A

EURIWARE

Developer Guide

Integration of new meshing
algorithm as plug-in to SALOME
Mesh maodule

Rédaction Vérification Approbation

J DOROVSKIKH V SANDLER R NEDELEC

Date : 17 Septembre 2010

Référence : PT/OCC/OC2D10001/006/V1M8

Developer Guide

Page 1/ 25

A

EURIWARE

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

This
integ

Avant-propos:

document is a developer guide that provides a details description of custom meshing plug-in

ration procedure.

SOMMAIRE

I 01 1 o Yo [H o {0 o [P PPSPTP 3
2. Integration of MEeShING PIUG-IN......uiiiiiiiiieee e e r e e e e e rr e e e e e s e nnnes 3
2.1 Create your plug-in MOAUIEcooiiiiiiii e e e e e e e e eanes 3
2.2 Implement server plug-in lIDraryc.vveeieiii e e s e e e e e s nnnes 3
2.2.1 Implement functionality of the algorithmsccccce i 3
2.2.2 Implement functionality of the hypotheSescevveiiiiiiiiiiie e, 8
2.2.3 Define CORBA interfaces for your hypotheses and algorithmscccccvvveeeeenn. 10
2.2.4 Implement CORBA INTEITACESc.uuviiiieeieiiiiiieie e e e e s r e e e e e s e erea e 11
2.2.5 Implement factory fUNCHIONocuviiiiie e 11
2.2.6 Write MaKefilE.am . ..ot 12

2.3 Implement client (GUI) plugin liBrary ... 12
2.3.1 Implement the required GUIuoiiiiiiiii e 12
2.3.2 Provide graphical and textual resources for GUL..............ccoiiiiiiiiiiiiiiieiieeeeeeen 13
2.3.3 Implement Hypothesis Creator and factory functioncccoooiiiiiiiiiiniiiiiieeen, 13
2.3.4 Write MaKefile.am . ..ot 14

2.4 Create icons for the ODbJECt BIOWSETccviiiiiiiieieec e e e 14
2.5 Describe your plug-in in dedicated XML resource filesccccceeviiiiiiieenie e 14
2.5.1 PIlug-in SErviCes deSCIIPLIONcciiceiiiieee ettt e e s e e e e e s s er e e e e 14
2.5.2 GUI resources deSCIPLIONccciiiciiieeree e e e ietetieee e e e s s s steer e e e e e s e srnrreee e e e e e s e nnnnneeeeeeaean 17

2.6 IMPIEMENL PYINON AP ittt s e e e e e e s et e e e e e s e e nnrareeeeaeeeannnnes 18
P2 G T R Y41 (o I o (U] 4] o TP 18
2.6.2 smesh.py Python iNterface ... 19

2.7 Usage of notebook VariabIes ... 22
AR T B To o0 0 4 [T g1 c= i o] o PO PRSPPI 23
2.9 BUIld YOUE PIUG-IN <.ttt e e e e e e st e e e e e e e s st breeeeaeeeaannnes 24
2.10 St UP ENVIFONIMENT....eiiiiiiiiiiiiiie ettt e ettt e e e e e e e bbbt e e e e e e e s anbbbeeeeaaeseaannbbeeeeeaeesaannnes 24
2. L1 RUN SALOME ...ttt ettt ettt e e sttt e e sttt e e e sttt e e e abbe e e e aabbeeeeanbaeeeeane 24

Developer Guide

Page 2/ 25

A

EURIWARE

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

2.1

2.2

221

Introduction

This document describes how to add custom meshing tools to the SALOME application.

SALOME Mesh module provides a plug-in mechanism that allows using custom algorithms for
mesh computation. Each meshing plug-in is a set of algorithms and (optionally) hypotheses.

Each algorithm is intended to create a set of mesh elements from initial data:

» Given geometry (TopoDS_Shape) to be meshed. Hereafter in this document a geometric
object is referred as "shape”. For 3D algorithms an input can be also an imported 2D
closed mesh shell, and in this case no input shape is present.

* Results of other algorithms work (existing mesh elements). Usually (but not always)
algorithm of higher dimension uses mesh elements and nodes, generated by algorithms
of lower dimensions. For example, Quadr angl e_2D algorithm builds faces grid, basing
on edges discretization, done by some 1D algorithm.

» Meshing parameters, defined via hypotheses, compatible with the algorithm.

This document is a developer guide that provides a details description of new meshing plug-in
integration procedure, step by step.

Integration of meshing plug-in

Create your plug-in module

First of all choose a name for your plug-in. Here after in this document we will mention it as
<MyPluginName>.

Create on disk a directory structure like for usual SALOME module. In the sr ¢ directory you will
create directories for server and, optionally, client libraries of your plug-in. For example, see
structure of NETGENPLUG N_SRC.

» Server library provides your algorithms and hypotheses implementation (including
corresponding CORBA interfaces).

e Client library provides implementation of graphical user interface for your hypotheses
creation.

Implement server plug-in library

Server library is the main part of your plug-in. Here you have to implement the way your
algorithms will generate mesh and the data your hypotheses will keep.

Implement functionality of the algorithms

Inherit your classes of algorithms from SMESH ones, for example:

cl ass NETGENPI ugi n_NETGEN 3D: public SMESH 3D Al go

Developer Guide Page 3/ 25

SALOME Mesh module

A Integration of new meshing algorithm as plug-in to

EURIWARE

Référence : PT/OCC/OC2D10001/006/V1M8

e 3D algorithm generating volume elements (like, for example, hexahedron) should be
inherited from SMESH_3D_Al go.

» 2D algorithm generating surface elements (triangle, quadrangles and/or polygons) should
be inherited from SMESH_2D Al go.

» 1D algorithms generating segments should be inherited from SMESH_1D Al go.

See examples in:

SMESH SRC/ src/ St dMesher s/ St dMeshers_*. *
NETGENPLUGQ N_SRC/ sr c/ NETGENPI ugi n/ NETGENPI ugi n_*. *

2211 Define algorithm features

First, it is necessary to specify features of your algorithm that define how its Conput e() method,
which is to generate mesh, is called: in what turn, with what input etc. These features are defined
as member fields of SMESH Al go and its base classes. These features have to be initialized or
their default values can be modified in a constructor of your algorithm class. The following

features can be specified:

_nanme

This is an algorithm’s type name. It is used as an identifier of
the algorithm class internally within SALOME. For example,
this name is passed to the SMESH engine when it is
requested to create new instance of the algorithm. It must be
initialized in the algorithm constructor.

_comnpati bl eHypot hesi s

Array of names of hypotheses types that can be used to define
meshing parameters of this algorithm. This array must to be
filled - if the algorithm has any parameter - in the algorithm
constructor.

_onl yUnaryl nput

A Boolean flag indicating if the algorithm accepts only one or
several shapes as input. If several shapes are acceptable, all
the sub-shapes that should be computed with the same
parameters are passed to Conput e() as a compound shape
(of type TopAbs_COVPOUND). The default value of this flag is
t r ue, but it can be redefined in the constructor if necessary.

