
.

Using the SALOME configuration and building
system environment

Version 0.3

Patrick Goldbronn C.E.A.
Marc Tajchman C.E.A.

Successive versions

Date Version Description Author(s)

10/07/2001 0.0 Initial version PG

25/07/2001 0.1 English traduction, rewriting MT

29/08/2001 0.2 Add source creation, some precision PG

24/05/2002 0.3 Add instruction to do installation correctly PG

SALOME Using the SALOME configuration and building system V. 0.3 2/20

Abstract

This document contains rules and advices to configure, build and extend the SALOME platform.

SALOME Using the SALOME configuration and building system V. 0.3 3/20

Contents

1 SALOME Configuration 5

1.1 Directories organisation. 5

1.2 PreConfiguration step. 5

1.3 Configuration step. 6

1.4 PostConfiguration step. 7

2 SALOME compilation 7

3 Module creation 8

4 Development unit creation 9

5 Creating aMakefile.in file in a new unit 10

5.1 Using predefined make rules. .10

5.2 Using your own makefiles in an unit. .14

6 Add or remove a script 15

7 Add or remove an IDL file 15

8 Predefined symbols used inMakefile.in 15

9 Location of generated files in the build tree 18

10 What’s matter when launchmake install 18

11 Creating source files according to SALOME building system 19

11.1 Cor C++ source files .20

11.2 idl files .20

11.3 Included header file generated from idl file. .20

SALOME Using the SALOME configuration and building system V. 0.3 4/20

1 SALOME Configuration

1.1 Directories organisation

We suppose here that you unpack the SALOME distribution from scratch. The path to the SALOME

sources will be named “top source directory” orSALOMEROOT.

It is possible, but not advised, to build the set of binaries and libraries in the same subtree. Instead,

we suppose you have choosen a different subtree where to put builded files (you can so build to multiples

architectures from the same source tree). The root of the build subtree will be named “top build directory”.

At the end of configuration and compilation processs, you may install builded files in a separate subtree,

name “installation subtree”. The root of the installation subtree will be named “top installation directory”.

The figure1 shows subtrees organisation.

Top Build
Directory

Top Source
Directory
(SALOME_ROOT)

Top Installation
Directory

Install Subtree
Source Subtree

Build Subtree

Figure 1: Subtrees organisation

1.2 PreConfiguration step

SALOME needs some environment variables (to be defined for example in a .cshrc or .bashrc file in your

home directory) :

SALOME Using the SALOME configuration and building system V. 0.3 5/20

variable set value and check

QTDIR root directory of qt distribution ($QTDIR/lib must contain libqt.so)

HDF5HOME root directory of hdf5 distribution ($HDF5HOME/lib must contain lib-

hdf5.so)

VTKHOME root directory of vtk distribution ($VTKHOME/commonmust contain

libVTKCommon.so)

CASROOT root directory of OpenCascade distribution ($CASROOT/Linux/lib

must contain libTKernel.so)

PYTHONHOME root directory of python distribution ($PYTHON-

HOME/lib/pythonXXX/config must contain libpythonXXX.a)

OMNIORBCONFIG path to the omniORB.cfg file (this file contains default options to om-

niORB, see below)

Create a file named omniORB.cfg in your root tree, containing default options to omniORB. Put in this

file, the following line :

ORBInitRef NameService=corbaname::localhost

(tells omniORB that the CORBA name service is local).

1.3 Configuration step

1. There are two cases :

• There is aconfigure file in the top source directory, and you didn’t change the SALOME

structure (adding a module or unit, see sections3 or 4 below). Go to point3.

• You don’t have aconfigure file or you add a module/unit in the SALOME system. Go to

point2

2. Go to the top source directory and type :

./reconfigure
This script find all file with suffix.in (which will be generate byconfigure script) and add

them inconfigure.in file, launchaclocal andautoconf to genereteconfigure script.

Continue with point3

3. Go to the top build directory you choose.

If you plan to install SALOME files after building in a non-standard location (i.e. different from

/usr/local), type :

<path to the top source directory>/configure \

--prefix=<installation directory>

SALOME Using the SALOME configuration and building system V. 0.3 6/20

otherwise, type :

<path to the top source directory>/configure
where “path to the top source directory” is to be replaced by the path to the SALOME sources.

For other options to the configure command, type :

<path to the top source directory>/configure --help
This will create a mirror subtree of the sources into the top build directory where object files, binaries

and libraries will be builded. Also a makefile system will be created into the build tree.

1.4 PostConfiguration step

This phase is optional, to be used only if the compilation process (see next section) fails to uselibtool

script.

