1 import WaveSystemCentered
2 import matplotlib.pyplot as plt
4 from math import log10, sqrt
8 def test_validation2DWaveSystemCenteredHexagons(bctype,scaling):
10 #### 2D hexagonal mesh
11 meshList=['squareWithHexagons_1','squareWithHexagons_2','squareWithHexagons_3','squareWithHexagons_4']#,'squareWithHexagons_5'
12 meshType="Regular hexagons"
14 nbMeshes=len(meshList)
15 error_p_tab=[0]*nbMeshes
16 error_u_tab=[0]*nbMeshes
17 mesh_size_tab=[0]*nbMeshes
18 mesh_path='../../../ressources/2DHexagons/'
19 mesh_name='squareWithHexagons'
20 diag_data_press=[0]*nbMeshes
21 diag_data_vel=[0]*nbMeshes
24 ndt_final=[0]*nbMeshes
26 cond_number=[0]*nbMeshes
28 curv_abs=np.linspace(0,sqrt(2),resolution+1)
33 # Storing of numerical errors, mesh sizes and diagonal values
34 for filename in meshList:
35 error_p_tab[i], error_u_tab[i], mesh_size_tab[i], t_final[i], ndt_final[i], max_vel[i], diag_data_press[i], diag_data_vel[i], time_tab[i], cond_number[i] =WaveSystemCentered.solve_file(mesh_path+filename, mesh_name, resolution,scaling, meshType,testColor,cfl,bctype)
36 assert max_vel[i]>0.0001 and max_vel[i]<1.1
37 error_p_tab[i]=log10(error_p_tab[i])
38 error_u_tab[i]=log10(error_u_tab[i])
39 time_tab[i]=log10(time_tab[i])
44 # Plot over diagonal line
45 for i in range(nbMeshes):
46 plt.plot(curv_abs, diag_data_press[i], label= str(mesh_size_tab[i]) + ' cells')
48 plt.xlabel('Position on diagonal line')
49 plt.ylabel('Pressure on diagonal line')
50 plt.title('Plot over diagonal line for stationary wave system \n with Centered scheme on 2D hexagonal meshes')
51 plt.savefig(mesh_name+'_Pressure_2DWaveSystemCentered_'+"PlotOverDiagonalLine.png")
55 for i in range(nbMeshes):
56 plt.plot(curv_abs, diag_data_vel[i], label= str(mesh_size_tab[i]) + ' cells')
58 plt.xlabel('Position on diagonal line')
59 plt.ylabel('Velocity on diagonal line')
60 plt.title('Plot over diagonal line for the stationary wave system \n with Centered scheme on 2D hexagonal meshes')
61 plt.savefig(mesh_name+"_Velocity_2DWaveSystemCentered_"+"PlotOverDiagonalLine.png")
64 # Plot of number of time steps
66 plt.plot(mesh_size_tab, ndt_final, label='Number of time step to reach stationary regime')
68 plt.xlabel('Number of cells')
69 plt.ylabel('Max time steps for stationary regime')
70 plt.title('Number of times steps required for the stationary Wave System \n with Centered scheme on 2D hexagonal meshes')
71 plt.savefig(mesh_name+"_2DWaveSystemCentered_"+"TimeSteps.png")
73 # Plot of number of stationary time
75 plt.plot(mesh_size_tab, t_final, label='Time where stationary regime is reached')
77 plt.xlabel('Number of cells')
78 plt.ylabel('Max time for stationary regime')
79 plt.title('Simulated time for the stationary Wave System \n with Centered scheme on 2D hexagonal meshes')
80 plt.savefig(mesh_name+"_2DWaveSystemCentered_"+"TimeFinal.png")
82 # Plot of number of maximal velocity norm
84 plt.plot(mesh_size_tab, max_vel, label='Maximum velocity norm')
86 plt.xlabel('Number of cells')
87 plt.ylabel('Max velocity norm')
88 plt.title('Maximum velocity norm for the stationary Wave System \n with Centered scheme on 2D hexagonal meshes')
89 plt.savefig(mesh_name+"_2DWaveSystemCentered_"+"MaxVelNorm.png")
91 for i in range(nbMeshes):
92 mesh_size_tab[i]=0.5*log10(mesh_size_tab[i])
94 # Least square linear regression
95 # Find the best a,b such that f(x)=ax+b best approximates the convergence curve
96 # The vector X=(a,b) solves a symmetric linear system AX=B with A=(a1,a2\\a2,a3), B=(b1,b2)
97 a1=np.dot(mesh_size_tab,mesh_size_tab)
98 a2=np.sum(mesh_size_tab)
102 assert det!=0, 'test_validation2DWaveSystemCenteredHexagonsFV() : Make sure you use distinct meshes and at least two meshes'