_requireDi screteBoundary

A Boolean flag indicating if the algorithm requires low
dimension mesh as input or not. NETGEN 1D- 2D algorithm
can be referenced as a good example of algorithm whose
_requirebDiscreteBoundary == fal se because it itself
can generate 1D mesh and thus it does not need a pre-
existing 1D mesh. On the other hand, MEFI STO algorithm is
an example of the algorithm that specifies
_requireDiscreteBoundary == true (i.e. with its
default value) because it can generate 2D mesh only and thus
it requires pre-existing 1D mesh that should be generated by
other algorithm fist. This flag’s default value is t r ue; it can be
redefined in the constructor if necessary.

_requi reShape

A Boolean flag indicating if the 3D algorithm can work without
an input shape, i.e. is it able to generate a 3D mesh on an
input 2D mesh shell or not. Default true value can be
redefined in the constructor if necessary.

Developer Guide

Page 4/ 25

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8
EURIWARE
_support Submeshes A Boolean flag indicating if the algorithm, that does not require
a lower dimension mesh as input (i.e. its
_requireDiscreteBoundary == fal se), can use exiting

elements of lower dimension for mesh generation. For
example NETGEN 1D- 2D algorithm uses 1D mesh built by
other algorithm, for that its _support Subnmeshes == true.
And, contrary, Body fitti ng algorithm can’'t use neither 1D
nor 2D pre-existing mesh, and thus its _support Subneshes
== fal se. This flag's default f al se value can be redefined
in the constructor if necessary.

Only nane attribute is mandatory to be defined. If other attributes are left default, then an
algorithm has following features:

e Ithas no parameters (as _conpat i bl eHypot hesi s is empty);
» It accepts only one input shape (as _onl yUnaryl nput == true);

» It requires that boundary of the input shape is meshed by other algorithm (as

_requireDi screteBoundary == true);
e It can’'t work on the mesh shell, without the input shape (_r equi r eShape == true);
e ltuses input mesh of lower dimension (_support Subneshes == true).

2212 Implement needed methods

Next step consists in implementing of the meshing algorithm. The methods of the algorithm to be
implemented are described in this chapter.

2.2.1.2.1 CheckHypothesis()

bool CheckHypot hesi s(SMESH Meshé& aMesh,
const TopoDS_Shape& aShape,
SMESH Hypot hesi s: : Hypot hesi s_Stat us& aSt at us) ;

This method is called by the SMESH engine in two cases.
» If a hypothesis or algorithm is assigned/removed to/from aShape, in order to find out if all
needed hypotheses are assigned and thus it's possible to call Conput e() method.
» Just before calling Conput e() in order to let algorithm find out meshing parameters to
be used for meshing aShape.

This method should check if needed hypotheses are assigned to the shape passed as argument
(all hypotheses assigned to a shape are returned by Get UsedHypot hesi s() method) and
return t r ue or f al se depending on a result of check. In addition it should return a corresponding
value via a Hypot hesi s_St at us out argument.
If an invalid value of parameter can’t be rejected in a method of hypothesis setting this parameter
(for example if parameter’s validity depends on a shape the hypothesis is assigned to), then
parameter’s validity should be checked by CheckHypot hesi s() .
The following Hypot hesi s_St at us’es can be returned:

e HYP_OK - everything is OK;

e HYP_M SSI NG- required hypothesis is missing;

Developer Guide Page 5/ 25

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

« HYP_ALREADY_EXI ST — several suitable hypotheses are assigned and it's not clear
which one to use for meshing;

 HYP_BAD PARAMETER - hypothesis has an invalid parameter value;

e HYP_NOTCONFORM- non-conform mesh would be produced if the assigned hypothesis is
used for meshing.

2.2.1.2.2 Compute()

bool Conpute(SMESH Mesh& t heMesh, const TopoDS Shape& t heShape);
bool Conpute(SMESH Mesh& t heMesh, SMESH Mesher Hel per & t heHel per);

This method is called when the user invokes “Compute mesh” command.

This method should implement mesh generation. Conput e() method has two signatures, the
first one computes mesh on t heShape, the second one computes 3D mesh on t heMesh, which
is in this case a 2D mesh shell. The second Conput e() can be optionally implemented in 3D
algorithms. t heHel per argument of the second Conput e() must be obligatory used for addition
of nodes and elements to t heMesh.

While implementing the meshing algorithm, the following important aspects should be respected:

e« During mesh generation, the algorithm should periodically check value of its
_conput eCancel ed attribute. If its value is t r ue, it means that the user cancelled the
computation and the algorithm should stop operation.

» The algorithm should take into account order of the input mesh. Depending on this order
it should generate either liner or quadratic elements. To facilitate this task
SMESH Mesher Hel per class, described below in this document, is intended.

« All elements and nodes added to the mesh by your algorithm must be assigned to the
shape being meshed. This is needed to remove theses nodes and elements from the
mesh when meshing parameters of your algorithm are modified by the user. In addition to
this, 1D algorithm must specify a parameter (U) of node on an edge and 2D algorithm
must specify parameters (U, V) of node on a face. To do this it is recommended to use
methods of SMESH Mesher Hel per class described below.

» In case if some error occurs, the algorithm should report a failure reason via one of error()
methods (see SMESH_Al go base class).

» If the input mesh does not meet requirements of the algorithm, invalid elements and/or
nodes can be reported via addBadl nput El emrent () method.

Note that SMESH_Al go class defines several static methods that can be useful for implementing
your meshing algorithm. Refer to the SMESH Al go class for more details. As well, there are
several helper classes that can be wuseful at algorithm implementation, namely
SMESH Mesher Hel per, SMESH Fil e, SMESH Bl ock, StdMeshers_ FaceSi de.

2.2.1.2.2.1 SMESH_MesherHelper

SMESH Mesher Hel per class is a tool mostly intended for creation of either linear or quadratic
elements depending on the order of input mesh. It also provides information on particularity of the
shape (its periodicity, presence of seam edges and degenerated edges) and some other methods
useful while mesh generation.

The following code shows how SMESH Mesher Hel per can be used in a 2D algorithm.

Developer Guide Page 6/ 25

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

/'l create a hel per

SMESH _Mesher Hel per hel per(theMesh);

/1 analyze order of input mesh

_quadraticMesh = hel per.|sQuadrati cSubMesh(theShape);
/1 make hel per assign new el ements and nodes to theShape
hel per. Set El enent sOnShape(true);

//UV position of a new node on a geonetrical face is stored
SMDS MeshNode* newNodel = hel per. AddNode(x,y,z, /*ID=*/0, UV);

/1 TRI3 or TRI6 elenent is created depending on this-> quadrati cMesh
SMDS_MeshFace* tri = hel per. AddFace(newNodel, newNode2, newNode3);

2.2.1.2.2.2 SMESH_File

SMESH Fi | e is a cross-platform interface for effective reading of files.
2.2.1.2.2.3 SMESH_Block

SMESH Bl ock is a tool working with the block shape. It provides

» Access to topology of the block.
» Computation of 3D coordinates of a point by its normalized parameters.

e Computation of normalized parameters of a given 3D point.
2.2.1.2.2.4 StdMeshers_FaceSide

St dMesher s_FaceSi de is a tool sorting nodes located on a boundary of geometrical face and
providing information about these nodes useful for 2D meshing.