On some systems, thelibtool script generated by the configure command will not operate correctly

during compilation (see next section). If you encounter this situation, copy the local libtool script in your

system (e.g. in the /usr/bin directory) to the top build directory after configuration and before compilation

phases.

Check the following line in libtool script :

deplibs_check_method=...

If needed, replace this line by

deplibs_check_method="pass_all"

2 SALOME compilation

From the top build directory, type

make

After some time (be patient ...), it will create various binaries. Building SALOME is split in several

phases :

• make inc : copy/update header files exported by development units in the directoryinc of the

build tree ;

• make depend idl : determine dependencies between idl files (useful when recompiling SA-

LOME after idl modification);

• make depend (make dep) : determine dependencies between source files and header files

(useful when recompiling SALOME after source modification);

• make lib : generate libraries, put a copy/link into thelib directory of the build tree;

SALOME Using the SALOME configuration and building system V. 0.3 7/20

• make bin : generate binaries;

• make tests (make check) : build and run tests (not yet implemented).

After building, testing, the user may install the system in a choosen directory (different from and not

included in the top source directory and the top build directory).

From the top build directory, type :

make install : install libraries, header and idl files, binaries, resource files in the instal-

lation directory

3 Module creation

In this section, the new module will be named<Module> . Replace each occurence with the real name of

your module.

1. In the source tree rootSALOMEROOT, create a new directory<Module> :

cd SALOME_ROOT

mkdir <Module>

2. Modify theMakefile.in file in theSALOMEROOTdirectory to add the new module :

Append to the line beginning with

SUBDIRS =
the name of the new module.

3. In the module root directory, create two subdirectoriessrc and resources and create a file

Makefile.in (e.g. copy the corresponding file inGEOMmodule for example) :

cd <Module>

mkdir src

mkdir resources

cp ../GEOM/Makefile.in .

4. In thesrc subdirectory, copy aMakefile.in file (e.g. from the corresponding file inGEOM/src

subdirectory for example) :

cd src

cp ../../GEOM/src/Makefile.in .

5. Edit this file and replace the line

MODULE = GEOM
with

MODULE = <Module>

6. Edit this file and replace the line

SUBDIRS = GEOMDS GEOM GEOMGUI
with

SUBDIRS =

SALOME Using the SALOME configuration and building system V. 0.3 8/20

(empty list of development units in this module).

7. Edit this file and replace the line

RESOURCES_FILES = arc.png \

...
with

RESOURCES_FILES =
(list of all ressources for this module).

8. Add the newMakefile.in files in the global list of .in files.

In the root directory of the source tree, execute thereconfigure script or manually :

(a) edit the configure.in file in the source tree root, addMakefile.in files into theAC OUTPUT

list,

(b) from the source tree root directory, run thegenconf script which launchaclocal and

autoconf .

Figure2 summarize these changes.

srcresources

idl New module

Run reconfigure
script or edit
configure.in file

Root Source Tree

resources bin

Create
directories

Copy and/or
create Makefile.in

files (module level)
Exported resource

Update SUBDIRS
list in Makefile.in

Figure 2: Source tree : modification when adding an new module

4 Development unit creation

Here we want to add a development unit named<Unit> in the existing module<Module> (replace the

names<Unit> and<Module> with real ones).

SALOME Using the SALOME configuration and building system V. 0.3 9/20

1. In thesrc subdirectory of<Module> , create a subdirectory named<Unit> :

cd <path to <Module> >/src

mkdir <Unit>
Modify then Makefile.in file in the src directory to add the new unit to the compilation

process :

Complete the line beginning with

SUBDIRS = ...
with the name of the new directory

SUBDIRS = ... <Unit>

2. Create aMakefile.in file in the new<Unit> directory (you can copy aMakefile.in file

from the corresponding subdirectory inGEOMmodule : GEOM/src/GEOMGUI subdirectory for

example, and modify as you need)

cd <Unit>

... create Makefile.in
The details ofMakefile.in creation is detailed in the next section.

The different files of your unit must be located in several directories (see figure3 and the list below).

• Private source and header files of your unit

Place the only copy of these files in your unit. If you use the proposed makefile system, dont put

them in subdirectories of your unit.

Note

Using a non-flat directory structure for an unit, has not been tested but it should work.

You must write your makefile to take care of subdirectories.

• Exported idl files from a unit

These files are provided by the unit for CORBA communication with other units.

Place the only copy of these files into the idl subdirectory of the root source tree.

• Exported header files from a unit

These files are provided by the unit for direct communication from other units (using the unit’s

library).

