
Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 1 / 25

DDDeeevvveeelllooopppeeerrr GGGuuuiiidddeee

IIInnnttteeegggrrraaatttiiiooonnn ooofff nnneeewww mmmeeessshhhiiinnnggg
aaalllgggooorrriiittthhhmmm aaasss pppllluuuggg---iiinnn tttooo SSSAAALLLOOOMMMEEE

MMMeeessshhh mmmoooddduuullleee

Rédaction Vérification Approbation

J DOROVSKIKH V SANDLER R NEDELEC

Date : 17 Septembre 2010



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 2 / 25

Avant-propos:

This document is a developer guide that provides a details description of custom meshing plug-in
integration procedure.

SOMMAIRE

1. Introduction.................................................................................................................................. 3

2. Integration of meshing plug-in................................................................................................... 3
2.1 Create your plug-in module ................................................................................................... 3
2.2 Implement server plug-in library ............................................................................................ 3

2.2.1 Implement functionality of the algorithms .................................................................... 3
2.2.2 Implement functionality of the hypotheses .................................................................. 8
2.2.3 Define CORBA interfaces for your hypotheses and algorithms ................................ 10
2.2.4 Implement CORBA interfaces ................................................................................... 11
2.2.5 Implement factory function ........................................................................................ 11
2.2.6 Write Makefile.am...................................................................................................... 12

2.3 Implement client (GUI) plugin library ................................................................................... 12
2.3.1 Implement the required GUI ...................................................................................... 12
2.3.2 Provide graphical and textual resources for GUI....................................................... 13
2.3.3 Implement Hypothesis Creator and factory function ................................................. 13
2.3.4 Write Makefile.am...................................................................................................... 14

2.4 Create icons for the Object browser .................................................................................... 14
2.5 Describe your plug-in in dedicated XML resource files ....................................................... 14

2.5.1 Plug-in services description....................................................................................... 14
2.5.2 GUI resources description ......................................................................................... 17

2.6 Implement Python API ......................................................................................................... 18
2.6.1 Python dump.............................................................................................................. 18
2.6.2 smesh.py Python interface ........................................................................................ 19

2.7 Usage of notebook variables ............................................................................................... 22
2.8 Documentation..................................................................................................................... 23
2.9 Build your plug-in ................................................................................................................. 24
2.10 Set up environment.............................................................................................................. 24
2.11 Run SALOME ...................................................................................................................... 24



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 3 / 25

1. Introduction
This document describes how to add custom meshing tools to the SALOME application.

SALOME Mesh module provides a plug-in mechanism that allows using custom algorithms for
mesh computation. Each meshing plug-in is a set of algorithms and (optionally) hypotheses.

Each algorithm is intended to create a set of mesh elements from initial data:

• Given geometry (TopoDS_Shape) to be meshed. Hereafter in this document a geometric
object is referred as "shape”. For 3D algorithms an input can be also an imported 2D
closed mesh shell, and in this case no input shape is present.

• Results of other algorithms work (existing mesh elements). Usually (but not always)
algorithm of higher dimension uses mesh elements and nodes, generated by algorithms
of lower dimensions. For example, Quadrangle_2D algorithm builds faces grid, basing
on edges discretization, done by some 1D algorithm.

• Meshing parameters, defined via hypotheses, compatible with the algorithm.

This document is a developer guide that provides a details description of new meshing plug-in
integration procedure, step by step.

2. Integration of meshing plug-in

2.1 Create your plug-in module
First of all choose a name for your plug-in. Here after in this document we will mention it as
<MyPluginName>.

Create on disk a directory structure like for usual SALOME module. In the src directory you will
create directories for server and, optionally, client libraries of your plug-in. For example, see
structure of NETGENPLUGIN_SRC.

• Server library provides your algorithms and hypotheses implementation (including
corresponding CORBA interfaces).

• Client library provides implementation of graphical user interface for your hypotheses
creation.

2.2 Implement server plug-in library
Server library is the main part of your plug-in. Here you have to implement the way your
algorithms will generate mesh and the data your hypotheses will keep.

2.2.1 Implement functionality of the algorithms
Inherit your classes of algorithms from SMESH ones, for example:

class NETGENPlugin_NETGEN_3D: public SMESH_3D_Algo



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 4 / 25

• 3D algorithm generating volume elements (like, for example, hexahedron) should be
inherited from SMESH_3D_Algo.

• 2D algorithm generating surface elements (triangle, quadrangles and/or polygons) should
be inherited from SMESH_2D_Algo.

• 1D algorithms generating segments should be inherited from SMESH_1D_Algo.

See examples in:
SMESH_SRC/src/StdMeshers/StdMeshers_*.*
NETGENPLUGIN_SRC/src/NETGENPlugin/NETGENPlugin_*.*

2.2.1.1 Define algorithm features

First, it is necessary to specify features of your algorithm that define how its Compute() method,
which is to generate mesh, is called: in what turn, with what input etc. These features are defined
as member fields of SMESH_Algo and its base classes. These features have to be initialized or
their default values can be modified in a constructor of your algorithm class. The following
features can be specified:

_name This is an algorithm’s type name. It is used as an identifier of
the algorithm class internally within SALOME. For example,
this name is passed to the SMESH engine when it is
requested to create new instance of the algorithm. It must be
initialized in the algorithm constructor.

_compatibleHypothesis Array of names of hypotheses types that can be used to define
meshing parameters of this algorithm. This array must to be
filled - if the algorithm has any parameter - in the algorithm
constructor.

_onlyUnaryInput A Boolean flag indicating if the algorithm accepts only one or
several shapes as input. If several shapes are acceptable, all
the sub-shapes that should be computed with the same
parameters are passed to Compute() as a compound shape
(of type TopAbs_COMPOUND). The default value of this flag is
true, but it can be redefined in the constructor if necessary.

_requireDiscreteBoundary A Boolean flag indicating if the algorithm requires low
dimension mesh as input or not. NETGEN 1D-2D algorithm
can be referenced as a good example of algorithm whose
_requireDiscreteBoundary == false because it itself
can generate 1D mesh and thus it does not need a pre-
existing 1D mesh. On the other hand, MEFISTO algorithm is
an example of the algorithm that specifies
_requireDiscreteBoundary == true (i.e. with its
default value) because it can generate 2D mesh only and thus
it requires pre-existing 1D mesh that should be generated by
other algorithm fist. This flag’s default value is true; it can be
redefined in the constructor if necessary.

