theShape, thePoint1, thePoint2, thePoint3, thePoint4)
+    RaiseIfFailed("GetFaceByPoints", BlocksOp)
+    return anObj
+
+## Get a face of block, found in the given shape by two given edges.
+#  @param theShape Block or a compound of blocks.
+#  @param theEdge1,theEdge2 Edges, close to the edges of the desired face.
+#  @return New GEOM_Object, containing the found face.
+#
+#  Example: see GEOM_Spanner.py
+def GetFaceByEdges(theShape, theEdge1, theEdge2):
+    anObj = BlocksOp.GetFaceByEdges(theShape, theEdge1, theEdge2)
+    RaiseIfFailed("GetFaceByEdges", BlocksOp)
+    return anObj
+
+## Find a face, opposite to the given one in the given block.
+#  @param theBlock Must be a hexahedral solid.
+#  @param theFace Face of \a theBlock, opposite to the desired face.
+#  @return New GEOM_Object, containing the found face.
+#
+#  Example: see GEOM_Spanner.py
+def GetOppositeFace(theBlock, theFace):
+    anObj = BlocksOp.GetOppositeFace(theBlock, theFace)
+    RaiseIfFailed("GetOppositeFace", BlocksOp)
+    return anObj
+
+## Find a face of the given shape, which has minimal distance to the given point.
+#  @param theShape Block or a compound of blocks.
+#  @param thePoint Point, close to the desired face.
+#  @return New GEOM_Object, containing the found face.
+#
+#  Example: see GEOM_Spanner.py
+def GetFaceNearPoint(theShape, thePoint):
+    anObj = BlocksOp.GetFaceNearPoint(theShape, thePoint)
+    RaiseIfFailed("GetFaceNearPoint", BlocksOp)
+    return anObj
+
+## Find a face of block, whose outside normale has minimal angle with the given vector.
+#  @param theShape Block or a compound of blocks.
+#  @param theVector Vector, close to the normale of the desired face.
+#  @return New GEOM_Object, containing the found face.
+#
+#  Example: see GEOM_Spanner.py
+def GetFaceByNormale(theBlock, theVector):
+    anObj = BlocksOp.GetFaceByNormale(theBlock, theVector)
+    RaiseIfFailed("GetFaceByNormale", BlocksOp)
+    return anObj
+
+## Check, if the compound of blocks is given.
+#  To be considered as a compound of blocks, the
+#  given shape must satisfy the following conditions:
+#  - Each element of the compound should be a Block (6 faces and 12 edges).
+#  - A connection between two Blocks should be an entire quadrangle face or an entire edge.
+#  - The compound should be connexe.
+#  - The glue between two quadrangle faces should be applied.
+#  @param theCompound The compound to check.
+#  @return TRUE, if the given shape is a compound of blocks.
+#  If theCompound is not valid, prints all discovered errors.
+#
+#  Example: see GEOM_Spanner.py
+def CheckCompoundOfBlocks(theCompound):
+    (IsValid, BCErrors) = BlocksOp.CheckCompoundOfBlocks(theCompound)
+    RaiseIfFailed("CheckCompoundOfBlocks", BlocksOp)
+    if IsValid == 0:
+        Descr = BlocksOp.PrintBCErrors(theCompound, BCErrors)
+        print Descr
+    return IsValid
+
+## Remove all seam and degenerated edges from \a theShape.
+#  Unite faces and edges, sharing one surface. It means that
+#  this faces must have references to one C++ surface object (handle).
+#  @param theShape The compound or single solid to remove irregular edges from.
+#  @return Improved shape.
+#
+#  Example: see GEOM_TestOthers.py
+def RemoveExtraEdges(theShape):
+    anObj = BlocksOp.RemoveExtraEdges(theShape)
+    RaiseIfFailed("RemoveExtraEdges", BlocksOp)
+    return anObj
+
+## Check, if the given shape is a blocks compound.
+#  Fix all detected errors.
+#    \note Single block can be also fixed by this method.
+#  @param theCompound The compound to check and improve.
+#  @return Improved compound.