Place the master copy of these files in your unit subtree.

Assure that these files are automatically or manually copied in the inc subdirectory of the root build

tree.

5 Creating aMakefile.in file in a new unit

5.1 Using predefined make rules

Copy the followingMakefile.in skeleton in the unit directory :

begin copy here ==

SALOME Using the SALOME configuration and building system V. 0.3 10/20

Run reconfigure
script or edit
configure.in file

Exported
idl files

Module 1

srcresources

idl

Exported shell
scripts

Update SUBDIR
list in Makefile.in

resources bin

New unit

and header files
Private source Exported header

files

Root Source Tree

Copy and/or
create Makefile.in

Exported resource
files (xml, ...)

Figure 3: Source tree : modification when adding an new unit in an existing module

top_srcdir=@top_srcdir@

top_builddir=../../..

srcdir=@srcdir@

VPATH=.:@srcdir@

@COMMENCE@

Libraries targets

LIB =

LIB_SRC =

LIB_MOC =

LIB_CLIENT_IDL =

LIB_SERVER_IDL =

SALOME Using the SALOME configuration and building system V. 0.3 11/20

Executable targets

BIN =

BIN_SRC =

BIN_MOC =

BIN_CLIENT_IDL =

BIN_SERVER_IDL =

exported header files

EXPORT_HEADERS =

exported python executable files

EXPORT_PYSCRIPTS =

list of files in resources directory (copy when do make install)

RESOURCES_FILES =

po ressources files (to transform them in qm file) :

PO_FILES =

put here additional rules, or extra compiler options ...

@CONCLUDE@

end copy here ==

Adapt thisMakefile.in skeleton to your particular needs :

• if you have to compile a library

1. Complete the line

LIB =
as

LIB = lib<MyLibrary>.la
Example :

LIB = libGeometryGui.la
Notes

(a) the library namemust begin withlib and end with.la (this allows automatic creation

of shared libraries with libtool).

(b) there must be only one library by development unit

2. Also add to the line :

LIB_SRC =
the list of sources files (in this unit) needed to build the library

3. If your library uses QT MOC file, add to the line :

SALOME Using the SALOME configuration and building system V. 0.3 12/20

LIB_MOC =
the list of headers files to transform with moc.

4. If your library uses CORBA functionnalities from other units (i.e. uses idl files exported from

other units), add to the line :

LIB_CLIENT_IDL =
the list of idl files.

5. If your unit provides CORBA functionnalities (i.e. exports idl files to the other units), add to

the line :

LIB_SERVER_IDL =
the list of idl files.

• if you want to build one or more executables :

1. Complete the line

BIN =
as

BIN = <MyBin1> <MyBin2> ..

.
Note

For each executable in theBIN list, sayMyBin1 , the main functionmust be in a file

named accordingly, in this example :MyBin1.cxx andMyBin2.cxx .

2. Also add to the line :

BIN_SRC =
the list of source files (in this unit) needed to buildall the executables,excluding files con-

taining main function(s).

Notes :

(a) The makefile system will automatically add to each executable, its main function file.

That’s why these files must not be included in theBIN SRClist

(b) The object files (compiled from the source files in theBIN SRClist) will be properly

dispatched between the executables by the linker.

3. If your binaries uses QT MOC file, add to the line :

BIN_MOC =
the list of headers files to transform with moc.

4. If your binaries uses CORBA functionnalities from other units (i.e. uses idl files exported from

other units), add to the line :

BIN_CLIENT_IDL =
the list of idl files.

5. If your unit provides CORBA functionnalities (i.e. exports idl files to the other units), add to

the line :

BIN_SERVER_IDL =
the list of idl files.

• List the exported header files that your unit provides to other developments units :

Complete the line

SALOME Using the SALOME configuration and building system V. 0.3 13/20

EXPORT_HEADERS =
with the list header files.

Note

The makefile system will automatically copy these files in a subdirectoryinc in the top

build directory, and maintain coherence with your private copy inside your unit subtree.

This is to assure name uniqueness of differents exported header files from different units

and to write easier makefiles.

• List the python scripts files that your unit export :

Complete the line

EXPORT_PYSCRIPTS =

• To generate qm file from po file (use by QT), list po files in :

PO_FILES =
Note

The resulting qm files will ge generated directory which contain Makefile. It will be

copied in resources directory when do’make install’ .

5.2 Using your own makefiles in an unit

If the proposed makefile system don’t suit your needs (several libraries, non flat unit subtree structure, ...).

It’s possible to write your own makefiles.

