// Copyright (C) 2007-2019 CEA/DEN, EDF R&D // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // // Author : Anthony Geay (CEA/DEN) #pragma once #include "CurveIntersector.hxx" #include "InterpolationUtils.hxx" #include "PointLocatorAlgos.txx" #include namespace INTERP_KERNEL { template CurveIntersector ::CurveIntersector(const MyMeshType& meshT, const MyMeshType& meshS, double precision, double tolerance, double medianLine, int printLevel): _meshT(meshT), _meshS(meshS), _tolerance(tolerance), _precision(precision), _median_line(medianLine), _print_level(printLevel) { if ( SPACEDIM != 1 && SPACEDIM != 2 ) throw Exception("CurveIntersector(): space dimension of mesh must be 1 or 2"); if ( MESHDIM != 1 ) throw Exception("CurveIntersector(): mesh dimension must be 1"); _connectT = meshT.getConnectivityPtr(); _connectS = meshS.getConnectivityPtr(); _connIndexT = meshT.getConnectivityIndexPtr(); _connIndexS = meshS.getConnectivityIndexPtr(); _coordsT = meshT.getCoordinatesPtr(); _coordsS = meshS.getCoordinatesPtr(); } template CurveIntersector::~CurveIntersector() { } //================================================================================ /*! \brief creates the bounding boxes for all the cells of mesh \a mesh \param mesh structure pointing to the mesh \param bbox vector containing the bounding boxes */ //================================================================================ template void CurveIntersector::createBoundingBoxes (const MyMeshType& mesh, std::vector& bbox) { long nbelems = mesh.getNumberOfElements(); bbox.resize(2*SPACEDIM* nbelems); const double* coords = mesh.getCoordinatesPtr(); const ConnType* conn = mesh.getConnectivityPtr(); const ConnType* conn_index = mesh.getConnectivityIndexPtr(); int ibox=0; for(long icell=0; icell::max(); bbox[2*SPACEDIM*ibox+2*idim+1] = -std::numeric_limits::max(); } //updating the bounding box with each node of the element for (ConnType j=0; j ::coo2C(conn[OTT::conn2C(conn_index[icell]+j)]); for(int idim=0; idim x ) ? bbox[ibox*2*SPACEDIM + 2*idim+1] : x; } } ibox++; } } /*! Computes the bounding box of a given element. iP in numPol mode. */ template void CurveIntersector::getElemBB (double* bb, const MyMeshType& mesh, ConnType iP, ConnType nb_nodes) { const double* coords = mesh.getCoordinatesPtr(); const ConnType* conn_index = mesh.getConnectivityIndexPtr(); const ConnType* conn = mesh.getConnectivityPtr(); //initializing bounding box limits for(int idim=0; idim::max(); bb[2*idim+1] = -std::numeric_limits::max(); } for (ConnType i=0; i::coo2C(conn[OTT::conn2C(conn_index[OTT::ind2C(iP)]+i)])); for(int idim=0; idimbb[2*idim+1]) ? x : bb[2*idim+1]; } } } /*! * \param [in] startOfSeg - input coming from intersectSegments or intersectSegmentsInternal * \param [in] endOfSeg - input coming from intersectSegments or intersectSegmentsInternal. NO Assume about sort * \param [in] pt - position of point that the method computes the bary coords for. */ template void CurveIntersector::ComputeBaryCoordsOf(double startOfSeg, double endOfSeg, double pt, double& startPos, double& endPos) { double deno(endOfSeg-startOfSeg); startPos = (endOfSeg-pt)/deno; startPos = std::max(startPos,0.); startPos = std::min(startPos,1.); endPos=1.