+#
+#  Example: see GEOM_TestOthers.py
+def CheckAndImprove(theShape):
+    anObj = BlocksOp.CheckAndImprove(theShape)
+    RaiseIfFailed("CheckAndImprove", BlocksOp)
+    return anObj
+
+## Get all the blocks, contained in the given compound.
+#  @param theCompound The compound to explode.
+#  @param theMinNbFaces If solid has lower number of faces, it is not a block.
+#  @param theMaxNbFaces If solid has higher number of faces, it is not a block.
+#    \note If theMaxNbFaces = 0, the maximum number of faces is not restricted.
+#  @return List of GEOM_Objects, containing the retrieved blocks.
+#
+#  Example: see GEOM_TestOthers.py
+def MakeBlockExplode(theCompound, theMinNbFaces, theMaxNbFaces):
+    aList = BlocksOp.ExplodeCompoundOfBlocks(theCompound, theMinNbFaces, theMaxNbFaces)
+    RaiseIfFailed("ExplodeCompoundOfBlocks", BlocksOp)
+    return aList
+
+## Find block, containing the given point inside its volume or on boundary.
+#  @param theCompound Compound, to find block in.
+#  @param thePoint Point, close to the desired block. If the point lays on
+#         boundary between some blocks, we return block with nearest center.
+#  @return New GEOM_Object, containing the found block.
+#
+#  Example: see GEOM_Spanner.py
+def GetBlockNearPoint(theCompound, thePoint):
+    anObj = BlocksOp.GetBlockNearPoint(theCompound, thePoint)
+    RaiseIfFailed("GetBlockNearPoint", BlocksOp)
+    return anObj
+
+## Find block, containing all the elements, passed as the parts, or maximum quantity of them.
+#  @param theCompound Compound, to find block in.
+#  @param theParts List of faces and/or edges and/or vertices to be parts of the found block.
+#  @return New GEOM_Object, containing the found block.
+#
+#  Example: see GEOM_TestOthers.py
+def GetBlockByParts(theCompound, theParts):
+    anObj = BlocksOp.GetBlockByParts(theCompound, theParts)
+    RaiseIfFailed("GetBlockByParts", BlocksOp)
+    return anObj
+
+## Return all blocks, containing all the elements, passed as the parts.
+#  @param theCompound Compound, to find blocks in.
+#  @param theParts List of faces and/or edges and/or vertices to be parts of the found blocks.
+#  @return List of GEOM_Objects, containing the found blocks.
+#
+#  Example: see GEOM_Spanner.py
+def GetBlocksByParts(theCompound, theParts):
+    aList = BlocksOp.GetBlocksByParts(theCompound, theParts)
+    RaiseIfFailed("GetBlocksByParts", BlocksOp)
+    return aList
+
+## Multi-transformate block and glue the result.
+#  Transformation is defined so, as to superpose direction faces.
+#  @param Block Hexahedral solid to be multi-transformed.
+#  @param DirFace1 ID of First direction face.
+#  @param DirFace2 ID of Second direction face.
+#  @param NbTimes Quantity of transformations to be done.
+#    \note Unique ID of sub-shape can be obtained, using method GetSubShapeID().
+#  @return New GEOM_Object, containing the result shape.
+#
+#  Example: see GEOM_Spanner.py
+def MakeMultiTransformation1D(Block, DirFace1, DirFace2, NbTimes):
+    anObj = BlocksOp.MakeMultiTransformation1D(Block, DirFace1, DirFace2, NbTimes)
+    RaiseIfFailed("MakeMultiTransformation1D", BlocksOp)
+    return anObj
+
+## Multi-transformate block and glue the result.
+#  @param Block Hexahedral solid to be multi-transformed.
+#  @param DirFace1U,DirFace2U IDs of Direction faces for the first transformation.
+#  @param DirFace1V,DirFace2V IDs of Direction faces for the second transformation.
+#  @param NbTimesU,NbTimesV Quantity of transformations to be done.
+#  @return New GEOM_Object, containing the result shape.