2.2.1.2.3 Evaluate()

bool Eval uat e(SMESH Mesh & t heMesh,
const TopoDS_Shape & theShape,
MapShapeNbEl ens & t heResMap) ;

This method is called when the user invokes “Evaluate” command on a mesh, which is useful to
estimate a final amount of mesh elements in the mesh.

This method should roughly estimate number of elements and nodes that will be generated by
Conput e() method on t heShape. Note that this method should work quickly, since the main
goal of evaluation operation is to allow the user previewing of approximate number of mesh
nodes/elements that might be produced during the actual mesh computation.

2.2.1.2.4 SetEventListener()
voi d Set Event Li st ener (SMESH_subMesh* subMesh) ;

This method is needed only for algorithms like projection algorithms whose work depends on a
mesh generated on another sub-shape (nhot a lower dimension sub-shape of the sub-shape being
meshed).

This method gives algorithm the possibilty to setup an object of type
SMESH subMeshEvent Li st ener to some sub-mesh. This allows keeping the mesh up-to-date
at modification of hypotheses in the case where one sub-mesh depends on another but not
hierarchically (topological hierarchy is meant here).

For example, a sub-mesh computed by projection algorithm (target sub-mesh) depends on a sub-
mesh from which mesh was projected (source sub-mesh) but these sub-meshes are of the same
hierarchical level, so that if the source sub-mesh is cleared due to some reason (for example due

Developer Guide Page 7/ 25

A

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

2.2.1.25

2.2.2

to modification of meshing parameters) the target sub-mesh normally is not cleared and the mesh
becomes out-of-date.

Setting SMESH subMeshEvent Li stener on the source sub-mesh allow transferring
SMESH subMesh: : CLEAN event from the source sub-mesh to the target sub-mesh so that the
both sub-meshes are cleared together and the mesh remains up-to-date.

The following code shows how to achieve this in Set Event Li st ener () method of projection
algorithm.

/] Create an event listener that will transfer inportant events fromthe
/1 source sub-nesh to the target one. The first arg of its constructor
/1 nmeans that SMESH subMesh is responsible for deleting this |istener.

/1 The second arg is just an ID allowing to retrieve the listener and

/] its data (SMESH subMeshEventListenerData) fromthe sub-nesh storing
/1 them

SMESH subMeshEvent Li stener* |istener =
new SMESH_subMeshEventListener(true,“ProjAlgo::Set Event Li st ener ™);

/]l Create a "listener data" object storing the target sub-nesh where the
/1 listener will transfer events to.
/1l subMesh here is the target sub-nesh where ProjAl go is assigned to.

SMESH subMeshEvent Li st ener Dat a* data =
SMESH subMeshEvent Li st ener Dat a: : MakeDat a(subMesh);

Il Set the event l|istener to the source sub-nesh.

subMesh- >Set Event Li stener(|istener, data, sourceSubMesh);
SubmeshRestored()

voi d SubneshRest or ed(SMESH _subMesh* subMesh);

This method lets the algorithm restore needed event listeners after restoring the Study from a file.
If we continue considering the example with some projection algorithm, then in this method the

algorithm should find the source sub-mesh and to set event listeners in the same way as in
Set Event Li stener ().

Implement functionality of the hypotheses

For hypothesis implementation you have to set up the following attributes in the constructor:

_nane Hypothesis type name.

_param al go_di m| An integer value that holds a dimension of mesh elements, which will be
generated by your algorithm (that will use this hypothesis). For the optional
hypothesis, the value of this attribute must be negative, e.g. -2 means
“optional 2D hypothesis”.

While implementing methods that set up the values of meshing parameters, note that such
methods have to call Noti f ySubMeshesHypot hesi sModi fication() method in case if a
parameter value changes (like the following code, which is typical one, does):

Developer Guide Page 8/ 25

A

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

22211

22212

2.2.2.1.3

voi d StdMeshers_Number OF Segnent s: : Set Nunmber OF Segnent s(i nt segnent Nunber)
t hr om(SALOVE_Except i on)

if (segnment Number <= 0)
t hrow SALOVE _Exception
(LOCALI ZED(" nurmber of segments nust be positive"));

if (segment Number != _nunber Of Segnents) {
_nunber O Segnent s = segnent Nunber ;
Not i f ySubMeshesHypot hesi sModi fi cation();
}
}

See examples in:
SMESH SRC/ src/ St dMesher s/ St dMeshers_*. *
NETCGENPLUG N_SRC/ sr ¢/ NETGENPI ugi n/ NETGENPI ugi n_*. *

The virtual methods described in the following paragraphs should be implemented for your
hypothesis class.

SetParametersByMesh()

bool Set Par anet er sByMesh(const SMESH Mesh* t heMesh,
const TopoDS_Shape& t heShape);

This method is called when a local hypothesis is created and t heMesh on t heShape is already
computed but using a hypothesis of other type. This method should, if possible, set values of
parameters according to mesh existing on t heShape, that allows the user to attune the
parameter without a need to guess its current value. For example if an edge was meshed using
“Local Length” hypothesis then a being created "Nb. Segments" hypothesis can find out number
of segments by counting elements assigned to t heShape, which is an edge in this case.

SetParametersByDefaults()

bool Set Par anet er sByDef aul t s(const TDefaults& dflts,
const SMESH Mesh* theMesh=0);

This method allows initializing parameter values of your hypothesis being created according to
preferred (defined in “Preferences” dialog) number of segments per edge
(TDef aul ts:: _nbSegments) and preferred segment length depending on shape size
(TDef aul ts: : _el emLengt h).

This method should, if possible, set parameter values according to default values of number of
segments (_nbSegnents) and of segment length (_el emLength) held by TDefaults
structure. For example a hypothesis defining maximal area of surface element could define its
parameter value as _el em_ength * _el enlLengt h.

To help the hypothesis in evaluating parameter values, TDef aul t s structure also may hold a
shape to which the hypothesis is assigned.

SaveTo() and LoadFrom()

std::ostream & SaveTo(std:: ostream & save);
std::istream & LoadFron(std::istream & | oad);

These methods are called when a Study is saved and restored. These methods should be
implemented if a hypothesis have any parameter to store (there are also hypotheses that affect
algorithm behavior by only their presence, without need in any parameter).

Developer Guide Page 9/ 25

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

Values of parameters should be stored as text in a steam. Pay attention to storing string
parameters that may include white spaces (name of groups for example). In case of presence of
white spaces in a string it won't be possible to retrieve the whole string from the stream using >>
oper at or. One of possible solutions is to store each byte of a string as an integer (as an
example of implementation see resul t G oupsTol nt Vec() method in
SMESH SRC/ src/ St dMesher s/ St dMeshers_| mport Sour ce. cxx) .

Note that it's not possible to store a parameter of type TopoDS_Shape as an index of a sub-
shape in the main shape (shape to be meshed). This is because the hypotheses exist
independently of any mesh that holds the shape to be meshed and thus the hypothesis has no
access to any mesh when LoadFron() is called. A solution is to implement the discussed
methods and to store a study entry of a referred shape at the CORBA interface implementation of
hypothesis. Then LoadFr on{) method will be able to restore a shape by its entry and to pass it
to the core implementation of hypothesis.