_requireShape A Boolean flag indicating if the 3D algorithm can work without
an input shape, i.e. is it able to generate a 3D mesh on an
input 2D mesh shell or not. Default true value can be
redefined in the constructor if necessary.



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 5 / 25

_supportSubmeshes A Boolean flag indicating if the algorithm, that does not require
a lower dimension mesh as input (i.e. its
_requireDiscreteBoundary == false), can use exiting
elements of lower dimension for mesh generation. For
example NETGEN 1D-2D algorithm uses 1D mesh built by
other algorithm, for that its _supportSubmeshes == true.
And, contrary, Body fitting algorithm can’t use neither 1D
nor 2D pre-existing mesh, and thus its _supportSubmeshes
== false. This flag’s default false value can be redefined
in the constructor if necessary.

Only _name attribute is mandatory to be defined. If other attributes are left default, then an
algorithm has following features:

• It has no parameters (as _compatibleHypothesis is empty);

• It accepts only one input shape (as _onlyUnaryInput == true );

• It requires that boundary of the input shape is meshed by other algorithm (as
_requireDiscreteBoundary == true);

• It can’t work on the mesh shell, without the input shape (_requireShape == true );

• It uses input mesh of lower dimension (_supportSubmeshes == true).

2.2.1.2 Implement needed methods

Next step consists in implementing of the meshing algorithm. The methods of the algorithm to be
implemented are described in this chapter.

2.2.1.2.1 CheckHypothesis()

bool CheckHypothesis(SMESH_Mesh&                          aMesh,
const TopoDS_Shape&                  aShape,
SMESH_Hypothesis::Hypothesis_Status& aStatus);

This method is called by the SMESH engine in two cases.
• If a hypothesis or algorithm is assigned/removed to/from aShape, in order to find out if all

needed hypotheses are assigned and thus it’s possible to call Compute() method.
• Just before calling Compute() in order to let algorithm find out meshing parameters to

be used for meshing aShape.

This method should check if needed hypotheses are assigned to the shape passed as argument
(all hypotheses assigned to a shape are returned by GetUsedHypothesis() method) and
return true or false depending on a result of check. In addition it should return a corresponding
value via a Hypothesis_Status out argument.

If an invalid value of parameter can’t be rejected in a method of hypothesis setting this parameter
(for example if parameter’s validity depends on a shape the hypothesis is assigned to), then
parameter’s validity should be checked by CheckHypothesis().

The following Hypothesis_Status’es can be returned:

• HYP_OK – everything is OK;

• HYP_MISSING – required hypothesis is missing;



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 6 / 25

• HYP_ALREADY_EXIST – several suitable hypotheses are assigned and it’s not clear
which one to use for meshing;

• HYP_BAD_PARAMETER – hypothesis has an invalid parameter value;

• HYP_NOTCONFORM – non-conform mesh would be produced if the assigned hypothesis is
used for meshing.

2.2.1.2.2 Compute()

bool Compute( SMESH_Mesh& theMesh, const TopoDS_Shape& theShape);
bool Compute( SMESH_Mesh& theMesh, SMESH_MesherHelper& theHelper);

This method is called when the user invokes “Compute mesh” command.

This method should implement mesh generation. Compute() method has two signatures, the
first one computes mesh on theShape, the second one computes 3D mesh on theMesh, which
is in this case a 2D mesh shell. The second Compute() can be optionally implemented in 3D
algorithms. theHelper argument of the second Compute() must be obligatory used for addition
of nodes and elements to theMesh.

While implementing the meshing algorithm, the following important aspects should be respected:

• During mesh generation, the algorithm should periodically check value of its
_computeCanceled attribute. If its value is true, it means that the user cancelled the
computation and the algorithm should stop operation.

• The algorithm should take into account order of the input mesh. Depending on this order
it should generate either liner or quadratic elements. To facilitate this task
SMESH_MesherHelper class, described below in this document, is intended.

• All elements and nodes added to the mesh by your algorithm must be assigned to the
shape being meshed. This is needed to remove theses nodes and elements from the
mesh when meshing parameters of your algorithm are modified by the user. In addition to
this, 1D algorithm must specify a parameter (U) of node on an edge and 2D algorithm
must specify parameters (U, V) of node on a face. To do this it is recommended to use
methods of SMESH_MesherHelper class described below.

• In case if some error occurs, the algorithm should report a failure reason via one of error()
methods (see SMESH_Algo base class).

• If the input mesh does not meet requirements of the algorithm, invalid elements and/or
nodes can be reported via addBadInputElement() method.

Note that SMESH_Algo class defines several static methods that can be useful for implementing
your meshing algorithm. Refer to the SMESH_Algo class for more details. As well, there are
several helper classes that can be useful at algorithm implementation, namely
SMESH_MesherHelper, SMESH_File, SMESH_Block, StdMeshers_FaceSide.

2.2.1.2.2.1 SMESH_MesherHelper

SMESH_MesherHelper class is a tool mostly intended for creation of either linear or quadratic
elements depending on the order of input mesh. It also provides information on particularity of the
shape (its periodicity, presence of seam edges and degenerated edges) and some other methods
useful while mesh generation.

The following code shows how SMESH_MesherHelper can be used in a 2D algorithm.



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 7 / 25

// create a helper
SMESH_MesherHelper helper( theMesh );
// analyze order of input mesh
_quadraticMesh = helper.IsQuadraticSubMesh( theShape );
// make helper assign new elements and nodes to theShape
helper.SetElementsOnShape( true );
...
// UV position of a new node on a geometrical face is stored
SMDS_MeshNode* newNode1 = helper.AddNode( x,y,z, /*ID=*/0, U,V );
...
// TRI3 or TRI6 element is created depending on this->_quadraticMesh
SMDS_MeshFace* tri = helper.AddFace( newNode1, newNode2, newNode3 );

2.2.1.2.2.2 SMESH_File

SMESH_File is a cross-platform interface for effective reading of files.

2.2.1.2.2.3 SMESH_Block

SMESH_Block is a tool working with the block shape. It provides

• Access to topology of the block.

• Computation of 3D coordinates of a point by its normalized parameters.

• Computation of normalized parameters of a given 3D point.

2.2.1.2.2.4 StdMeshers_FaceSide

StdMeshers_FaceSide is a tool sorting nodes located on a boundary of geometrical face and
providing information about these nodes useful for 2D meshing.

2.2.1.2.3 Evaluate()

bool Evaluate(SMESH_Mesh & theMesh,
const TopoDS_Shape & theShape,
MapShapeNbElems& theResMap);

This method is called when the user invokes “Evaluate” command on a mesh, which is useful to
estimate a final amount of mesh elements in the mesh.