+#
+#  Example: see GEOM_Spanner.py
+def MakeMultiTransformation2D(Block, DirFace1U, DirFace2U, NbTimesU,
+                                    DirFace1V, DirFace2V, NbTimesV):
+    anObj = BlocksOp.MakeMultiTransformation2D(Block, DirFace1U, DirFace2U, NbTimesU,
+                                                     DirFace1V, DirFace2V, NbTimesV)
+    RaiseIfFailed("MakeMultiTransformation2D", BlocksOp)
+    return anObj
+
+## Build all possible propagation groups.
+#  Propagation group is a set of all edges, opposite to one (main)
+#  edge of this group directly or through other opposite edges.
+#  Notion of Opposite Edge make sence only on quadrangle face.
+#  @param theShape Shape to build propagation groups on.
+#  @return List of GEOM_Objects, each of them is a propagation group.
+#
+#  Example: see GEOM_TestOthers.py
+def Propagate(theShape):
+    listChains = BlocksOp.Propagate(theShape)
+    RaiseIfFailed("Propagate", BlocksOp)
+    return listChains
 
 # -----------------------------------------------------------------------------
-# Information objects
+# Group operations
 # -----------------------------------------------------------------------------
 
-def MakeCDG(aShape):   
-    anObj = geom.MakeCDG(aShape)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Creates a new group which will store sub shapes of theMainShape
+#  @param theMainShape is a GEOM object on which the group is selected
+#  @param theShapeType defines a shape type of the group
+#  @return a newly created GEOM group
+#
+#  Example: see GEOM_TestOthers.py
+def CreateGroup(theMainShape, theShapeType):
+    anObj = GroupOp.CreateGroup(theMainShape, theShapeType)
+    RaiseIfFailed("CreateGroup", GroupOp)
     return anObj
 
-def Archimede(aShape,weight,WaterDensity,MeshingDeflection):   
-    anObj = geom.Archimede(aShape,weight,WaterDensity,MeshingDeflection)
-    ior = salome.orb.object_to_string(anObj)
-    anObj._set_Name(ior)
+## Adds a sub object with ID theSubShapeId to the group
+#  @param theGroup is a GEOM group to which the new sub shape is added
+#  @param theSubShapeID is a sub shape ID in the main object.
+#  \note Use method GetSubShapeID() to get an unique ID of the sub shape
+#
+#  Example: see GEOM_TestOthers.py
+def AddObject(theGroup, theSubShapeID):
+    GroupOp.AddObject(theGroup, theSubShapeID)
+    RaiseIfFailed("AddObject", GroupOp)
+
+## Removes a sub object with ID \a theSubShapeId from the group
+#  @param theGroup is a GEOM group from which the new sub shape is removed
+#  @param theSubShapeID is a sub shape ID in the main object.
+#  \note Use method GetSubShapeID() to get an unique ID of the sub shape
+#
+#  Example: see GEOM_TestOthers.py
+def RemoveObject(theGroup, theSubShapeID):
+    GroupOp.RemoveObject(theGroup, theSubShapeID)
+    RaiseIfFailed("RemoveObject", GroupOp)
+
+## Adds to the group all the given shapes. No errors, if some shapes are alredy included.
+#  @param theGroup is a GEOM group to which the new sub shapes are added.
+#  @param theSubShapes is a list of sub shapes to be added.
+#
+#  Example: see GEOM_TestOthers.py
+def UnionList (theGroup, theSubShapes):
+    GroupOp.UnionList(theGroup, theSubShapes)
+    RaiseIfFailed("UnionList", GroupOp)
+
+## Works like the above method, but argument
+#  theSubShapes here is a list of sub-shapes indices
+#
+#  Example: see GEOM_TestOthers.py
+def UnionIDs(theGroup, theSubShapes):
+    GroupOp.UnionIDs(theGroup, theSubShapes)
+    RaiseIfFailed("UnionIDs", GroupOp)
+
+## Removes from the group all the given shapes. No errors, if some shapes are not included.
+#  @param theGroup is a GEOM group from which the sub-shapes are removed.