2.2.3 Define CORBA interfaces for your hypotheses and algorithms

Create an IDL file in the i dl directory of your module folders structure. Define there your
algorithms and hypotheses interfaces. Inherit corresponding SMESH interfaces, for example:

nt erface NETGENPI ugi n_NETGEN 3D : SMESH: : SMESH 3D Al go

—_—— A —

,nt erface NETGENPI| ugi n_Hypot heis : SMESH. : SMESH Hypot hesi s

B

Algorithm interfaces usually do not require any methods to be defined.

The interface of hypothesis should define APl methods for setting up and retrieving values of
parameters. These methods will be called from your client (GUI) library or from Python scripts.

See examples in:
SMESH _SRC/ i dl / SMESH Basi cHypot hesi s. i dl

It is recommended to respect the following two rules when designing IDL API of your hypothesis:

« Each method setting up a parameter value should be dedicated to only this parameter,
without any Boolean or textual switch specifying which parameter is set by this call.
Respecting this rule allows Python Dump functionality to convert several commands that
together define all parameters, into one command setting all parameters at once via the
Python method wrapping creation of your hypothesis.

« If a method sets up several values at once, i.e. it has several arguments, only the first
one must be of type that can be set via SALOME notebook variable (doubl e, | ong or
short).

Hereafter is an example of a deprecated (first one) and recommended (second and third ones)
style of interface methods.

[*]

* Sets <start segment |ength> or <end segnent | ength> paraneter
* val ue.

* (This is a deprecated style).

*/

void SetlLength(in double Iength, in boolean isStartlLength);

Developer Guide Page 10/ 25

A

EURIWARE

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

2.2.4

2.25

*
/:! Sets <start segnent |ength> paraneter val ue
vgi/ d Set StartLength(in double |ength);

/:! Sets <end segnent | ength> paraneter val ue
voi/ d Set EndLengt h(i n doubl e | ength);

And a Python dump of calls of the last two methods will possibly look like following:

St art AndEndLengt h = Regul ar Al go. St art AndEndLength(1.5, 10.1)

Implement CORBA interfaces

Inherit your classes, implementing declared IDL interfaces, from the corresponding classes of
SMESH | package and from your CORBA interfaces, for example:

cl ass NETGENPI ugi n_NETGEN 3D i:
public virtual POA NETGENPI ugi n: : NETGENPI ugi n_NETGEN 3D,
public virtual SMESH 3D Al go_i

Here POA NETGENPI ugi n: : NETGENPI ugi n_NETGEN 3D is a name of class generated by
compiler from CORBA interface definition of NETGENPI ugi n_NETGEN_3D algorithm.

To learn signatures of the C++ methods you are to implement your IDL file, compile it and check
a header file generated by compiler from your IDL file. The file is located in i dl folder of your
build directory and its name coincides with the name of your IDL file plus “.hh” extension.

Include vyour IDL files. For example, if you have described your interface in file
NETGENPI ugi n_Al gorithm i dl, put the following two lines at the beginning of your header
file:

#i ncl ude <SALOVEconfi g. h>
#i ncl ude CORBA_SERVER HEADER(NETGENPI ugi n_Al gorithm

The common header file SALOVEconfi g. h provides macro CORBA SERVER HEADER that is
used to include IDL interfaces to the C++ code.

See examples in:
SMESH SRC/ src/ StdMeshers |/ StdMeshers * i.*
NETGENPLUGQ N_SRC/ src/ NETGENPI ugi n/ NETGENPI ugi n_* _i . *

Implement factory function

The goal of the factory function is to create hypotheses and algorithms instances by request from
SMESH module.

extern "C'

{
Generi cHypot hesi sCreator _i * Get Hypot hesi sCreat or (const char* aHypType)

/'l Hypot heses
if (strcnmp(aHypName, "Local Length") == 0)

aCreator = new Hypot hesi sCreator i <St dMeshers_Local Length_i >;
else if (strcnp(aHypNane, "Nunber O Segnents") == 0)

Developer Guide Page 11/ 25

A

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

2.2.6

2.3

2.3.1

/1 Al gorithns
else if (strcnp(aHypNane, "Regul ar_1D') == 0)

aCreator = new Hypot hesi sCreat or_i <St dMeshers_Regul ar _1D i >;
else if (strcnp(aHypNane, "MEFISTO 2D') == 0)

return aCreator;

}
}

Note: when this method is called, parameter aHypType is initialized by value of <t ype> attribute
from your plug-in XML file (see chapter 2.5 for plug-in XML file description) and this is also a
value of attribute _nane of your algorithm/hypothesis class.

See an example in:
SMESH SRC/ src/ St dMeshers |/ St dMeshers_i . cxx
NETGENPLUG N_SRC/ sr ¢/ NETGENPI ugi n/ NETGENPI ugi n_i . cxx

Write Makefile.am

Imagine you want to call your server library MySer ver Li b. Then you have to specify variable
l[ib_LTLI BRARI ESas!i bMyServerlLib. | a.Youcan choose any name for your server library,
just specify it correctly in your plug-in XML file as | i bMySer ver Li b. so (how to do it will be
described on page 15).

If implementation of your server library is separated into several packages, or you have other
reasons to make some of your header files visible outside concrete package (for example, you
want to use them in some other module implementation), do not forget to list them in
sal onei ncl ude_HEADERS section.

List your source files in section di st _| i bMyServerLi b_| a_SOURCES.

Specify required compilation and linkage flags using |i bMyServerLib_| a_CPPFLAGS and
i bMyServerLib | a LDFLAGS as.

See an examples in:
SMESH SRC/ src/ StdMeshers |/ Makefil e. am
NETGENPLUG N_SRC/ src/ NETGENPI ugi n/ Makefi |l e. am

Implement client (GUI) plugin library

This step is required only if your hypotheses/algorithms need specific GUI for their construction.

It is usually required only for hypotheses, which provide some parameters for their construction.
Algorithms are usually created without any specific parameters.

Note, that hypothesis can be also created without any parameters; in such a case algorithm
behavior depends just on the hypothesis presence/absence.

Implement the required GUI

GUI consists of a set of the dialog boxes which are used to enter hypotheses parameters by the
user.

See an examples in:
SMESH_SRC/ src/ St dMesher sGUI / St dMesher sGUI _*Creat or . *
NETGENPLUG N_SRC/ src/ GUI / NETGENPI ugi nGUI _*Creator. *

Developer Guide Page 12/ 25

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

In order to create your own dialog box:

« If parameters of your hypothesis have one of the following simple types: integer, double
or string, you can inherit your Creator class from
St dMesher sGUJI _St dHypot hesi sCr eat or and redefine the methods
st orePar ans(), stdParans(), att uneSt dW dget (), hypTypeNarne() .