This method should roughly estimate number of elements and nodes that will be generated by
Compute() method on theShape. Note that this method should work quickly, since the main
goal of evaluation operation is to allow the user previewing of approximate number of mesh
nodes/elements that might be produced during the actual mesh computation.

2.2.1.2.4 SetEventListener()

void SetEventListener(SMESH_subMesh* subMesh);

This method is needed only for algorithms like projection algorithms whose work depends on a
mesh generated on another sub-shape (not a lower dimension sub-shape of the sub-shape being
meshed).

This method gives algorithm the possibility to setup an object of type
SMESH_subMeshEventListener to some sub-mesh. This allows keeping the mesh up-to-date
at modification of hypotheses in the case where one sub-mesh depends on another but not
hierarchically (topological hierarchy is meant here).

For example, a sub-mesh computed by projection algorithm (target sub-mesh) depends on a sub-
mesh from which mesh was projected (source sub-mesh) but these sub-meshes are of the same
hierarchical level, so that if the source sub-mesh is cleared due to some reason (for example due



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 8 / 25

to modification of meshing parameters) the target sub-mesh normally is not cleared and the mesh
becomes out-of-date.

Setting SMESH_subMeshEventListener on the source sub-mesh allow transferring
SMESH_subMesh::CLEAN event from the source sub-mesh to the target sub-mesh so that the
both sub-meshes are cleared together and the mesh remains up-to-date.

The following code shows how to achieve this in SetEventListener() method of projection
algorithm.

// Create an event listener that will transfer important events from the
// source sub-mesh to the target one. The first arg of its constructor
// means that SMESH_subMesh is responsible for deleting this listener.
// The second arg is just an ID allowing to retrieve the listener and
// its data (SMESH_subMeshEventListenerData) from the sub-mesh storing
// them.

SMESH_subMeshEventListener* listener =
new SMESH_subMeshEventListener(true,“ProjAlgo::SetEventListener”);

// Create a "listener data" object storing the target sub-mesh where the
// listener will transfer events to.
// subMesh here is the target sub-mesh where ProjAlgo is assigned to.

SMESH_subMeshEventListenerData* data =
SMESH_subMeshEventListenerData::MakeData( subMesh );

// Set the event listener to the source sub-mesh.

subMesh->SetEventListener( listener, data, sourceSubMesh);

2.2.1.2.5 SubmeshRestored()

void SubmeshRestored(SMESH_subMesh* subMesh);

This method lets the algorithm restore needed event listeners after restoring the Study from a file.

If we continue considering the example with some projection algorithm, then in this method the
algorithm should find the source sub-mesh and to set event listeners in the same way as in
SetEventListener().

2.2.2 Implement functionality of the hypotheses
For hypothesis implementation you have to set up the following attributes in the constructor:

_name Hypothesis type name.

_param_algo_dim An integer value that holds a dimension of mesh elements, which will be
generated by your algorithm (that will use this hypothesis). For the optional
hypothesis, the value of this attribute must be negative, e.g. -2 means
“optional 2D hypothesis”.

While implementing methods that set up the values of meshing parameters, note that such
methods have to call NotifySubMeshesHypothesisModification() method in case if a
parameter value changes (like the following code, which is typical one, does):



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 9 / 25

void StdMeshers_NumberOfSegments::SetNumberOfSegments(int segmentNumber)
throw(SALOME_Exception)
{

if ( segmentNumber <= 0 )
throw SALOME_Exception

(LOCALIZED("number of segments must be positive"));

if ( segmentNumber != _numberOfSegments ) {
_numberOfSegments = segmentNumber;
NotifySubMeshesHypothesisModification();

}
}

See examples in:
SMESH_SRC/src/StdMeshers/StdMeshers_*.*
NETGENPLUGIN_SRC/src/NETGENPlugin/NETGENPlugin_*.*

The virtual methods described in the following paragraphs should be implemented for your
hypothesis class.

2.2.2.1.1 SetParametersByMesh()

bool SetParametersByMesh(const SMESH_Mesh* theMesh,
const TopoDS_Shape& theShape);

This method is called when a local hypothesis is created and theMesh on theShape is already
computed but using a hypothesis of other type. This method should, if possible, set values of
parameters according to mesh existing on theShape, that allows the user to attune the
parameter without a need to guess its current value. For example if an edge was meshed using
“Local Length” hypothesis then a being created "Nb. Segments" hypothesis can find out number
of segments by counting elements assigned to theShape, which is an edge in this case.

2.2.2.1.2 SetParametersByDefaults()

bool SetParametersByDefaults(const TDefaults& dflts,
const SMESH_Mesh* theMesh=0);

This method allows initializing parameter values of your hypothesis being created according to
preferred (defined in “Preferences” dialog) number of segments per edge
(TDefaults::_nbSegments) and preferred segment length depending on shape size
(TDefaults::_elemLength).

This method should, if possible, set parameter values according to default values of number of
segments (_nbSegments) and of segment length (_elemLength) held by TDefaults
structure. For example a hypothesis defining maximal area of surface element could define its
parameter value as _elemLength * _elemLength.

To help the hypothesis in evaluating parameter values, TDefaults structure also may hold a
shape to which the hypothesis is assigned.

2.2.2.1.3 SaveTo() and LoadFrom()

std::ostream & SaveTo(std::ostream & save);
std::istream & LoadFrom(std::istream & load);

These methods are called when a Study is saved and restored. These methods should be
implemented if a hypothesis have any parameter to store (there are also hypotheses that affect
algorithm behavior by only their presence, without need in any parameter).



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 10 / 25

Values of parameters should be stored as text in a steam. Pay attention to storing string
parameters that may include white spaces (name of groups for example). In case of presence of
white spaces in a string it won’t be possible to retrieve the whole string from the stream using >>
operator. One of possible solutions is to store each byte of a string as an integer (as an
example of implementation see resultGroupsToIntVec() method in
SMESH_SRC/src/StdMeshers/StdMeshers_ImportSource.cxx).

Note that it’s not possible to store a parameter of type TopoDS_Shape as an index of a sub-
shape in the main shape (shape to be meshed). This is because the hypotheses exist
independently of any mesh that holds the shape to be meshed and thus the hypothesis has no
access to any mesh when LoadFrom() is called. A solution is to implement the discussed
methods and to store a study entry of a referred shape at the CORBA interface implementation of
hypothesis. Then LoadFrom() method will be able to restore a shape by its entry and to pass it
to the core implementation of hypothesis.