+#  @param theSubShapes is a list of sub-shapes to be removed.
+#
+#  Example: see GEOM_TestOthers.py
+def DifferenceList (theGroup, theSubShapes):
+    GroupOp.DifferenceList(theGroup, theSubShapes)
+    RaiseIfFailed("DifferenceList", GroupOp)
+
+## Works like the above method, but argument
+#  theSubShapes here is a list of sub-shapes indices
+#
+#  Example: see GEOM_TestOthers.py
+def DifferenceIDs(theGroup, theSubShapes):
+    GroupOp.DifferenceIDs(theGroup, theSubShapes)
+    RaiseIfFailed("DifferenceIDs", GroupOp)
+
+## Returns a list of sub objects ID stored in the group
+#  @param theGroup is a GEOM group for which a list of IDs is requested
+#
+#  Example: see GEOM_TestOthers.py
+def GetObjectIDs(theGroup):
+    ListIDs = GroupOp.GetObjects(theGroup)
+    RaiseIfFailed("GetObjects", GroupOp)
+    return ListIDs
+
+## Returns a type of sub objects stored in the group
+#  @param theGroup is a GEOM group which type is returned.
+#
+#  Example: see GEOM_TestOthers.py
+def GetType(theGroup):
+    aType = GroupOp.GetType(theGroup)
+    RaiseIfFailed("GetType", GroupOp)
+    return aType
+
+## Returns a main shape associated with the group
+#  @param theGroup is a GEOM group for which a main shape object is requested
+#  @return a GEOM object which is a main shape for theGroup
+#
+#  Example: see GEOM_TestOthers.py
+def GetMainShape(theGroup):
+    anObj = GroupOp.GetMainShape(theGroup)
+    RaiseIfFailed("GetMainShape", GroupOp)
     return anObj
 
-def CheckShape(aShape):        
-    Status = geom.CheckShape(aShape)
-    return Status
+## Create group of edges of theShape, whose length is in range [min_length, max_length].
+#  If include_min/max == 0, edges with length == min/max_length will not be included in result.
+def GetEdgesByLength (theShape, min_length, max_length, include_min = 1, include_max = 1):
+    edges = SubShapeAll(theShape, ShapeType["EDGE"])
+    edges_in_range = []
+    for edge in edges:
+        Props = BasicProperties(edge)
+       if min_length <= Props[0] and Props[0] <= max_length:
+           if (not include_min) and (min_length == Props[0]):
+               skip = 1
+            else:
+               if (not include_max) and (Props[0] == max_length):
+                   skip = 1
+                else:
+                   edges_in_range.append(edge)
+
+    if len(edges_in_range) <= 0:
+        print "No edges found by given criteria"
+       return 0
+
+    group_edges = CreateGroup(theShape, ShapeType["EDGE"])
+    UnionList(group_edges, edges_in_range)
+
+    return group_edges
+
+## Create group of edges of selected shape, whose length is in range [min_length, max_length].
+#  If include_min/max == 0, edges with length == min/max_length will not be included in result.
+def SelectEdges (min_length, max_length, include_min = 1, include_max = 1):
+    nb_selected = sg.SelectedCount()
+    if nb_selected < 1:
+        print "Select a shape before calling this function, please."
+       return 0
+    if nb_selected > 1:
+        print "Only one shape must be selected"
+       return 0
+
+    id_shape = sg.getSelected(0)
+    shape = IDToObject( id_shape )
+
+    group_edges = GetEdgesByLength(shape, min_length, max_length, include_min, include_max)
+
+    left_str  = " < "
+    right_str = " < "
+    if include_min: left_str  = " <= "
+    if include_max: right_str  = " <= "
+
+    addToStudyInFather(shape, group_edges, "Group of edges with " + `min_length`
+                      + left_str + "length" + right_str + `max_length`)
+
+    sg.updateObjBrowser(1)
+
+    return group_edges
+
+## Add Path to load python scripts from
+def addPath(Path):
+    if (sys.path.count(Path) < 1):
+       sys.path.append(Path)