* In the other case you should inherit your Creator class from
SMESHGUI _CGeneri cHypot hesi sCreat or and redefine methods buil dFrame(),
storeParans(),retrieveParans()

Example:
SMESH_SRC/ src/ St dMesher sGUI / St dMesher GUI _NbSegnent sCr eat or . *

All data from your plug-in XML file (described later in chapter 2.5) is accessible in your GUI via
Hypot hesi sDat a class:

Hypot hesi sDat a* data = SMESH: : Get Hypot hesi sDat a(aHypType);

See Hypot hesi sDat a class definition details at:
SMESH SRC/ sr ¢/ SMESHGUI / SMESHGUI _Hypot heses. h

2.3.2 Provide graphical and textual resources for GUI

Optionally you can implement the GUI resource files <MyResour ceKey> i mages.ts and
<MyResour ceKey> nsg_en. ts. These files are the part of the Qt internationalization system
used in SALOME.

See an example in:
SMESH SRC/ src/ St dMeshers@JI / St dMeshers_*.ts
NETGENPLUG N_SRC/ src/ GUI / NETGENPl ugin_*.ts

Note:

e | CON_SMESH TREE HYPO <MyHypTypel> specifies an ID of the icon for the Object
Browser for the hypothesis <MyHypTypel>.

e | CON_SMESH TREE ALGO <MyAl gTypel> specifies an ID of the icon for the Object
Browser for the algorithm <MyAl gTypel>.

See the chapter 2.5 for more details about meaning of the MyResour ceKey, MyHypTypel,
WAl gTypel.

2.3.3 Implement Hypothesis Creator and factory function

Below is a typical code of the factory function that creates and export new instance of the
hypothesis creator class. This method is automatically invoked from SALOME.

extern "C'

SMESHGUI _Generi cHypot hesi sCreat or *
Get Hypot hesi sCreator(const QString& aHypType)
{

i f(aHypType=="Number O Segnent s")

Developer Guide Page 13/ 25

A

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

2.3.4

2.4

2.5

2.5.1

return new StdMeshersGUl _NbSegment sCreator () ;
el se
return new StdMeshersGU _St dHypot hesi sCreat or (aHypType);
}

}

Here aHypType parameter is used to pass the value of the <t ype> attribute in your plugOin XML
file (see 2.5).

See an example in:
SMESH SRC/ src/ St dMesher sGUJI / St dMesher sGUI . cxX
SMESH _SRC/ src/ St dMesher sGUI / St dMesher sGJI _St dHypot hesi sCr eat or
SMESH _SRC/ sr ¢/ St dMesher sGUI / St dMesher sGUI _NbSegnent sCr eat or

Write Makefile.am

Let you want to call your client library MyCl i ent Li b, then set variable | i b_LTLI BRARI ES value
toli bMyCientlLib.la. This is the default name of the library. You can choose any name for
your client library; then specify it correctly in your plug-in XML file as | i bMyd i ent Li b. so.

If you want to export some of your header files (e.g. you want to use them in some other module
implementation), do not forget to list them in the sal onei ncl ude_HEADERS section.

List your source files in the section di st _| i bMyC i ent Li b_| a_ SOURCES.

Define MOC_FI LES variable as a list of files, which will be generated automatically for dialog
boxes and widgets using Qt moc compiler (meta data for GUI classes, refer to Qt documentation
for more details).

Set nodi st _|i bMyd i ent Li b_| a_ SOURCES variable value to the $(MOC_FI LES) since these
files must not be included in a distribution.

Also set nodi st _sal omer es_DATA to the list of *.gm files; these files will be automatically
generated from the corresponding resource *.ts files

Specify libMyCQientLib | a CPPFLAGS and |ibMdientLib |a LDFLAGS as required
compilation and linkage flags.

See an example in:
SMESH SRC/ src/ St dMesher sGUI / Makefi | e. am
NETGENPLUG N_SRC/ src/ GUI / Makefil e. am

Create icons for the Object browser

Icons are image files which are used for the displaying of the hypotheses and algorithms in
SALOME Object Browser. If your hypotheses/algorithms do not need specific GUI, but you want
to provide icons for object browser, see 2.3.2 chapter.

Describe your plug-in in dedicated XML resource files

Plug-in services description

You should create an XML file named <MyPl ugi nName>. xnl which should describe all the
algorithms and hypotheses, implemented by your plug-in package. This description if used:

Developer Guide Page 14/ 25

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

e By SMESH GUI while defining the mesh or sub-mesh

o To create your algorithms and hypotheses;
o To find hypotheses suitable for each algorithm;
o To know compatible algorithms, etc.

By SMESH engine

o To learn how manage specific Python wrappings for algorithms (for generation of
Python dump, for example).

See sample of such a file below:

<nesher s- group nane="M/Nane"
resour ces="M/Resour ceKey"
server-lib="1ibM/ServerlLib.so"
gui-lib="libWdientLib.so">
<hypot heses>
<hypot hesi s type="M/HypTypel"
| abel -id="My beautiful 1D hypot hesis"
icon-id="ny_hypo 1 icon.png"
di n=" 1"/ >
<hypot hesi s type="M/HypType2"
| abel -id="My beautiful 3D hypot hesis"
i con-id="ny_hypo 2 icon.png"
di n=" 3"
need- geom="f al se"
auxiliary="true"/>
</ hypot heses>
<al gorit hns>
<al gorithmtype="WAl gTypel"
| abel -id="MWy beautiful 1D al gorithnt
icon-id="my_algo_1 icon.png"/>
hypos="MyHypTypel,.."
opt - hypos="MyHypType5,.."
i nput =" VERTEX"
out put =" EDGE"
di me" 1"/ >
<al gorithmtype="WAl gType2"
| abel -id="My beautiful 3D algorithnt
icon-id="ny_algo_ 2 icon.png"
i nput =" QUAD"
need- geom="false”
support - submeshes="true"
di nm=" 3"/ >
</al gorithnms>
</ mesher s- group>
<hypot heses- set - gr oup>
<hypot heses- set name="Automatic Tetrahedralization"
hypos="MaxLengt h"
al gos="Regul ar _1D, MEFI STO 2D, NETGEN 3D'/>
<hypot heses- set nanme="Autonati c Hexahedralization"
hypos="Number Of Segnent s"
al gos="Regul ar _1D, Quadrangl e_2D, Hexa_3D'/>
</ hypot heses- set - gr oup>

See an example in:

Developer Guide Page 15/ 25

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

SMESH SRC/ r esour ces/ St dMesher s. xni
NETGENPLUG N_SRC/ r esour ces/ NETGENP! ugi n. xm

Attributes of the <mesher s- gr oup> tag:

» Value of the <nane> attribute is used to collect hypotheses/algorithms in groups, when
they are displayed in the algorithm/hypothesis creation dialog box in GUI. You can also
use this attribute for short description of your meshing plug-n (implementing your GUI).

* Value of the <resour ces> attribute ("MyResourceKey" in above example) is used to
access resources (messages and icons) from the GUI (see chapter 2.3.2). It should
coincide with the name of plug-in.

* Value of the <server-1i b> attribute is a name of your meshing plug-in's server library
(see chapter 2.2.6).

* Value of the <gui - | i b> attribute is a name of your meshing plug-in’s client library (see
chapter 2.3.4).