-startPos; } /*! Readjusts a set of bounding boxes so that they are extended in all dimensions for avoiding missing interesting intersections \param bbox vector containing the bounding boxes */ template void CurveIntersector::adjustBoundingBoxes (std::vector& bbox, double adjustmentEpsAbs) { std::size_t size = bbox.size()/(2*SPACEDIM); for (std::size_t i=0; i bool CurveIntersector::getRealTargetCoordinates(ConnType icellT, std::vector& coordsT) const { ConnType nbNodesT(_connIndexT[OTT::ind2C(icellT)+1] - _connIndexT[OTT::ind2C(icellT)]); coordsT.resize(SPACEDIM*nbNodesT); for (ConnType iT=0; iT::coo2C(_connectT[OTT::conn2C(_connIndexT[OTT::ind2C(icellT)]+iT)])+idim]; } } if ( nbNodesT > 2 ) { for(int idim=0; idim typename MyMeshType::MyConnType CurveIntersector::getNodeIdOfTargetCellAt(ConnType icellT, ConnType nodeIdInCellT) const { ConnType nbNodesT(_connIndexT[OTT::ind2C(icellT)+1] - _connIndexT[OTT::ind2C(icellT)]); if(nodeIdInCellT>=0 && nodeIdInCellT::coo2C(_connectT[OTT::conn2C(_connIndexT[OTT::ind2C(icellT)]+nodeIdInCellT)]); else throw Exception("getNodeIdOfTargetCellAt : error in nodeId in cell"); } /*! * @param icellS id in source mesh in format of MyMeshType. * @param coordsS output val that stores coordinates of the source cell automatically resized to the right length. * @return true if segment is quadratic and in this case coordinates of medium node * are placed in the middle of coordsS */ template bool CurveIntersector::getRealSourceCoordinates(ConnType icellS, std::vector& coordsS) const { ConnType nbNodesS = _connIndexS[OTT::ind2C(icellS)+1] - _connIndexS[OTT::ind2C(icellS)]; coordsS.resize(SPACEDIM*nbNodesS); for(ConnType iS=0; iS::coo2C(_connectS[OTT::conn2C(_connIndexS[OTT::ind2C(icellS)]+iS)])+idim]; } } if ( nbNodesS > 2 ) { for(int idim=0; idim typename MyMeshType::MyConnType CurveIntersector::getNodeIdOfSourceCellAt(ConnType icellS, ConnType nodeIdInCellS) const { ConnType nbNodesS(_connIndexS[OTT::ind2C(icellS)+1] - _connIndexS[OTT::ind2C(icellS)]); if(nodeIdInCellS>=0 && nodeIdInCellS::coo2C(_connectS[OTT::conn2C(_connIndexS[OTT::ind2C(icellS)]+nodeIdInCellS)]); else throw Exception("getNodeIdOfSourceCellAt : error in nodeId in cell"); } /*! * \brief Return dual segments of given segment * \param icell - given segment in C mode * \param mesh - mesh * \param segments - dual segments */ template void CurveIntersector::getDualSegments(ConnType icell, const MyMeshType& mesh, std::vector& segments) { // get coordinates of cell nodes ConnType nbNodes; std::vector ncoords; std::vector nodeIds; { const ConnType *connect = mesh.getConnectivityPtr(); const ConnType *connIndex = mesh.getConnectivityIndexPtr(); const double *coords = mesh.getCoordinatesPtr(); nbNodes = connIndex[icell+1] - connIndex[icell]; ncoords.resize(SPACEDIM*nbNodes); nodeIds.resize(nbNodes); for(ConnType i=0; i::conn2C(connIndex[OTT::ind2C(icell)]+i)]; ncoords[SPACEDIM*i+idim] = coords[SPACEDIM*OTT::coo2C(nodeIds[i])+idim]; } if ( nbNodes > 2 ) // quadratic segment, put medium node in the middle { for(int idim=0; idim bool CurveIntersector::projectionThis(const double *coordsT, const double *coordsS, double& xs0, double& xs1, double& xt) const { enum { X=0, Y }; switch(SPACEDIM) { case 1: { xt = coordsT[0]; xs0 = coordsS[0]; xs1 = coordsS[1]; return true; } case 2: { const double *s0(coordsS),*s1(coordsS + 2); double s01[2] = { s1[X]-s0[X], s1[Y]-s0[Y] }; // src segment direction double sSize = sqrt( s01[X]*s01[X] + s01[Y]*s01[Y] ); // src segment size if( sSize < this->_precision ) return false; s01[X] /= sSize; s01[Y] /= sSize; // normalize s01 double t[2] = { coordsT[X]-s0[X], coordsT[Y]-s0[Y] }; xs0 = 0. ; xs1 = sSize; xt = s01[X]*t[X] + s01[Y]*t[Y]; double proj_t_on_s[2] = { s0[X]+xt*s01[X], s0[Y]+xt*s01[Y] }; double dist_t_s_vect[2] = { coordsT[X]-proj_t_on_s[X], coordsT[Y]-proj_t_on_s[Y] }; double dist_t_s = sqrt( dist_t_s_vect[X]*dist_t_s_vect[X]+dist_t_s_vect[Y]*dist_t_s_vect[Y] ); return dist_t_s < this->_precision; } default: throw Exception("CurveIntersector::projectionThis : space dimension of mesh must be 1 or 2"); } } template bool CurveIntersector::projectionThis(const double *coordsT, const double *coordsS, double& xs0, double& xs1, double& xt0, double& xt1) const { xt0 = coordsT[0]; xt1 = coordsT[1]; xs0 = coordsS[0]; xs1 = coordsS[1]; if ( SPACEDIM == 2 ) { // Pass 2D->1D enum { X=0, Y }; // check if two segments overlap in 2D within tolerance const double* t0 = coordsT; const double* t1 = coordsT + 2; double t01[2] = { t1[X]-t0[X], t1[Y]-t0[Y] }; // tgt segment direction double tSize = sqrt( t01[X]*t01[X] + t01[Y]*t01[Y] ); // tgt segment size if ( tSize < _precision ) return false; // degenerated segment t01[X] /= tSize, t01[Y] /= tSize; // normalize t01 const double* s0 = coordsS; const double* s1 = coordsS + 2; double t0s0[2] = { s0[X]-t0[X], s0[Y]-t0[Y] }; double t0s1[2] = { s1[X]-t0[X], s1[Y]-t0[Y] }; double nt01_x_t0s0 = t0s0[X] * t01[Y] - t0s0[Y] * t01[X]; // t0s0 dot norm of t01 double nt01_x_t0s1 = t0s1[X] * t01[Y] - t0s1[Y] * t01[X]; // t0s1 dot norm of t01 double dist_ts0 = fabs( nt01_x_t0s0 ); // dist from tgt seg to s0 double dist_ts1 = fabs( nt01_x_t0s1 ); // dist from tgt seg to s1 bool s0_out_of_tol = ( dist_ts0 > _tolerance ); bool s1_out_of_tol = ( dist_ts1 > _tolerance ); if ( nt01_x_t0s0 * nt01_x_t0s1 > 0 && ( s0_out_of_tol || s1_out_of_tol )) return false; // tgt segment is to far from src segment double S0[2] = { s0[X], s0[Y] }; double S1[2] = { s1[X], s1[Y] }; if ( s0_out_of_tol ) // put s0 within tolerance { double t = _tolerance * nt01_x_t0s0 / dist_ts0; // signed tolerance double r = ( nt01_x_t0s0 - t ) / ( nt01_x_t0s0 - nt01_x_t0s1 ); S0[X] = s0[X] * ( 1.-r ) + s1[X] * r; S0[Y] = s0[Y] * ( 1.-r ) + s1[Y] * r; } if ( s1_out_of_tol ) // put s1 within tolerance { double t = _tolerance * nt01_x_t0s1 / dist_ts1; // signed tolerance double r = ( nt01_x_t0s1 - t ) / ( nt01_x_t0s1 - nt01_x_t0s0 ); S1[X] = s1[X] * ( 1.-r ) + s0[X] * r; S1[Y] = s1[Y] * ( 1.