2.2.3 Define CORBA interfaces for your hypotheses and algorithms
Create an IDL file in the idl directory of your module folders structure. Define there your
algorithms and hypotheses interfaces. Inherit corresponding SMESH interfaces, for example:

interface NETGENPlugin_NETGEN_3D : SMESH::SMESH_3D_Algo
{
};
Interface NETGENPlugin_Hypotheis : SMESH::SMESH_Hypothesis
{
...

Algorithm interfaces usually do not require any methods to be defined.

The interface of hypothesis should define API methods for setting up and retrieving values of
parameters. These methods will be called from your client (GUI) library or from Python scripts.

See examples in:
SMESH_SRC/idl/SMESH_BasicHypothesis.idl

It is recommended to respect the following two rules when designing IDL API of your hypothesis:

• Each method setting up a parameter value should be dedicated to only this parameter,
without any Boolean or textual switch specifying which parameter is set by this call.
Respecting this rule allows Python Dump functionality to convert several commands that
together define all parameters, into one command setting all parameters at once via the
Python method wrapping creation of your hypothesis.

• If a method sets up several values at once, i.e. it has several arguments, only the first
one must be of type that can be set via SALOME notebook variable (double, long or
short).

Hereafter is an example of a deprecated (first one) and recommended (second and third ones)
style of interface methods.

/*!
* Sets <start segment length> or <end segment length> parameter
* value.
* (This is a deprecated style).
*/

void SetLength(in double length, in boolean isStartLength);



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 11 / 25

/*!
* Sets <start segment length> parameter value
*/

void SetStartLength(in double length);
/*!
* Sets <end segment length> parameter value
*/

void SetEndLength(in double length);

And a Python dump of calls of the last two methods will possibly look like following:

StartAndEndLength = RegularAlgo.StartAndEndLength( 1.5, 10.1 )

2.2.4 Implement CORBA interfaces
Inherit your classes, implementing declared IDL interfaces, from the corresponding classes of
SMESH_I package and from your CORBA interfaces, for example:

class NETGENPlugin_NETGEN_3D_i:
public virtual POA_NETGENPlugin::NETGENPlugin_NETGEN_3D,
public virtual SMESH_3D_Algo_i

Here POA_NETGENPlugin::NETGENPlugin_NETGEN_3D is a name of class generated by
compiler from CORBA interface definition of NETGENPlugin_NETGEN_3D algorithm.

To learn signatures of the C++ methods you are to implement your IDL file, compile it and check
a header file generated by compiler from your IDL file. The file is located in idl folder of your
build directory and its name coincides with the name of your IDL file plus “.hh” extension.

Include your IDL files. For example, if you have described your interface in file
NETGENPlugin_Algorithm.idl, put the following two lines at the beginning of your header
file:

#include <SALOMEconfig.h>
#include CORBA_SERVER_HEADER(NETGENPlugin_Algorithm)

The common header file SALOMEconfig.h provides macro CORBA_SERVER_HEADER that is
used to include IDL interfaces to the C++ code.

See examples in:
SMESH_SRC/src/StdMeshers_I/StdMeshers_*_i.*
NETGENPLUGIN_SRC/src/NETGENPlugin/NETGENPlugin_*_i.*

2.2.5 Implement factory function
The goal of the factory function is to create hypotheses and algorithms instances by request from
SMESH module.

extern "C"
{

GenericHypothesisCreator_i* GetHypothesisCreator(const char* aHypType)
{

// Hypotheses
if (strcmp(aHypName, "LocalLength") == 0)

aCreator = new HypothesisCreator_i<StdMeshers_LocalLength_i>;
else if (strcmp(aHypName, "NumberOfSegments") == 0)
…



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 12 / 25

// Algorithms
else if (strcmp(aHypName, "Regular_1D") == 0)

aCreator = new HypothesisCreator_i<StdMeshers_Regular_1D_i>;
else if (strcmp(aHypName, "MEFISTO_2D") == 0)
…
return aCreator;

}
}

Note: when this method is called, parameter aHypType is initialized by value of <type> attribute
from your plug-in XML file (see chapter 2.5 for plug-in XML file description) and this is also a
value of attribute _name of your algorithm/hypothesis class.

See an example in:
SMESH_SRC/src/StdMeshers_I/StdMeshers_i.cxx
NETGENPLUGIN_SRC/src/NETGENPlugin/NETGENPlugin_i.cxx

2.2.6 Write Makefile.am
Imagine you want to call your server library MyServerLib. Then you have to specify variable
lib_LTLIBRARIES as libMyServerLib.la. You can choose any name for your server library,
just specify it correctly in your plug-in XML file as libMyServerLib.so (how to do it will be
described on page 15).

If implementation of your server library is separated into several packages, or you have other
reasons to make some of your header files visible outside concrete package (for example, you
want to use them in some other module implementation), do not forget to list them in
salomeinclude_HEADERS section.

List your source files in section dist_libMyServerLib_la_SOURCES.

Specify required compilation and linkage flags using libMyServerLib_la_CPPFLAGS and
libMyServerLib_la_LDFLAGS as.

See an examples in:
SMESH_SRC/src/StdMeshers_I/Makefile.am
NETGENPLUGIN_SRC/src/NETGENPlugin/Makefile.am

2.3 Implement client (GUI) plugin library
This step is required only if your hypotheses/algorithms need specific GUI for their construction.

It is usually required only for hypotheses, which provide some parameters for their construction.
Algorithms are usually created without any specific parameters.

Note, that hypothesis can be also created without any parameters; in such a case algorithm
behavior depends just on the hypothesis presence/absence.

2.3.1 Implement the required GUI
GUI consists of a set of the dialog boxes which are used to enter hypotheses parameters by the
user.

See an examples in:
SMESH_SRC/src/StdMeshersGUI/StdMeshersGUI_*Creator.*
NETGENPLUGIN_SRC/src/GUI/NETGENPluginGUI_*Creator.*



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 13 / 25

In order to create your own dialog box:

• If parameters of your hypothesis have one of the following simple types: integer, double
or string, you can inherit your Creator class from
StdMeshersGUI_StdHypothesisCreator and redefine the methods
storeParams(), stdParams(), attuneStdWidget(), hypTypeName().

