
Guide for the development of a SALOME module in Python

The purpose of this document is to describe briefly the different steps in the development of a
SALOME module in Python.

Steps in construction of the example module

The example module chosen to illustrate the process to construct a module is extremely simple. It
will contain a single component and this component will have a single service called getBanner that
will accept a character string as the sole argument and that will return a character string obtained by
concatenation of “Hello” and the input chain. This component will be completed by a graphic GUI
written in PyQt.

The different steps in the development will be as follows:

• create a module tree structure

• create a SALOME component that can be loaded by a Python container

• configure the module so that the component is known to SALOME

• add a graphic GUI

Create the module tree structure

Firstly, we will simply put a SALOME component written in Python and that can be loaded by a
Python container, into the example module. An idl interface and a Python implementation of the
component will be all that are necessary. The following file structure is necessary so that this can be
implemented in a SALOME module:

+ PYHELLO1_SRC
+ build_configure
+ configure.ac
+ Makefile.am
+ adm_local
+ Makefile.am
+ unix
+ Makefile.am
+ make_common_starter.am
+ config_files
+ Makefile.am
+ check_PYHELLO.m4

+ bin
+ Makefile.am
+ VERSION.in
+ runAppli.in
+ myrunSalome.py

+ idl

1

+ Makefile.am
+ PYHELLO_Gen.idl

+ src
+ Makefile.am
+ PYHELLO
+ Makefile.am
+ PYHELLO.py

+ doc

The module name is PYHELLO, the component name is PYHELLO and all the files will be put
in a directory named PYHELLO1 SRC. All files are essential except for VERSION.in, runAppli.in
and runSalome.py. VERSION.in is used to document the module, it must give its version and its
compatibilities or incompatibilities with other modules. Therefore, it is strongly recommended but is
not essential for operation. The runAppli.in and runSalome.py files are not essential but make the
example easier to use.

Warning: the files of the basic platform (KERNEL) must not be copied to initialise a module tree
structure. It is usually preferable to copy files from another module such as GEOM or MED.

Implementation of automake, configure

SALOME uses autoconf and automake to build the configure script that is used for the installation to test
the system configuration and to preconfigure the module construction Makefile files. The build configure
file contains a procedure that starts from configure.ac and uses automake to build the configure script.
automake starts from Makefile.am files to build Makefile.in files. All files with an “in” extension are
skeletons that will be transformed by the configure process.

Almost all files used for this process are located in the basic platform that is referenced by the
KERNEL ROOT DIR environment variable as well as GUI ROOT DIR for the graphical user interface
(GUI). However, some files must be modified as a function of the target module. This is the case for
build configure and configure.ac files that usually need to be adapted.

The basic files for configuration of the KERNEL module and other modules are collected in the
salome adm directory of the KERNEL module. However, in order to be able to use the CORBA
objects of the KERNEL module, the files in the salome adm directory have to be overwritten, using
the make common starter.am file in the adm local directory of the example module.

config files is a directory in which the m4 files that are used to test the configuration of the system
in the configure process can be placed. If the salome adm files are not sufficient, others can be added
in adm local.

The idl directory

The idl directory requires a Makefile.am that must make the compilation of the idl PYHELLO Gen.idl
file and install all the generated files in the right module installation directories. The BASE IDL FILES
target has to be modified to reach this goal.

The idl file itself must define a CORBA module for which the name must be different from the
module name to avoid name conflicts and define a CORBA interface that is derived at least from the
Component interface of the Engines module. The name of the CORBA module will be PYHELLO ORB
and the name of the interface will be PYHELLO Gen.

The src directory

The src directory will contain all components and the GUI for the module. Each of these entities must
have its own directory.

For the moment, the module will only contain a single directory for the engine of the PYHELLO
component and its name will be PYHELLO.

The Makefile.am will simply trigger the path of sub-directories described by the SUBDIRS target.

2

The PYHELLO directory

This directory contains the Python module that represents the component and therefore contains the
PYHELLO class and a Makefile.am file that simply exports the PYHELLO.py module into the instal-
lation directory of the SALOME module.

The PYHELLO.py module contains the PYHELLO class that is derived from the PYHELLO Gen
interface of the CORBA PYHELLO ORB POA module and the SALOME ComponentPy i class of the
SALOME ComponentPy module.

The doc directory

This contains nothing for the moment. It could contain this document.

The bin directory

VERSION.in is used to document the module, it must define its version and its compatibilities or
incompatibilities with other modules. Therefore, it is strongly recommended but is not essential for
operation.

The runAppli.in file is the equivalent of the runSalome in the KERNEL module configured to
implement the KERNEL module and this PYHELLO module.

The myrunSalome.py file is the file of the KERNEL module modified to run only with a Python
container, with the test function that creates the PYHELLO component instead of a MED component,
and automatic completion in Python.

Creating a component that can be loaded by a container

The files presented above are sufficient to build and install the PYHELLO1 SRC module, to start the
SALOME platform composed of the KERNEL and PYHELLO1 modules, and to request the Python
container to load a PYHELLO component.

All the following steps are only possible if the SALOME prerequisite software is accessible in the
module developer environment.

Construction, installation

In PYHELLO1 SRC, enter:

export KERNEL_ROOT_DIR=<KERNEL installation path>
./build_configure

Go into ../PYHELLO1 BUILD and enter:

../PYHELLO1_SRC/configure --prefix=<PYHELLO1 installation path>
make
make install

Running the platform

Move into the <PYHELLO1 module installation path> and enter:

./bin/salome/runAppli

This command runs SALOME configured for KERNEL and the PYHELLO1 module. At the end of
running, the user sees a Python interpreter configured for SALOME that provides access to SALOME
CORBA objects.

runAppli is a shell that executes a Python script, by passing arguments to it in a command line:

3

python -i $PYHELLO_ROOT_DIR/bin/salome/myrunSalome.py --modules=PYHELLO --killall

These arguments state that the myrunSalome.py script located in the PYHELLO module will be
used, that the PYHELLO component will be activated and all SALOME processes that existed before
the run will be killed.