104 b1p=np.dot(error_p_tab,mesh_size_tab)
105 b2p=np.sum(error_p_tab)
106 ap=( a3*b1p-a2*b2p)/det
107 bp=(-a2*b1p+a1*b2p)/det
109 print("FV Centered on 2D hexagonal meshes : scheme order for pressure is ", -ap)
111 b1u=np.dot(error_u_tab,mesh_size_tab)
112 b2u=np.sum(error_u_tab)
113 au=( a3*b1u-a2*b2u)/det
114 bu=(-a2*b1u+a1*b2u)/det
116 print("FV Centered on 2D hexagonal meshes : scheme order for velocity is ", -au)
118 # Plot of convergence curves
120 plt.plot(mesh_size_tab, error_p_tab, label='|error on stationary pressure|')
122 plt.xlabel('1/2 log(number of cells)')
123 plt.ylabel('log(error p)')
124 plt.title('Convergence of finite volumes for the stationary Wave System \n with Centered scheme on 2D hexagonal meshes')
125 plt.savefig(mesh_name+"_Pressure_2DWaveSystemCentered_"+"ConvergenceCurve.png")
128 plt.plot(mesh_size_tab, error_u_tab, label='|error on stationary velocity|')
130 plt.xlabel('1/2 log(number of cells)')
131 plt.ylabel('log(error u)')
132 plt.title('Convergence of finite volumes for the stationary Wave System \n with Centered scheme on 2D hexagonal meshes')
133 plt.savefig(mesh_name+"_Velocity_2DWaveSystemCentered_"+"ConvergenceCurve.png")
135 # Plot of computational time
137 plt.plot(mesh_size_tab, time_tab, label='log(cpu time)')
139 plt.xlabel('1/2 log(number of cells)')
140 plt.ylabel('log(cpu time)')
141 plt.title('Computational time of finite volumes for the stationary Wave System \n with Centered scheme on 2D hexagonal meshes')
142 plt.savefig(mesh_name+"_2DWaveSystemCentered_ComputationalTime.png")
146 convergence_synthesis={}
148 convergence_synthesis["PDE_model"]="Wave system"
149 convergence_synthesis["PDE_is_stationary"]=False
150 convergence_synthesis["PDE_search_for_stationary_solution"]=True
151 convergence_synthesis["Numerical_method_name"]="Centered"
152 convergence_synthesis["Numerical_method_space_discretization"]="Finite volumes"
153 convergence_synthesis["Numerical_method_time_discretization"]="Implicit"
154 convergence_synthesis["Initial_data"]="Constant pressure, divergence free velocity"
155 convergence_synthesis["Boundary_conditions"]="Periodic"
156 convergence_synthesis["Numerical_parameter_cfl"]=cfl
157 convergence_synthesis["Space_dimension"]=2
158 convergence_synthesis["Mesh_dimension"]=2
159 convergence_synthesis["Mesh_names"]=meshList
160 convergence_synthesis["Mesh_type"]=meshType
161 convergence_synthesis["Mesh_path"]=mesh_path
162 convergence_synthesis["Mesh_description"]=mesh_name
163 convergence_synthesis["Mesh_sizes"]=mesh_size_tab
164 convergence_synthesis["Mesh_cell_type"]="Hexagons"
165 convergence_synthesis["Numerical_error_velocity"]=error_u_tab
166 convergence_synthesis["Numerical_error_pressure"]=error_p_tab
167 convergence_synthesis["Max_vel_norm"]=max_vel
168 convergence_synthesis["Final_time"]=t_final
169 convergence_synthesis["Final_time_step"]=ndt_final
170 convergence_synthesis["Scheme_order"]=min(-au,-ap)
171 convergence_synthesis["Scheme_order_vel"]=-au
172 convergence_synthesis["Scheme_order_press"]=-ap
173 convergence_synthesis["Scaling_preconditioner"]="None"
174 convergence_synthesis["Test_color"]=testColor
175 convergence_synthesis["Computational_time"]=end-start
177 with open('Convergence_WaveSystem_2DFV_Centered_'+mesh_name+'.json', 'w') as outfile:
178 json.dump(convergence_synthesis, outfile)
180 if __name__ == """__main__""":
181 if len(sys.argv) >2 :
183 scaling = int(sys.argv[2])
184 test_validation2DWaveSystemCenteredHexagons(bctype,scaling)
186 raise ValueError("test_validation2DWaveSystemCenteredHexagons.py expects a mesh file name and a scaling parameter")