1. Create a fileMakefile.in

This file must begin with the lines

begin copy here ==

top_srcdir=@top_srcdir@

top_builddir=../../..

srcdir=@srcdir@

VPATH=.:@srcdir@

@COMMENCE@

end copy here ==

The rest of the file has the standard GNU make format.

You must define the following targets :

(a) inc : copy/update the exported header files to the$top builddir/inc directory

(b) dep : update dependencies

(c) lib : build libraries and link them into the$top builddir/lib directory

(d) bin : build executables and link them into the$top builddir/bin directory

Some of these targets may be empty, if not applicable.

SALOME Using the SALOME configuration and building system V. 0.3 14/20

The line

@\texttt{COMMENCE}@

provides a number of predefined variables that you can use in your makefile rules (defining standard

libraries locations, compiler options, ..., see next section).

6 Add or remove a script

If you want to add a new shell script inSALOMEROOT/bin , you must editSALOMEROOT/Makefile.in

to add it inBIN SCRIPT.

If this script have some package dependent variable, you must create a ”.in” file and add this reference to

configure.in file.

To remove an existing script, you must of course remove it from CVS archive and also remove it from

SALOMEROOT/Makefile.in and if any, fromconfigure.in .

If you want to add a new python script, put it inEXPORTPYSCRIPTSvariable. It will be copied at same

place than others executables.

7 Add or remove an IDL file

If you want to add a new IDL file inSALOMEROOT/idl , you must editSALOMEROOT/idl/Makefile.in

and add its inIDL FILES .

To remove an existing IDL file, you must of course remove it from CVS archive and also remove it from

SALOMEROOT/idl/Makefile.in .

8 Predefined symbols used inMakefile.in

You can use predefined symbols in youMakefile.in files. These symbols define

• compilation flags for source compiling,

• header files location in your local system,

• libraries needed for binaries linking.

For example to use the OpenCascade libraries in your unit, you will add the

• $OCCINCLUDESsymbol to the included header file locations,

• $OCCCXXFLAGSsymbol to the compilation flags,

SALOME Using the SALOME configuration and building system V. 0.3 15/20

• $OCCLIBS symbol to the linker’s flags

If you use the predefined make rules, add the lines

CPPFLAGS+=$(OCC_INCLUDES)

CXXFLAGS+=$(OCC_CXXFLAGS)

LDFLAGS+=$(OCC_LIBS)

in yourMakefile.in file after the @COMMENCE@ line.

For each standard tool you need in SALOME (QT, python, OpenCascade, CORBA, VTK, . . .), main

symbols listed below.

1. Corba

variable value

CORBAROOT CORBA home base

CORBAINCLUDES compiler options to include CORBA headers

CORBALIBS libraries needed to link with CORBA

CORBACXXFLAGS C++ compiler options to use with CORBA

IDL idl compiler

IDLCXXFLAGS options to the idl compiler to generate C++ stub or skeleton

code

IDLPYFLAGS options to the idl compiler to generate python stub or skele-

ton code

IDL CLN H extension of generated CORBA header files (client side)

IDL CLN CXX extension of generated CORBA source files (client side)

IDL CLN OBJ extension of generated CORBA object files (client side)

IDL SRVH extension of generated CORBA header files (server side)

IDL SRVCXX extension of generated CORBA source files (server side)

IDL SRVOBJ extension of generated CORBA object files (server side)

SALOME Using the SALOME configuration and building system V. 0.3 16/20

2. python

variable value

PYTHON python interpreter (absolute path to)

PYTHONVERSION python version

PYTHONHOME python home base (sometimes needed to run python)

PYTHONINCLUDES compiler options to include python header files

PYTHONLIBS libraries needed to link with python

3. QT

variable value

MOC moc compiler

UIC uic graphical compiler

QTDIR QT home base

QT ROOT QT home base

QT INCLUDES compiler options to include QT headers

QT MTINCLUDES same as above, for multithreaded applications

QT LIBS libraries needed to link with QT (single threaded)

QT MTLIBS same as above, for multithreaded applications

For SALOME developments, multithreaded versions of qt options and libraries are needed.

4. OpenGL

variable value

OGLINCLUDES compiler options to include OpenGL headers

OGLLIBS libraries needed to link with OpenGL

SALOME Using the SALOME configuration and building system V. 0.3 17/20

5. VTK

variable value

VTK INCLUDES compiler options to include VTK headers

VTK LIBS libraries needed to link with VTK

6. HDF (v5)

variable value

HDF5 INCLUDES compiler options to include HDF headers

HDF5 LIBS libraries needed to link with HDF

HDF5 MTLIBS libraries needed to link with HDF (multithreaded version)

7. OpenCascade

variable value

OCCINCLUDES compiler options to include OpenCascade headers

OCCLIBS libraries needed to link with OpenCascade

OCCCXXFLAGS C++ compiler options to use with OpenCascade

9 Location of generated files in the build tree

A partial view of the build tree shows the location of files generated during the compilation process.