• In the other case you should inherit your Creator class from
SMESHGUI_GenericHypothesisCreator and redefine methods buildFrame(),
storeParams(), retrieveParams()

Example:
SMESH_SRC/src/StdMeshersGUI/StdMesherGUI_NbSegmentsCreator.*

All data from your plug-in XML file (described later in chapter 2.5) is accessible in your GUI via
HypothesisData class:

HypothesisData* data = SMESH::GetHypothesisData( aHypType );

See HypothesisData class definition details at:
SMESH_SRC/src/SMESHGUI/SMESHGUI_Hypotheses.h

2.3.2 Provide graphical and textual resources for GUI
Optionally you can implement the GUI resource files <MyResourceKey>_images.ts and
<MyResourceKey>_msg_en.ts. These files are the part of the Qt internationalization system
used in SALOME.

See an example in:
SMESH_SRC/src/StdMeshersGUI/StdMeshers_*.ts
NETGENPLUGIN_SRC/src/GUI/NETGENPlugin_*.ts

Note:

• ICON_SMESH_TREE_HYPO_<MyHypType1> specifies an ID of the icon for the Object
Browser for the hypothesis <MyHypType1>.

• ICON_SMESH_TREE_ALGO_<MyAlgType1> specifies an ID of the icon for the Object
Browser for the algorithm <MyAlgType1>.

See the chapter 2.5 for more details about meaning of the MyResourceKey, MyHypType1,
MyAlgType1.

2.3.3 Implement Hypothesis Creator and factory function
Below is a typical code of the factory function that creates and export new instance of the
hypothesis creator class. This method is automatically invoked from SALOME.

extern "C"
{

SMESHGUI_GenericHypothesisCreator*
GetHypothesisCreator( const QString& aHypType )

{
if( aHypType=="NumberOfSegments" )



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 14 / 25

return new StdMeshersGUI_NbSegmentsCreator();
else

return new StdMeshersGUI_StdHypothesisCreator( aHypType );
}

}

Here aHypType parameter is used to pass the value of the <type> attribute in your plug0in XML
file (see 2.5).

See an example in:
SMESH_SRC/src/StdMeshersGUI/StdMeshersGUI.cxx
SMESH_SRC/src/StdMeshersGUI/StdMeshersGUI_StdHypothesisCreator
SMESH_SRC/src/StdMeshersGUI/StdMeshersGUI_NbSegmentsCreator

2.3.4 Write Makefile.am
Let you want to call your client library MyClientLib, then set variable lib_LTLIBRARIES value
to libMyClientLib.la. This is the default name of the library. You can choose any name for
your client library; then specify it correctly in your plug-in XML file as libMyClientLib.so.

If you want to export some of your header files (e.g. you want to use them in some other module
implementation), do not forget to list them in the salomeinclude_HEADERS section.

List your source files in the section dist_libMyClientLib_la_SOURCES.

Define MOC_FILES variable as a list of files, which will be generated automatically for dialog
boxes and widgets using Qt moc compiler (meta data for GUI classes, refer to Qt documentation
for more details).

Set nodist_libMyClientLib_la_SOURCES variable value to the $(MOC_FILES) since these
files must not be included in a distribution.

Also set nodist_salomeres_DATA to the list of *.qm files; these files will be automatically
generated from the corresponding resource *.ts files
.
Specify libMyClientLib_la_CPPFLAGS and libMyClientLib_la_LDFLAGS as required
compilation and linkage flags.

See an example in:
SMESH_SRC/src/StdMeshersGUI/Makefile.am
NETGENPLUGIN_SRC/src/GUI/Makefile.am

2.4 Create icons for the Object browser
Icons are image files which are used for the displaying of the hypotheses and algorithms in
SALOME Object Browser. If your hypotheses/algorithms do not need specific GUI, but you want
to provide icons for object browser, see 2.3.2 chapter.

2.5 Describe your plug-in in dedicated XML resource files

2.5.1 Plug-in services description
You should create an XML file named <MyPluginName>.xml which should describe all the
algorithms and hypotheses, implemented by your plug-in package. This description if used:



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 15 / 25

• By SMESH GUI while defining the mesh or sub-mesh

o To create your algorithms and hypotheses;
o To find hypotheses suitable for each algorithm;
o To know compatible algorithms, etc.

• By SMESH engine

o To learn how manage specific Python wrappings for algorithms (for generation of
Python dump, for example).

See sample of such a file below:

<meshers-group name="MyName"
resources="MyResourceKey"
server-lib="libMyServerLib.so"
gui-lib="libMyClientLib.so">

<hypotheses>
<hypothesis type="MyHypType1"

label-id="My beautiful 1D hypothesis"
icon-id="my_hypo_1_icon.png"
dim="1"/>

<hypothesis type="MyHypType2"
label-id="My beautiful 3D hypothesis"
icon-id="my_hypo_2_icon.png"
dim="3"
need-geom="false"
auxiliary="true"/>

</hypotheses>
<algorithms>

<algorithm type="MyAlgType1"
label-id="My beautiful 1D algorithm"
icon-id="my_algo_1_icon.png"/>
hypos="MyHypType1,…"
opt-hypos="MyHypType5,…"
input="VERTEX"
output="EDGE"
dim="1"/>

<algorithm type="MyAlgType2"
label-id="My beautiful 3D algorithm"
icon-id="my_algo_2_icon.png"
input="QUAD"
need-geom=”false”
support-submeshes="true"
dim="3"/>

</algorithms>
</meshers-group>
<hypotheses-set-group>

<hypotheses-set name="Automatic Tetrahedralization"
hypos="MaxLength"
algos="Regular_1D, MEFISTO_2D, NETGEN_3D"/>

<hypotheses-set name="Automatic Hexahedralization"
hypos="NumberOfSegments"
algos="Regular_1D, Quadrangle_2D, Hexa_3D"/>

</hypotheses-set-group>

See an example in:



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 16 / 25

SMESH_SRC/resources/StdMeshers.xml
NETGENPLUGIN_SRC/resources/NETGENPlugin.xml

Attributes of the <meshers-group> tag:

• Value of the <name> attribute is used to collect hypotheses/algorithms in groups, when
they are displayed in the algorithm/hypothesis creation dialog box in GUI. You can also
use this attribute for short description of your meshing plug-n (implementing your GUI).

• Value of the <resources> attribute ("MyResourceKey" in above example) is used to
access resources (messages and icons) from the GUI (see chapter 2.3.2). It should
coincide with the name of plug-in.

• Value of the <server-lib> attribute is a name of your meshing plug-in’s server library
(see chapter 2.2.6).

• Value of the <gui-lib> attribute is a name of your meshing plug-in’s client library (see
chapter 2.3.4).

