// Copyright (C) 2017 CEA/DEN, EDF R&D // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // #define MEDCOUPLING_EXPORT #define INTERPKERNEL_EXPORT #define MEDCOUPLINGREMAPPER_EXPORT %newobject MEDCoupling::MEDCouplingRemapper::transferField; %newobject MEDCoupling::MEDCouplingRemapper::reverseTransferField; %{ #include "MEDCouplingRemapper.hxx" %} %include "InterpolationOptions.hxx" namespace MEDCoupling { typedef enum { IK_ONLY_PREFERED = 0, NOT_IK_ONLY_PREFERED = 1, IK_ONLY_FORCED = 2, NOT_IK_ONLY_FORCED =3 } InterpolationMatrixPolicy; class MEDCouplingRemapper : public TimeLabel, public INTERP_KERNEL::InterpolationOptions { private: void updateTime() const; public: MEDCouplingRemapper(); ~MEDCouplingRemapper(); int prepare(const MEDCouplingMesh *srcMesh, const MEDCouplingMesh *targetMesh, const std::string& method) throw(INTERP_KERNEL::Exception); int prepareEx(const MEDCouplingFieldTemplate *src, const MEDCouplingFieldTemplate *target) throw(INTERP_KERNEL::Exception); void transfer(const MEDCouplingFieldDouble *srcField, MEDCouplingFieldDouble *targetField, double dftValue) throw(INTERP_KERNEL::Exception); void partialTransfer(const MEDCouplingFieldDouble *srcField, MEDCouplingFieldDouble *targetField) throw(INTERP_KERNEL::Exception); void reverseTransfer(MEDCouplingFieldDouble *srcField, const MEDCouplingFieldDouble *targetField, double dftValue) throw(INTERP_KERNEL::Exception); MEDCouplingFieldDouble *transferField(const MEDCouplingFieldDouble *srcField, double dftValue) throw(INTERP_KERNEL::Exception); MEDCouplingFieldDouble *reverseTransferField(const MEDCouplingFieldDouble *targetField, double dftValue) throw(INTERP_KERNEL::Exception); bool setOptionInt(const std::string& key, int value) throw(INTERP_KERNEL::Exception); bool setOptionDouble(const std::string& key, double value) throw(INTERP_KERNEL::Exception); bool setOptionString(const std::string& key, const std::string& value) throw(INTERP_KERNEL::Exception); int getInterpolationMatrixPolicy() const throw(INTERP_KERNEL::Exception); void setInterpolationMatrixPolicy(int newInterpMatPol) throw(INTERP_KERNEL::Exception); // int nullifiedTinyCoeffInCrudeMatrixAbs(double maxValAbs) throw(INTERP_KERNEL::Exception); int nullifiedTinyCoeffInCrudeMatrix(double scaleFactor) throw(INTERP_KERNEL::Exception); double getMaxValueInCrudeMatrix() const throw(INTERP_KERNEL::Exception); int getNumberOfColsOfMatrix() const throw(INTERP_KERNEL::Exception); static std::string BuildMethodFrom(const std::string& meth1, const std::string& meth2) throw(INTERP_KERNEL::Exception); %extend { PyObject *getCrudeMatrix() const throw(INTERP_KERNEL::Exception) { const std::vector >& m=self->getCrudeMatrix(); std::size_t sz=m.size(); PyObject *ret=PyList_New(sz); for(std::size_t i=0;i& row=m[i]; PyObject *ret0=PyDict_New(); for(std::map::const_iterator it=row.begin();it!=row.end();it++) PyDict_SetItem(ret0,PyInt_FromLong((*it).first),PyFloat_FromDouble((*it).second)); PyList_SetItem(ret,i,ret0); } return ret; } #if defined(WITH_NUMPY) && defined(WITH_SCIPY) PyObject *getCrudeCSRMatrix() const throw(INTERP_KERNEL::Exception) { return ToCSRMatrix(self->getCrudeMatrix(),self->getNumberOfColsOfMatrix()); } #endif void setCrudeMatrix(const MEDCouplingMesh *srcMesh, const MEDCouplingMesh *targetMesh, const std::string& method, PyObject *m) throw(INTERP_KERNEL::Exception) { std::vector > mCpp; if(isCSRMatrix(m)) { #if defined(WITH_NUMPY) && defined(WITH_SCIPY) PyObject *indptr(PyObject_GetAttrString(m,"indptr")); PyObject *indices(PyObject_GetAttrString(m,"indices")); PyObject *data(PyObject_GetAttrString(m,"data")); MCAuto indptrPtr(MEDCoupling_DataArrayInt_New__SWIG_1(indptr,NULL,NULL)); MCAuto indicesPtr(MEDCoupling_DataArrayInt_New__SWIG_1(indices,NULL,NULL)); MCAuto dataPtr(MEDCoupling_DataArrayDouble_New__SWIG_1(data,NULL,NULL)); convertCSR_MCDataToVectMapIntDouble(indptrPtr,indicesPtr,dataPtr,mCpp); Py_XDECREF(data); Py_XDECREF(indptr); Py_XDECREF(indices); #else throw INTERP_KERNEL::Exception("pywrap of MEDCouplingRemapper::setCrudeMatrix : unexpected situation regarding numpy/scipy !"); #endif } else convertToVectMapIntDouble(m,mCpp); self->setCrudeMatrix(srcMesh,targetMesh,method,mCpp); } void setCrudeMatrixEx(const MEDCouplingFieldTemplate *src, const MEDCouplingFieldTemplate *target, PyObject *m) throw(INTERP_KERNEL::Exception) { std::vector > mCpp; convertToVectMapIntDouble(m,mCpp); self->setCrudeMatrixEx(src,target,mCpp); } } }; }