Attributes of the <hypot hesi s/ al gori t hne tag:
» Value of the <t ype> attribute is a unique name of the type of hypothesis/algorithm.
o Itis a value of the nane field of your hypothesis class (see chapter 2.2.1,
implementation of the constructor of St dMeshers_Local Lengt h class: _nane

= "Local Lengt h").

o Itis a key to each certain hypothesis class (see chapter 2.2.5, implementation of
Get Hypot hesi sCreat or () method in the St dMeshers_i . cxx).

o It is a key to each certain hypothesis GUI (see chapter 2.3.1, for example
implementation of St dMesher sGUJI _St dHypot hesi sCr eat or class, usage of
method hypType()).

o ltis a key to algorithm/hypothesis icon in the Object Browser (see chapter 2.3.2).

* Value of the <l abel -i d> attribute is displayed in the GUI in the list of available
hypotheses/algorithms ("Create Hypothesis/Algorithm" dialog).

» Value of the <i con- i d> attribute is a name of the icon file, which is displayed in the GUI
in the list of available hypotheses/algorithms ("Create Hypothesis/Algorithm" dialog).

» Value of the <di n> attribute means algorithm/hypothesis dimension and is used in GUI
as algorithms/hypotheses of different dimensions are created separately.

» If <need- geon® attribute is set to “false”, an algorithm can be used for creating mesh
without underlying geometry.

Specific attributes of the <hypot hesi s> tag:

« If <auxiliary> attribute is set to “true”, a hypothesis can be used in addition to an
assigned “main” hypothesis (such auxiliary hypothesis can be selected in “Create Mesh”
dialog in a special area).

Specific attributes of <algorithm> tag:

Developer Guide Page 16 / 25

A

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

Value of the <hypos> attribute is a list of types of hypotheses (type of hypothesis is
defined by <type> attribute of <hypothesis>), usable by this algorithm.

Value of the <opt - hypos> attribute is a list of types of optional hypotheses, usable by
this algorithm (such as " Pr opagat i on", " Quadr angl ePr ef er ence", etc.)

Value of the <i nput > attribute means types of mesh elements of a lower dimension,
allowed in input mesh for this algorithm.

Value of the <out put > attribute means type of mesh elements, generated by this
algorithm.

If <support-subneshes> attribute is set to “true”, this means that the algorithm
building all-dim elements supports sub-meshes.

Attributes of the <hypot heses- set > tag:

Value of the <nane> attribute is a name of set.

Value of the <hypos> attribute is a list of types of hypotheses, which will be created
automatically, if user selects this set.

Value of the <al gos> attribute is a list of types of algorithms, which will be created
automatically, if user selects this set.

Note: all attributes values from this XML file will be accessible in the GUI via Hypot hesi sDat a
and Hypot hesesSet classes (see 2.3.1).

2.5.2 GUI resources description

Another important XML resource file to be created is Sal oneApp. xm . This file is automatically
parsed by SALOME GUI; its goal is to specify:

Path to the GUI resources: internationalization files and icons.

Path to the user documentation (optionally) and its position in the Help menu (by default
references to the documentation files are added as child items in the Help = Mesh
module sub-menu).

Specify default values of any applicable preferences (optionally). The preferences can be
accessed (set/get) via centralized SALOME resource manager. Note, however, that for
the current moment mechanism of exporting the preferences for meshing plug-ins to the
general Preferences dialog box is not implemented. Though, the preferences can be
used internally by the plug-in library if necessary.

The typical contents of Sal omreApp. xn file is the following:

<docunent >
<section nane="resources">
<par anet er nanme="M/Pl ugi nNane"
val ue="${ MyPl ugi nName_ROOT_DI R}/ shar e/ sal one/ r esour ces/ mypl ugi nnanme"/ >
<section nanme="snesh_hel p">
<par aneter nane="Plug-ins/My Plugin User's Guide"
val ue="${ MyPl ugi nName_ROOT_DI R}/ shar e/ doc/ sal one/ gui / MyPl ugi nNane/ i ndex. htm "/ >
</ section>
</ docunent >

Developer Guide

Page 17/ 25

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

* Parameter <MyPl ugi nName> of <r esour ces> section specifies path to the resources
directory.

» The documentation for the plug-in can be listed in optional <srmesh_hel p> section. You
can specify as many documents in this section as you need — all of them will be listed in
the Help = Mesh module sub-menu of the application. Here, <nane> attribute of each
parameter, listed in <smesh_hel p> section, specifies the document’s title and,
optionally, its position in the Help 2 Mesh module sub-menu (the above example adds
menu item Help 2 Mesh module -2 Plug-ins 2 My Plugin User's Guide). Attribute
<val ue> specifies absolute path to the documentation file; you can use any environment
variables — the usual way is specify the relative sub-directory of the module’s root
directory, as demonstrated in above example.

2.6 Implement Python API

This step is optional.

2.6.1 Python dump

Creation of your algorithm and hypotheses is dumped into Python script automatically by
SALOME, you only need to add some C++ statements in methods of your hypotheses
implementing IDL API (discussed in chapter 2.2.4) that set parameter values.

Include a needed header in your MyPl ugi nNanme_Hypot hesi s_i.cxx

#i ncl ude <SMESH Pyt honDunp. hxx>

Add code creating python commands. Fox example (note that all sample codes in the section 2.6
are coherent and comments within code are meaningful):

voi d MyPl ugi nNane_Hypot hesi s_i :: Set Par ans(CORBA: : Long nb,
SMESH: : doubl e_array& vals,
GEOM : GEOM hj ect _ptr geom
{

/1 set meshing paraneters

/1 Python Dunp
SMESH: : TPythonDump() << _this() << “.SetParams(“
<< nb << 13 13

<< VaIS << u, 113
<< geom << u)n

}

A result Python command will look like following.

MyPl ugi nNane_Hypot hesi s. Set Parans(12, [2.1, 2.3], Face_ 1)

SMESH: : TPyt honDunp class defines << operat or to print objects of most types used in
SMESH (see the class definition in SMESH _SRC/ sr ¢/ SMESH_| / SMESH_Pyt honDunp. hxx), so
this step should be trivial.

Developer Guide Page 18/ 25

A

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

2.6.2

26.2.1

smesh.py Python interface

Mesh module defines snmesh. py Python interface simplifying creation of meshes in Python
scripts. Consider, for example, the following Python command written with use of snesh. py
interface.
mesh. Segment (). Nunber Of Segnents(12, 2.1)
This command wraps the following separate commands:

1. Creation of an instance of St dMesher s_Regul ar _1D algorithm.

2. Addition of the created algorithm to the mesh.

3. Creation of an instance of St dMesher s_Number Of Segnent s hypothesis.

4. Addition of the created hypothesis to the mesh.

5. Setting meshing parameters to the hypothesis.

To provide such a wrapping for your algorithm and hypotheses you need to:

« Define a Python class wrapping creation of your algorithm.
e Describe required wrapping in <MyPl ugi nNane>. xnm file.