Attributes of the <hypothesis/algorithm> tag:

• Value of the <type> attribute is a unique name of the type of hypothesis/algorithm.

o It is a value of the _name field of your hypothesis class (see chapter 2.2.1,
implementation of the constructor of StdMeshers_LocalLength class: _name
= "LocalLength").

o It is a key to each certain hypothesis class (see chapter 2.2.5, implementation of
GetHypothesisCreator() method in the StdMeshers_i.cxx).

o It is a key to each certain hypothesis GUI (see chapter 2.3.1, for example
implementation of StdMeshersGUI_StdHypothesisCreator class, usage of
method hypType()).

o It is a key to algorithm/hypothesis icon in the Object Browser (see chapter 2.3.2).

• Value of the <label-id> attribute is displayed in the GUI in the list of available
hypotheses/algorithms ("Create Hypothesis/Algorithm" dialog).

• Value of the <icon-id> attribute is a name of the icon file, which is displayed in the GUI
in the list of available hypotheses/algorithms ("Create Hypothesis/Algorithm" dialog).

• Value of the <dim> attribute means algorithm/hypothesis dimension and is used in GUI
as algorithms/hypotheses of different dimensions are created separately.

• If <need-geom> attribute is set to “false”, an algorithm can be used for creating mesh
without underlying geometry.

Specific attributes of the <hypothesis> tag:

• If <auxiliary> attribute is set to “true”, a hypothesis can be used in addition to an
assigned “main” hypothesis (such auxiliary hypothesis can be selected in “Create Mesh”
dialog in a special area).

Specific attributes of <algorithm> tag:



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 17 / 25

• Value of the <hypos> attribute is a list of types of hypotheses (type of hypothesis is
defined by <type> attribute of <hypothesis>), usable by this algorithm.

• Value of the <opt-hypos> attribute is a list of types of optional hypotheses, usable by
this algorithm (such as "Propagation", "QuadranglePreference", etc.)

• Value of the <input> attribute means types of mesh elements of a lower dimension,
allowed in input mesh for this algorithm.

• Value of the <output> attribute means type of mesh elements, generated by this
algorithm.

• If <support-submeshes> attribute is set to “true”, this means that the algorithm
building all-dim elements supports sub-meshes.

Attributes of the <hypotheses-set> tag:

• Value of the <name> attribute is a name of set.

• Value of the <hypos> attribute is a list of types of hypotheses, which will be created
automatically, if user selects this set.

• Value of the <algos> attribute is a list of types of algorithms, which will be created
automatically, if user selects this set.

Note: all attributes values from this XML file will be accessible in the GUI via HypothesisData
and HypothesesSet classes (see 2.3.1).

2.5.2 GUI resources description
Another important XML resource file to be created is SalomeApp.xml. This file is automatically
parsed by SALOME GUI; its goal is to specify:

• Path to the GUI resources: internationalization files and icons.

• Path to the user documentation (optionally) and its position in the Help menu (by default
references to the documentation files are added as child items in the Help  Mesh
module sub-menu).

• Specify default values of any applicable preferences (optionally). The preferences can be
accessed (set/get) via centralized SALOME resource manager. Note, however, that for
the current moment mechanism of exporting the preferences for meshing plug-ins to the
general Preferences dialog box is not implemented. Though, the preferences can be
used internally by the plug-in library if necessary.

The typical contents of SalomeApp.xml file is the following:

<document>
<section name="resources">
<parameter name="MyPluginName"

value="${MyPluginName_ROOT_DIR}/share/salome/resources/mypluginname"/>
<section name="smesh_help">
<parameter name="Plug-ins/My Plugin User's Guide"

value="${MyPluginName_ROOT_DIR}/share/doc/salome/gui/MyPluginName/index.html"/>
</section>
</document>



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 18 / 25

• Parameter <MyPluginName> of <resources> section specifies path to the resources
directory.

• The documentation for the plug-in can be listed in optional <smesh_help> section. You
can specify as many documents in this section as you need – all of them will be listed in
the Help  Mesh module sub-menu of the application. Here, <name> attribute of each
parameter, listed in <smesh_help> section, specifies the document’s title and,
optionally, its position in the Help  Mesh module sub-menu (the above example adds
menu item Help  Mesh module  Plug-ins  My Plugin User's Guide). Attribute
<value> specifies absolute path to the documentation file; you can use any environment
variables – the usual way is specify the relative sub-directory of the module’s root
directory, as demonstrated in above example.

2.6 Implement Python API
This step is optional.

2.6.1 Python dump
Creation of your algorithm and hypotheses is dumped into Python script automatically by
SALOME, you only need to add some C++ statements in methods of your hypotheses
implementing IDL API (discussed in chapter 2.2.4) that set parameter values.

Include a needed header in your MyPluginName_Hypothesis_i.cxx

#include <SMESH_PythonDump.hxx>

Add code creating python commands. Fox example (note that all sample codes in the section 2.6
are coherent and comments within code are meaningful):

void MyPluginName_Hypothesis_i::SetParams(CORBA::Long           nb,
SMESH::double_array&  vals,
GEOM::GEOM_Object_ptr geom)

{
// set meshing parameters
...

// Python Dump
SMESH::TPythonDump() << _this() << “.SetParams( “

<< nb   << “, “
<< vals << “, “
<< geom << “)”

}

A result Python command will look like following.

MyPluginName_Hypothesis.SetParams( 12, [ 2.1, 2.3 ], Face_1 )

SMESH::TPythonDump class defines << operator to print objects of most types used in
SMESH (see the class definition in SMESH_SRC/src/SMESH_I/SMESH_PythonDump.hxx), so
this step should be trivial.



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 19 / 25

2.6.2 smesh.py Python interface
Mesh module defines smesh.py Python interface simplifying creation of meshes in Python
scripts. Consider, for example, the following Python command written with use of smesh.py
interface.

mesh.Segment().NumberOfSegments( 12, 2.1 )

This command wraps the following separate commands:

1. Creation of an instance of StdMeshers_Regular_1D algorithm.

2. Addition of the created algorithm to the mesh.

3. Creation of an instance of StdMeshers_NumberOfSegments hypothesis.

4. Addition of the created hypothesis to the mesh.

5. Setting meshing parameters to the hypothesis.

To provide such a wrapping for your algorithm and hypotheses you need to:

• Define a Python class wrapping creation of your algorithm.
• Describe required wrapping in <MyPluginName>.xml file.

2.6.2.1 Python class of the algorithm

The Python class wrapping your algorithm is to be created in <MyPluginName>DC.py file.