10 What’s matter when launchmake install

When all libraries and binaries files are generated, make copies all identified files asconfigure param-

eters--prefix , bindir , datadir , ... (seeconfigure --help for details).

If you specify nothing, all are installed in<prefix>=/usr/local .

All executables (binaries and scripts) are placed in<prefix>/bin (see BIN and BINSCRIPT variables

in Makefile).

SALOME Using the SALOME configuration and building system V. 0.3 18/20

Module 1

srcresources

inc

Exported
header files

Object files
libraries
executables

resources bin lib

Links to libraries

Link to corresponding
directories in source tree

Shell scripts
Links to executables

Unit 1

Root Build Tree

Figure 4: Partial view of the build tree : generated files during compilation

All libraries are placed in<prefix>/lib (see LIB variable inMakefile).

All includes are placed in<prefix>/include (see EXPORTHEADERS variable inMakefile).

All idls are placed in<prefix>/idl (see IDLFILES variable inMakefile).

All python srcipts are placed in<prefix>/lib/python2.1/... (seeEXPORTPYSCRIPTSvari-

able inMakefile).

All ressources files (icons, messages, configuration, ...) are placed in<prefix>/share/salome/ressources

(see RESOURCESFILES variable inMakefile).

11 Creating source files according to SALOME building system

Building system use dependencies between files writing in Makefile rules. We useCor C++ preprocessor

to automatically generate this dependencies rules.

There are some configuration and useful macro defined in header fileSALOMEconfig.h . All files

should be included this header !You must include it ussing<> delimiter becauseSALOMEconfig.h

must not appear in dependencies rules (see below11.1).

When aMakefile is regenerate withconfig.status script, all files are regenerates (in particular

SALOMEconfig.h).It is a restriction ofautoconf 2.13 which could not regenerate only one partic-

SALOME Using the SALOME configuration and building system V. 0.3 19/20

ular file. So, all files which depend ofSALOMEconfig.h are rebuild even if it does not change. If you

effectively changeSALOMEconfig.h file, you must clean all and rebuild.

11.1 Cor C++ source files

You must name yourCfile <myCFile>.c and header file<myCHeaderFile>.h

You must name yourC++ file <myC++File>.cxx and header file<myC++HeaderFile>.hxx

To have right dependencies rules, you must correctly write the include statement in your source files. We

only take care about SALOME package header files to generate dependencies. We suppose that other

header files (qt, vtk, OpenCascade, ...) are stables and are not modified when we build some SALOME

modules.

According to cpp documentation, local header files must be included with"" statement and system or

tools headers files must be included with<> statement.

If you do not respect this notation, dependencies would not be true and some rebuilding trouble can

appear !

11.2 idl files

We useC preprocessor to build dependencies between idl files. The same convention must be applied as

Cor C++ source files.

If included file is an external files, you must use statement<> because this file will not be modified during

SALOME devloppement and/or building. If included file is part of SALOME files, you must use statement

"" .

If you do not respect this notation, dependencies would not be true and some building or rebuilding trouble

can appear !

11.3 Included header file generated from idl file

To include header file generated from idl file, you must use macroCORBACLIENT HEADERor

CORBASERVERHEADERdefined inSALOMEconfig.h .

These two macros replace idl prefix into corresponding header name generated (take care if you use client

part or server part)

Example :

#include CORBA_CLIENT_HEADER(geom)

#include CORBA_SERVER_HEADER(mesh)

SALOME Using the SALOME configuration and building system V. 0.3 20/20

	SALOME Configuration
	Directories organisation
	PreConfiguration step
	Configuration step
	PostConfiguration step

	SALOME compilation
	Module creation
	Development unit creation
	Creating a PD1OT1ptmptmmmnnMakefile.in file in a new unit
	Using predefined make rules
	Using your own makefiles in an unit

	Add or remove a script
	Add or remove an IDL file
	Predefined symbols used in PD1OT1ptmptmmmnnMakefile.in
	Location of generated files in the build tree
	What's matter when launch PD1OT1ptmptmmmnnmake install
	Creating source files according to SALOME building system
	PD1OT1ptmptmmmnnC or PD1OT1ptmptmmmnnC++ source files
	idl files
	Included header file generated from idl file