-r ) + s0[Y] * r; } // project tgt and src segments to median line double s01[2] = { S1[X]-S0[X], S1[Y]-S0[Y] }; // src segment direction double sSize = sqrt( s01[X]*s01[X] + s01[Y]*s01[Y] ); // src segment size if ( sSize < _precision ) return false; // degenerated segment s01[X] /= sSize, s01[Y] /= sSize; // normalize s01 // make t01 and s01 codirected double t01_x_s01 = t01[X] * s01[X] + t01[Y] * s01[Y]; // t01 dot s01 if ( t01_x_s01 < 0 ) s01[X] = -s01[X], s01[Y] = -s01[Y]; double medianDir[2] = { t01[X] * ( 1.-_median_line) + s01[X] * _median_line, t01[Y] * ( 1.-_median_line) + s01[Y] * _median_line }; double medianSize = sqrt( medianDir[X]*medianDir[X] + medianDir[Y]*medianDir[Y] ); if ( medianSize < std::numeric_limits::min() ) return false; // strange... medianDir[X] /= medianSize, medianDir[Y] /= medianSize; xt0 = t0[X] * medianDir[X] + t0[Y] * medianDir[Y]; xt1 = t1[X] * medianDir[X] + t1[Y] * medianDir[Y]; xs0 = S0[X] * medianDir[X] + S0[Y] * medianDir[Y]; xs1 = S1[X] * medianDir[X] + S1[Y] * medianDir[Y]; } // if ( SPACEDIM == 2 ) return true; } /*! * \brief Return length of intersection of two segments */ template double CurveIntersector::intersectSegmentsInternal(const double *coordsT, const double *coordsS, double& xs0, double& xs1, double& xt0, double& xt1) const { if(!projectionThis(coordsT,coordsS,xs0,xs1,xt0,xt1)) return 0.; if ( xt0 > xt1 ) std::swap( xt0, xt1 ); if ( xs0 > xs1 ) std::swap( xs0, xs1 ); double x0 = std::max( xt0, xs0 ); double x1 = std::min( xt1, xs1 ); return ( x0 < x1 ) ? ( x1 - x0 ) : 0.; } template class DummyMyMeshType1D { public: static const int MY_SPACEDIM=1; static const int MY_MESHDIM=8; typedef mcIdType MyConnType; static const INTERP_KERNEL::NumberingPolicy My_numPol=MyMeshType::My_numPol; // begin // useless, but for windows compilation ... const double *getCoordinatesPtr() const { return nullptr; } const MyConnType *getConnectivityPtr() const { return nullptr; } const MyConnType *getConnectivityIndexPtr() const { return nullptr; } INTERP_KERNEL::NormalizedCellType getTypeOfElement(MyConnType) const { return (INTERP_KERNEL::NormalizedCellType)0; } // end }; /*! * This method determines if a target point ( \a coordsT ) is in source seg2 contained in \a coordsS. To do so _precision attribute is used. * If target point is in, \a xs0, \a xs1 and \a xt are set to 1D referential for a further barycentric computation. * This method deals with SPACEDIM == 2 (see projectionThis). */ template bool CurveIntersector::isPtIncludedInSeg(const double *coordsT, const double *coordsS, double& xs0, double& xs1, double& xt) const { if(!projectionThis(coordsT,coordsS,xs0,xs1,xt)) return false; constexpr ConnType TAB[2]={0,1}; const double coordsS_1D[2]={xs0,xs1}; const double *coordsT_1D(&xt); return PointLocatorAlgos>::isElementContainsPoint(coordsT_1D,NORM_SEG2,coordsS_1D,TAB,2,this->_precision); } /*! * \brief Return length of intersection of two segments */ template double CurveIntersector::intersectSegments(const double *coordsT, const double *coordsS) const { double xs0,xs1,xt0,xt1; return intersectSegmentsInternal(coordsT,coordsS,xs0,xs1,xt0,xt1); } }