Python class of the algorithm
The Python class wrapping your algorithm is to be created in <MyPI ugi nName>DC. py file.
See examples in

SMESH_SRC/ src/ SMESH_SW G St dMesher sDC. py
NETGENPLUG N_SRC/ sr ¢/ NETGENPI ugi n/ NETGENPI ugi nDC. py

First, your Python file should import needed stuff from snesh. py:
from snesh i nport Mesh_Al gorithm

Import your server library:

i mport MyPI ugi nNane

If your Python algorithm is to be created by one of existing methods of snmesh. Mesh class, like
Tri angl e() or Hexahedr on() (which are actually dynamically added to snmesh. Mesh class at
loading of smesh.py), then you need to define an ID of your class, i.e. a string variable that will be
used as an argument of this method to discriminate your algorithm from others:

MyPl ugi nl D = "MyPI ugi nNane_2D"
this IDwll be used Iike this:
nmyAl go = nesh. Quadrangl e(al go=snesh. MyPl ugi nl D)

This variable is optional if you want that your algorithm to be created by a uniquely named
method of smesh.Mesh class.

Inherit your class from snesh. Mesh_Al gorit hm
class MyAl gorithm (Mesh_Algorithm:

Define tree obligatory attributes in your class:

Developer Guide Page 19/ 25

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

e nmeshMet hod — a string specifying a method of snesh. Mesh class by which your
algorithm will be created (this method does not actually exist in t he snesh. Mesh class;
instead it will be dynamically added to it in runtime).

« al goType — a string serving as ID of your class (already mentioned above in this
paragrath - MyPluginID).

» docHel per —a doc string of your class that will be used at generation of documentation
of meshMet hod.

class MyAl gorithm (Mesh_Algorithm:

meshMet hod = " MyQuadAl gorit hnt
al goType = MyPI ugi nl D
docHel per = """Creates MPIl ugi nNane_Al gorithm which generates

quadrangl es on arbitrary faces"""
As result of the example code above, your algorithm can be created by snesh. Mesh like this:

quadAl go = nmesh. MyQuadAl gori t hn{al go=snesh. MyPl ugi nl D)
or sinply
quadAl go = nmesh. MyQuadAl gorithm)

Define a constructor and methods creating your hypothesis (and probably defining meshing
parameters at once) like following.

def __init_ (self, mesh, geom):
This nethod creates an instance of your algorithmand assigns it
to the nesh

Mesh_Algorithm __init_ (self)

self.Create(nesh, geom "al goTypeNanme") # the |last arg nust be
equal to the attribute _nane of your algorithmcore class

(described in chapter 2.2.1.1)

def Paraneters(nb, vals, geom):
This nethod creates an instance of your hypothesis, assigns it to
the nesh and sets paraneter val ues

hyp = sel f. Hypot hesi s("hypTypeNane",
[nb, vals, geon,
"l'i bMyPl ugi nNane. so")
where the last arg nust be equal to the attribute _name of your
hypot hesis core class (described in chapter 2.2.1.1).
The second arg will be used to give a name to your new hypothesis.
The third arg names your server plug-in library.

hyp. Set Parans(nb, vals, geom) # initialize neshing paraneters

As a result of the code above, your hypothesis can be created and initialized by the following
command

myHyp = quadAl go. Paranmeters(12, [2.1, 2.3], Face_1)
Update your Makef i | e. amto install the Python file where you define your class of algorithm:

di st _sal onescri pt _DATA = <MyPl ugi nNanme>DC. py

Developer Guide Page 20/ 25

A

EURIWARE

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1M8

2.6.2.2

XML description of Python wrapping

In order to let SALOME know how to wrap calls relating to your plug-in into calls of snesh. py
Python interface, you have to provide description of this wrapping in <MyPl ugi nNanme>. xmi file
(described in chapter 2.5).

Suppose we want to get the following wrapping commands:

quadAl go = nmesh. MyQuadAl gorithm()
myHyp = quadAl go. Paraneters(12, [2.1, 2.3], Face_1)

An XML description of this wrapping should be added in the <al gor i t hn» tag as its child:
<al gorithmtype = "al goTypeNange"

dim="2">
<pyt hon- wr ap>
<al go>al goTypeName=MyQuadAl gorit hn(al go=smesh. MyPl ugi nl D) </ al go>
<hypo>
hypTypeNanme=Par anet er s(Set Par ans(1) , Set Par ans(2), Set Parans(3))
</ hypo>
</ pyt hon-wr ap>
</ al gorithmnp

An <al go> tag describes how an algorithm of given type name (here “al goTypeNane”) is
created:

e By what method of snesh. Mesh class (here “MyQuadAl gori t hnm()™").
* With what algorithm ID as argument (here “al go=snesh. MyPIl ugi nl D").

Algorithm ID argument “(al go=...)” can be omitted in our case as MyQuadAl gorithm() is a
unique method name of snmesh. Mesh, we could simply write
“algoTypeName=MyQuadAlgorithm()”.

<hypo> tag describes how a hypothesis of given type name (here “hypTypeNane”, which is
equal to _nane attribute of C++ class of your hypothesis and to “type” attribute of
<hypot hesi s> tag) is created:

« By what method of the Python algorithm (here “Par anet er s()).

« With what arguments; each argument in this description specifies a method of hypothesis
IDL API (here “Set Par ans”) and one-based index of the argument of this method to use
(here "(1),(2),(3)"). In our example the first argument (“Set Par ans(1) ") means
that the first argument of MyAl gori t hm Par anet er s() Python method is equal to the
first argument of MyPl ugi n_Hypot hesi s_i:: Set Parans() method (implementing
IDL API).

In “snapshot” mode of Python dump, consecutive commands changing a parameter of hypothesis
are erased from a dump script if some intermediate parameter values are not used in the final
mesh. Consider the following Python commands.

1,], Face_1)
1

myHyp. Set Parans(12, | 2.3 1],
, 2.3], Face_1)

2.
nyHyp. Set Paranms(10, [2.
mesh. Conput e()

Developer Guide Page 21 /25

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

The first command has no effect to the final mesh state and in “snapshot” mode it will be erased.
But if a hypothesis command not simply changes a value of parameter but adds more values to a
complex parameter, then repeated calls of such a command should not be erased.

The following XML description says SMESH Engine not to erase repeated calls of AddPar anl()
and AddPar a2() methods of your hypothesis (<pyt hon-w ap> tag is added as a child to
<hypot hesi s> tag):

<hypot hesi s type="hypTypeNane" di n="2">
<pyt hon-w ap>
<accumul ati ve- net hods>
AddPar aml, AddParan®
</ accumul ati ve- met hods>
</ pyt hon-wr ap>
</ hypot hesi s>

2.7 Usage of notebook variables

This step is optional.
To enable usage of notebook variables by your plug-in you need to

» Pass names of variables used to set meshing parameters from GUI side to Engine side
and backward (this is implemented in GUI part of your plug-in).

» Specify which arguments of a command being dumped can be set via notebook variables
(this is done in C++ classes implementing IDL API of your hypotheses).

2.7.1.1 GUI part

Notebook variables can be entered in spinbox GUI controls only. So, if your Hypothesis Creator is
inherited from St dMesher sGUJI _St dHypot hesi sCreat or, i.e. GUI widgets for hypothesis
parameters are created automatically, then notebook variables can be used for parameters of
simple types: double, |ong and short. If your Hypothesis Creator is inherited from
SMESHGUI _CGeneri cHypot hesi sCr eat or then you are to use classes
Sal oneApp_I nt Spi nBox and SVMESHGUI _ Spi nBox to implement GUI controls for parameters
that can be set via notebook variables.