See examples in
SMESH_SRC/src/SMESH_SWIG/StdMeshersDC.py
NETGENPLUGIN_SRC/src/NETGENPlugin/NETGENPluginDC.py

First, your Python file should import needed stuff from smesh.py:

from smesh import Mesh_Algorithm

Import your server library:

import MyPluginName

If your Python algorithm is to be created by one of existing methods of smesh.Mesh class, like
Triangle() or Hexahedron() (which are actually dynamically added to smesh.Mesh class at
loading of smesh.py), then you need to define an ID of your class, i.e. a string variable that will be
used as an argument of this method to discriminate your algorithm from others:

MyPluginID = "MyPluginName_2D"
# this ID will be used like this:
# myAlgo = mesh.Quadrangle( algo=smesh.MyPluginID )

This variable is optional if you want that your algorithm to be created by a uniquely named
method of smesh.Mesh class.

Inherit your class from smesh.Mesh_Algorithm:

class MyAlgorithm (Mesh_Algorithm):

Define tree obligatory attributes in your class:



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 20 / 25

• meshMethod – a string specifying a method of smesh.Mesh class by which your
algorithm will be created (this method does not actually exist in the smesh.Mesh class;
instead it will be dynamically added to it in runtime).

• algoType – a string serving as ID of your class (already mentioned above in this
paragrath - MyPluginID).

• docHelper – a doc string of your class that will be used at generation of documentation
of meshMethod.

class MyAlgorithm (Mesh_Algorithm):

meshMethod = "MyQuadAlgorithm"
algoType = MyPluginID
docHelper = """Creates MyPluginName_Algorithm, which generates

quadrangles on arbitrary faces"""

As result of the example code above, your algorithm can be created by smesh.Mesh like this:

quadAlgo = mesh.MyQuadAlgorithm(algo=smesh.MyPluginID)
# or simply
quadAlgo = mesh.MyQuadAlgorithm()

Define a constructor and methods creating your hypothesis (and probably defining meshing
parameters at once) like following.

def __init__(self, mesh, geom ):
# This method creates an instance of your algorithm and assigns it
#  to the mesh

Mesh_Algorithm.__init__(self)
self.Create( mesh, geom, "algoTypeName" ) # the last arg must be
## equal to the attribute _name of your algorithm core class
## (described in chapter 2.2.1.1)

def Parameters( nb, vals, geom ):
# This method creates an instance of your hypothesis, assigns it to
# the mesh and sets parameter values

hyp = self.Hypothesis( "hypTypeName",
[nb, vals, geom],
"libMyPluginName.so")

# where the last arg must be equal to the attribute _name of your
# hypothesis core class (described in chapter 2.2.1.1).
# The second arg will be used to give a name to your new hypothesis.
# The third arg names your server plug-in library.

hyp.SetParams( nb, vals, geom ) # initialize meshing parameters

As a result of the code above, your hypothesis can be created and initialized by the following
command

myHyp = quadAlgo.Parameters( 12, [ 2.1, 2.3 ], Face_1 )

Update your Makefile.am to install the Python file where you define your class of algorithm:

dist_salomescript_DATA = <MyPluginName>DC.py



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 21 / 25

2.6.2.2 XML description of Python wrapping

In order to let SALOME know how to wrap calls relating to your plug-in into calls of smesh.py
Python interface, you have to provide description of this wrapping in <MyPluginName>.xml file
(described in chapter 2.5).

Suppose we want to get the following wrapping commands:

quadAlgo = mesh.MyQuadAlgorithm()
myHyp = quadAlgo.Parameters( 12, [ 2.1, 2.3 ], Face_1 )

An XML description of this wrapping should be added in the <algorithm> tag as its child:

<algorithm type = "algoTypeName"
...
dim = "2">

<python-wrap>
<algo>algoTypeName=MyQuadAlgorithm( algo=smesh.MyPluginID )</algo>
<hypo>

hypTypeName=Parameters(SetParams(1),SetParams(2),SetParams(3))
</hypo>

</python-wrap>
</algorithm>

An <algo> tag describes how an algorithm of given type name (here “algoTypeName”) is
created:

• By what method of smesh.Mesh class (here “MyQuadAlgorithm()”).

• With what algorithm ID as argument (here “algo=smesh.MyPluginID”).

Algorithm ID argument “(algo=…)” can be omitted in our case as MyQuadAlgorithm() is a
unique method name of smesh.Mesh, we could simply write
“algoTypeName=MyQuadAlgorithm()”.

<hypo> tag describes how a hypothesis of given type name (here “hypTypeName”, which is
equal to _name attribute of C++ class of your hypothesis and to “type” attribute of
<hypothesis> tag) is created:

• By what method of the Python algorithm (here “Parameters()”).

• With what arguments; each argument in this description specifies a method of hypothesis
IDL API (here “SetParams”) and one-based index of the argument of this method to use
(here "(1),(2),(3)"). In our example the first argument (“SetParams(1)”) means
that the first argument of MyAlgorithm.Parameters() Python method is equal to the
first argument of MyPlugin_Hypothesis_i::SetParams() method (implementing
IDL API).

In “snapshot” mode of Python dump, consecutive commands changing a parameter of hypothesis
are erased from a dump script if some intermediate parameter values are not used in the final
mesh. Consider the following Python commands.

myHyp.SetParams(12, [ 2.1, 2.3 ], Face_1 )
myHyp.SetParams(10, [ 2.1, 2.3 ], Face_1 )
mesh.Compute()



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 22 / 25

The first command has no effect to the final mesh state and in “snapshot” mode it will be erased.
But if a hypothesis command not simply changes a value of parameter but adds more values to a
complex parameter, then repeated calls of such a command should not be erased.

The following XML description says SMESH Engine not to erase repeated calls of AddParam1()
and AddPara2() methods of your hypothesis (<python-wrap> tag is added as a child to
<hypothesis> tag):

<hypothesis type="hypTypeName" dim="2">
<python-wrap>

<accumulative-methods>
AddParam1, AddParam2

</accumulative-methods>
</python-wrap>

</hypothesis>

2.7 Usage of notebook variables
This step is optional.

To enable usage of notebook variables by your plug-in you need to

• Pass names of variables used to set meshing parameters from GUI side to Engine side
and backward (this is implemented in GUI part of your plug-in).

• Specify which arguments of a command being dumped can be set via notebook variables
(this is done in C++ classes implementing IDL API of your hypotheses).