This command will not function unless the following environment variables have previously been
set:

export KERNEL_ROOT_DIR=<KERNEL installation path>
export PYHELLO_ROOT_DIR=<PYHELLO installation path>

Warning: it is possible that the SALOME run will not reach the end. In some circumstances, the
time to start CORBA servers may be long and could exceed the timeout. If the reason for this is that
the time to load dynamic libraries is long, it is possible that a second run immediately afterwards will
be successful.

Loading the example component

The PYHELLO ORB module has to be imported before making a request to load the component into
the Python container, to obtain access to methods of the component. This Python container was made
accessible in the runSalome.py by means of the container variable:

import PYHELLO_ORB
c=container.load_impl("PYHELLO","PYHELLO")
c.makeBanner("Christian")

The last instruction must return ‘Hello Christian’.
Proceed as follows to see CORBA objects created by these actions:

clt.showNS()

Declared SALOME component

For the moment, the PYHELLO component was loaded by making a direct request to the Python
container. This is not the standard method for loading a component. The normal method uses the
LifeCycle service that uses catalog services to identify the component and its properties and then calls
the requested container to load the component.

Before this method can be used, the component must be declared in a catalog in the XML format,
for which the name must be <Module>Catalog.xml. In our case, it will be PYHELLOCatalog.xml.
This catalog will be stored in the resources directory.

Updated tree structure:

+ PYHELLO1_SRC
+ build_configure
+ configure.ac
+ Makefile.am
+ adm_local
+ bin
+ idl
+ src
+ doc
+ resources
+ PYHELLOCatalog.xml

The remainder of the files are identical, apart from adding the resources directory and the PY-
HELLOCatalog.xml file. However, the Makefile.am has to be modified so that the catalog is actually
installed in the installation directory. It simply needs to be specified in the salomeres SCRIPTS target.

4

Construction, installation

There is no need to do another configure to take account of this modification. All that is necessary is
to enter PYHELLO1 BUILD and then:

./config.status
make
make install

Starting the platform

The platform is started in the same way as before. Go into PYHELLO1 INSTALL and do:

./bin/salome/runAppli

Loading the example component

The method of loading the component is not very different from that described above. The services of
the LifeCycle module are used in this case instead of calling the container directly. The call sequence
is contained in the runSalome.Py test function.

c=test(clt)
c.makeBanner("Christian")

The test function creates the LifeCycle. It then asks for the PYHELLO component to be loaded in
the FactoryServerPy container:

def test(clt):
"""
Test function that creates an instance of PYHELLO component
usage : pyhello=test(clt)
"""
import LifeCycleCORBA
lcc = LifeCycleCORBA.LifeCycleCORBA(clt.orb)
import PYHELLO_ORB
pyhello = lcc.FindOrLoadComponent("FactoryServerPy", "PYHELLO")
return pyhello

Loading from the application interface (IAPP)

Before a component can be loaded dynamically using the IAPP components bar, the icon representing
the component will have to be declared in the catalog. It is declared by simply adding a line for the
icon to the component catalog:

<component-icon>PYHELLO.png</component-icon>

and putting the corresponding file in the module resources directory.

Adding a graphic GUI

The next step to complete the module consists of adding a graphic interface to the PYHELLO com-
ponent, that will be written in Python using the Qt widgets library. This graphic interface must be
integrated into the SALOME application interface (IAPP), and therefore must respect some constraints
that we will see.

5

Firstly note the contour of the GUI of a component. The behaviour of the GUI is given by a Python
module that has a standard name <Module>GUI.py. It must propose conventional entry points that
the IAPP will use to activate this GUI or to inform it of specific events. GUI commands are activated
through a menu bar and a button bar that are integrated into the menu bar and into the IAPP button
bar.

Python module implanting the behaviour of the GUI

The behaviour of the PYHELLO component GUI is implanted in the Python PYHELLOGUI.py module
in the PYHELLOGUI sub-directory. The Makefile.am located in the src directory must be updated
to include the PYHELLOGUI subdirectory. A Makefile.am must be added into the PYHELLOGUI
subdirectory. Important targets are salomescript SCRIPTS and salomeres DATA.

The salomescript SCRIPTS target must be updated with the name of the Python modules to be
made visible in Salome, in other words mainly so that they are importable (Python import command).

The salomeres DATA target must be updated with the names of files that are used for multi-linguism.

Menu bar and button bar

The menu bar and button bar for the PYHELLO component are dynamically added when importing the
PYHELLOGUI module. They are created by calling the Python functions createMenu, createAction
and createTool from the sgPyQt SALOME interface object. Every action must have a unique id. Some
icons are used. They must be installed in the resources directory.

6

	Guide for the development of a SALOME module in Python
	Guide for the development of a SALOME module in Python
	Steps in construction of the example module
	Create the module tree structure
	Implementation of automake, configure
	The idl directory
	The src directory
	The PYHELLO directory

	The doc directory
	The bin directory

	Creating a component that can be loaded by a container
	Construction, installation
	Running the platform
	Loading the example component

	Declared SALOME component
	Construction, installation
	Starting the platform
	Loading the example component
	Loading from the application interface (IAPP)

	Adding a graphic GUI
	Python module implanting the behaviour of the GUI
	Menu bar and button bar