When hypothesis edition starts, your Hypothesis Creator should initialize text of a spin widget by
a name of variable, if it was used to set up a parameter. You can get this variable name by calling
SMESH Hypot hesi s:: Get Var Paraneter(string nmethodName), which returns an
empty string if no variable was used to set the parameter. Here “net hodNane” is a name of the
method setting the parameters, it is “Set Par ans” in the case of our sample:

hyp- >Get Var Par anet er (" Set Par ans") ;

If your Hypothesis Creator is inherited from St dMesher sGUI _St dHypot hesi sCr eat or, then
the code defining contents of the spin widget will look like following.

SMESHGUI _Generi cHypot hesi sCreator:: StdParamitem
if (!initVariableNane(hyp, item "SetParans"))
itemnyValue = h->GetParaml(); // only the 1% arg can vari abl e!

When values of parameters are passed from GUI widgets to your hypothesis, as hypothesis
edition ends, your Hypothesis Creator should (the order of calls is important!):

Developer Guide Page 22/ 25

A

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

2712

2.8

» Pass a text from a widget to the hypothesis, which will store it if it's a name of variable;
along with the text of widget, a name of the hypothesis method setting a parameter
should be specified; for this, call SMESH Hypot hesi s: : Set Var Par aneter (text,
net hod) method inherited by your hypothesis.

e Set a value of the parameter to your hypothesis.

If your Hypothesis Creator is inherited from St dMesher sGUI _St dHypot hesi sCr eat or, then
the code doing this will look like this:

hyp- >Set Var Par anet er (params[0].text (), "SetParams");
hyp- >Set Par ans(parans[0].nyValue.tolnt(), vals, geom);

IDL API of hypotheses

In C++ code implementing IDL API of your hypothesis, you should wrap a parameter that can be
defined via a notebook variable in an object of type SMESH: : TVar . After such a modification, the
code provided in chapter 2.6.1 will look as following.

voi d MyPl ugi nName_Hypot hesi s_i :: Set Par ans(CORBA: : Long nb,
SMESH: : doubl e_array& vals,
GEOM : GEOM hj ect _ptr geom

/1l set meshing paraneters

/1 Python Dunp

SMESH: : TPyt honDunp() << _this() << ".SetParanms("
<< SMESH: : TVar(nb) << ™, "// t1iriprnrrrnnd
<< vals << ", "

<< geom << u)n

Documentation
This step is optional.
You can provide a documentation of your meshing plug-in in any appropriate form. However, if

you provide the documentation as HTML files, SALOME can automatically locate it and include
into the Help menu of the SALOME GUI desktop.

Usual approach for documentation generation is to use doxygen program for generation of the
HTML documentation from plain text files

SALOME will automatically search for the i ndex. ht ml file in the following directory:
${ MyPl ugi nName_ROOT_DI R}/ shar e/ doc/ sal one/ MyPl ugi nNane

If the file is present, the reference to it is added to the Help menu. The position of this item in Help
menu can be customized in SalomeApp.xml file. The usual approach is to put it to the Help =2
Mesh module = Plug-ins submenu (see paragraph 2.5.2).

Optionally, it is possible to generate documentation of the methods dynamically added to the
smesh. Mesh class. To do this, you have to:

* Add doxygen-style documentation to your module’s Python API (paragraph 2.6.2).

Developer Guide Page 23/ 25

A

Integration of new meshing algorithm as plug-in to
SALOME Mesh module

Référence : PT/OCC/OC2D10001/006/V1MS
EURIWARE

2.9

2.10

2.11

* Add rules for generation of documentation of dynamic methods to the Makefile.am
responsible for your documentation generation. This can be done by means of
col I ect _mesh_met hods. py script supplied with the SMESH module. This script
generates dummy snesh. py file in the build directory, with description of all dynamic
methods. This file should be then listed as an additional input of doxygen. Be careful to
avoid of copying dummy snesh. py file to the installation directory of your plug-in by
mistake; it might break using of SMESH module’s Python API in runtime.

See example in
NETGENPLUG N_SRC/ doc/ sal ore/ gui / NETGENPLUG N

Build your plug-in

Configure and build your plug-in in the usual way (by invocation of build_configure, configure,
make and make install commands). Check that all libraries (I i bMyServerlLib.so and,
optionally, I i bMyCl i ent Li b. so) are built; resource files are properly installed, etc.

Set up environment

Set environment variable MyPl ugi nNarme_ROOT_DI R to your plug-in installation directory path.
For example:

export MyPI ugi nNane_ROOT_DI R=/ honme/ user/ SALOVE/ | NSTALL/ MyPl ugi nName
Note that you do not need to list your plug-in anywhere. It will be automatically detected by
SALOME in runtime during the application initialization. You only need to specify

MyPl ugi nNanme_ROOT_DI R as described above.

SALOME will automatically locate your XML file, searching for it in the following directory (note
that last component of the path is a name of plugin in lower case):

${ MyPI ugi nNane_ROOT_DI R}/ shar e/ sal orme/ r esour ces/ mypl ugi nname

Run SALOME

Run SALOME application, create new study, load Mesh module. Via menu Mesh = Create Mesh
invoke “Create Mesh” dialog box and look at the available algorithms list. If everything is done
properly, you should see your algorithms in this list.

Try to create a new hypothesis and check, if your hypotheses are available. Define complete set
of algorithms and hypotheses; click “OK” in the mesh creation dialog. Compute the created mesh.

Check the result of computation.

Developer Guide Page 24/ 25

A

EURIWARE

Integration of new meshing algorithm as plug-in to

SALOME Mesh module
Référence : PT/OCC/OC2D10001/006/V1M8

Références documentaires

Documents de

référence

Les documents cités dans le présent document ou utiles a la compréhension de
son contenu sont :

Titre

Référence

(1]

Contrat Marché C434C71440: TMA PAL/SALOME 2008- C434C71440/ OC2D07081
2010 : Année 2010

Historique des

révisions

Version en
vigueur
Versions

antérieures

Les versions successives du présent document sont :

Version Rédacteur Date Objet de la révision

V1iM8 V SANDLER 30/08/2012 | Add chapter for documentation. Minor corrections.
ViMm7 E AGAPOV 23/08/2012 | Update for SALOME 6.6

V1IM6 | J DOROVSKIKH | 17/09/2010 | Update for SALOME 5.1.4

VIM5 | J DOROVSKIKH | 20/06/2007 | Update for SALOME 3.2.6

ViM4 | J DOROVSKIKH | 07/02/2007 | Update for SALOME 3.2.5

V1M3 | J DOROVSKIKH [30/03/2006 | Additional remarks

Vim2 M KAZAKOV 14/02/2006 | Minor revision and remarks

ViM1 | J DOROVSKIKH [14/02/2006 | Draft version for validation

VIMO | J DOROVSKIKH [24/01/2006 | Initial version

Developer Guide

Page 25/ 25