2.7.1.1 GUI part

Notebook variables can be entered in spinbox GUI controls only. So, if your Hypothesis Creator is
inherited from StdMeshersGUI_StdHypothesisCreator, i.e. GUI widgets for hypothesis
parameters are created automatically, then notebook variables can be used for parameters of
simple types: double, long and short. If your Hypothesis Creator is inherited from
SMESHGUI_GenericHypothesisCreator then you are to use classes
SalomeApp_IntSpinBox and SMESHGUI_SpinBox to implement GUI controls for parameters
that can be set via notebook variables.

When hypothesis edition starts, your Hypothesis Creator should initialize text of a spin widget by
a name of variable, if it was used to set up a parameter. You can get this variable name by calling
SMESH_Hypothesis::GetVarParameter( string methodName ), which returns an
empty string if no variable was used to set the parameter. Here “methodName” is a name of the
method setting the parameters, it is “SetParams” in the case of our sample:

hyp->GetVarParameter( "SetParams" );

If your Hypothesis Creator is inherited from StdMeshersGUI_StdHypothesisCreator, then
the code defining contents of the spin widget will look like following.

SMESHGUI_GenericHypothesisCreator::StdParam item;
if ( !initVariableName( hyp, item, "SetParams" ))

item.myValue = h->GetParam1(); // only the 1st arg can variable!

When values of parameters are passed from GUI widgets to your hypothesis, as hypothesis
edition ends, your Hypothesis Creator should (the order of calls is important!):



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 23 / 25

• Pass a text from a widget to the hypothesis, which will store it if it’s a name of variable;
along with the text of widget, a name of the hypothesis method setting a parameter
should be specified; for this, call SMESH_Hypothesis::SetVarParameter( text,
method ) method inherited by your hypothesis.

• Set a value of the parameter to your hypothesis.

If your Hypothesis Creator is inherited from StdMeshersGUI_StdHypothesisCreator, then
the code doing this will look like this:

hyp->SetVarParameter( params[0].text(), "SetParams" );
hyp->SetParams( params[0].myValue.toInt(), vals, geom );

2.7.1.2 IDL API of hypotheses

In C++ code implementing IDL API of your hypothesis, you should wrap a parameter that can be
defined via a notebook variable in an object of type SMESH::TVar. After such a modification, the
code provided in chapter 2.6.1 will look as following.

void MyPluginName_Hypothesis_i::SetParams(CORBA::Long           nb,
SMESH::double_array&  vals,
GEOM::GEOM_Object_ptr geom)

{
// set meshing parameters
...

// Python Dump
SMESH::TPythonDump() << _this() << ".SetParams( "

<< SMESH::TVar( nb ) << ", "// !!!!!!!!!!!!!
<< vals << ", "
<< geom << ")"

}

2.8 Documentation
This step is optional.

You can provide a documentation of your meshing plug-in in any appropriate form. However, if
you provide the documentation as HTML files, SALOME can automatically locate it and include
into the Help menu of the SALOME GUI desktop.

Usual approach for documentation generation is to use doxygen program for generation of the
HTML documentation from plain text files

SALOME will automatically search for the index.html file in the following directory:
${MyPluginName_ROOT_DIR}/share/doc/salome/MyPluginName

If the file is present, the reference to it is added to the Help menu. The position of this item in Help
menu can be customized in SalomeApp.xml file. The usual approach is to put it to the Help 
Mesh module Plug-ins submenu (see paragraph 2.5.2).

Optionally, it is possible to generate documentation of the methods dynamically added to the
smesh.Mesh class. To do this, you have to:

• Add doxygen-style documentation to your module’s Python API (paragraph 2.6.2).



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 24 / 25

• Add rules for generation of documentation of dynamic methods to the Makefile.am
responsible for your documentation generation. This can be done by means of
collect_mesh_methods.py script supplied with the SMESH module. This script
generates dummy smesh.py file in the build directory, with description of all dynamic
methods. This file should be then listed as an additional input of doxygen. Be careful to
avoid of copying dummy smesh.py file to the installation directory of your plug-in by
mistake; it might break using of SMESH module’s Python API in runtime.

See example in
NETGENPLUGIN_SRC/doc/salome/gui/NETGENPLUGIN

2.9 Build your plug-in
Configure and build your plug-in in the usual way (by invocation of build_configure, configure,
make and make install commands). Check that all libraries (libMyServerLib.so and,
optionally, libMyClientLib.so) are built; resource files are properly installed, etc.

2.10 Set up environment
Set environment variable MyPluginName_ROOT_DIR to your plug-in installation directory path.
For example:

export MyPluginName_ROOT_DIR=/home/user/SALOME/INSTALL/MyPluginName

Note that you do not need to list your plug-in anywhere. It will be automatically detected by
SALOME in runtime during the application initialization. You only need to specify
MyPluginName_ROOT_DIR as described above.

SALOME will automatically locate your XML file, searching for it in the following directory (note
that last component of the path is a name of plugin in lower case):

${MyPluginName_ROOT_DIR}/share/salome/resources/mypluginname

2.11 Run SALOME
Run SALOME application, create new study, load Mesh module. Via menu Mesh  Create Mesh
invoke “Create Mesh” dialog box and look at the available algorithms list. If everything is done
properly, you should see your algorithms in this list.

Try to create a new hypothesis and check, if your hypotheses are available. Define complete set
of algorithms and hypotheses; click “OK” in the mesh creation dialog. Compute the created mesh.

Check the result of computation.



Integrat ion of  new meshing algorithm as pl ug- in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide Page 25 / 25

Références documentaires
Documents de
référence

Les documents cités dans le présent document ou utiles à la compréhension de
son contenu sont :

Titre Référence
[1] Contrat Marché C434C71440: TMA PAL/SALOME 2008-

2010 : Année 2010
C434C71440 / OC2D07081

Historique des
révisions

Les versions successives du présent document sont :

Version Rédacteur Date Objet de la révision
Version en

vigueur V1M8 V SANDLER 30/08/2012 Add chapter for documentation. Minor corrections.

Versions
antérieures V1M7 E AGAPOV 23/08/2012 Update for SALOME 6.6

V1M6 J DOROVSKIKH 17/09/2010 Update for SALOME 5.1.4

V1M5 J DOROVSKIKH 20/06/2007 Update for SALOME 3.2.6

V1M4 J DOROVSKIKH 07/02/2007 Update for SALOME 3.2.5

V1M3 J DOROVSKIKH 30/03/2006 Additional remarks

V1M2 M KAZAKOV 14/02/2006 Minor revision and remarks

V1M1 J DOROVSKIKH 14/02/2006 Draft version for validation

V1M0 J DOROVSKIKH 24/01/2006 Initial version


