2 import WaveSystemUpwind
5 import matplotlib.pyplot as plt
7 from math import log10, sqrt
12 def test_validation3DWaveSystemUpwindTetrahedra(bctype,scaling):
14 #### 3D tetrahedral mesh of a cartesian mesh
15 #meshList=[5,11,21,26]
16 meshList=['meshCubeTetrahedra_0','meshCubeTetrahedra_1','meshCubeTetrahedra_2','meshCubeTetrahedra_3','meshCubeTetrahedra_4']
17 mesh_path='../../../ressources/3DTetrahedra/'
18 meshType="Unstructured tetrahedra"
20 nbMeshes=len(meshList)
21 error_p_tab=[0]*nbMeshes
22 error_u_tab=[0]*nbMeshes
23 mesh_size_tab=[0]*nbMeshes
24 mesh_name='CubeWithTetrahedra'
25 diag_data_press=[0]*nbMeshes
26 diag_data_vel=[0]*nbMeshes
29 ndt_final=[0]*nbMeshes
32 curv_abs=np.linspace(0,sqrt(3),resolution+1)
38 # Storing of numerical errors, mesh sizes and diagonal values
39 for filename in meshList:
41 #my_mesh=cdmath.Mesh(0.,1.,nx,0.,1.,nx,0.,1.,nx,6)
42 #error_p_tab[i], error_u_tab[i], mesh_size_tab[i], t_final[i], ndt_final[i], max_vel[i], diag_data_press[i], diag_data_vel[i], time_tab[i] =WaveSystemUpwind.solve(my_mesh, mesh_name+str(my_mesh.getNumberOfCells()), resolution,scaling,meshType,testColor,cfl,bctype)
43 error_p_tab[i], error_u_tab[i], mesh_size_tab[i], t_final[i], ndt_final[i], max_vel[i], diag_data_press[i], diag_data_vel[i], time_tab[i] =WaveSystemUpwind.solve_file(mesh_path+filename, mesh_name, resolution,scaling,meshType,testColor,cfl,bctype)
44 assert max_vel[i]>1.7 and max_vel[i]<2
45 error_p_tab[i]=log10(error_p_tab[i])
46 error_u_tab[i]=log10(error_u_tab[i])
51 # Plot over diagonal line
52 for i in range(nbMeshes):
53 plt.plot(curv_abs, diag_data_press[i], label= str(mesh_size_tab[i]) + ' cells')
55 plt.xlabel('Position on diagonal line')
56 plt.ylabel('Pressure on diagonal line')
57 plt.title('Plot over diagonal line for stationary wave system \n on 3D tetrahedral meshes')
58 plt.savefig(mesh_name+'_Pressure_3DWaveSystemUpwind_'+"PlotOverDiagonalLine.png")
62 for i in range(nbMeshes):
63 plt.plot(curv_abs, diag_data_vel[i], label= str(mesh_size_tab[i]) + ' cells')
65 plt.xlabel('Position on diagonal line')
66 plt.ylabel('Velocity on diagonal line')
67 plt.title('Plot over diagonal line for the stationary wave system \n on 3D tetrahedral meshes')
68 plt.savefig(mesh_name+"_Velocity_3DWaveSystemUpwind_"+"PlotOverDiagonalLine.png")
71 # Plot of number of time steps
73 plt.plot(mesh_size_tab, ndt_final, label='Number of time step to reach stationary regime')
75 plt.xlabel('number of cells')
76 plt.ylabel('Max time steps for stationary regime')
77 plt.title('Number of times steps required \n for the stationary Wave System on 3D tetrahedral meshes')
78 plt.savefig(mesh_name+"_3DWaveSystemUpwind_"+"TimeSteps.png")
80 # Plot of time where stationary regime is reached
82 plt.plot(mesh_size_tab, t_final, label='Time where stationary regime is reached')
84 plt.xlabel('number of cells')
85 plt.ylabel('Max time for stationary regime')
86 plt.title('Simulated time \n for the stationary Wave System on 3D tetrahedral meshes')
87 plt.savefig(mesh_name+"_3DWaveSystemUpwind_"+"TimeFinal.png")
89 # Plot of maximal velocity norm
91 plt.plot(mesh_size_tab, max_vel, label='Maximum velocity norm')
93 plt.xlabel('number of cells')
94 plt.ylabel('Max velocity norm')
95 plt.title('Maximum velocity norm \n for the stationary Wave System on 3D tetrahedral meshes')
96 plt.savefig(mesh_name+"_3DWaveSystemUpwind_"+"MaxVelNorm.png")
99 for i in range(nbMeshes):
100 mesh_size_tab[i] = 0.5*log10(mesh_size_tab[i])
102 # Least square linear regression
103 # Find the best a,b such that f(x)=ax+b best approximates the convergence curve
104 # The vector X=(a,b) solves a symmetric linear system AX=B with A=(a1,a2\\a2,a3), B=(b1,b2)
105 a1=np.dot(mesh_size_tab,mesh_size_tab)
106 a2=np.sum(mesh_size_tab)
110 assert det!=0, 'test_validation3DWaveSystemUpwindSquaresFV() : Make sure you use distinct meshes and at least two meshes'
112 b1p=np.dot(error_p_tab,mesh_size_tab)
113 b2p=np.sum(error_p_tab)
114 ap=( a3*b1p-a2*b2p)/det
115 bp=(-a2*b1p+a1*b2p)/det
117 print("FV on 3D tetrahedral meshes : scheme order for pressure is ", -ap)
119 b1u=np.dot(error_u_tab,mesh_size_tab)
120 b2u=np.sum(error_u_tab)
121 au=( a3*b1u-a2*b2u)/det
122 bu=(-a2*b1u+a1*b2u)/det
124 print("FV on 3D tetrahedral meshes : scheme order for velocity is ", -au)
126 # Plot of convergence curves
128 plt.plot(mesh_size_tab, error_p_tab, label='|error on stationary pressure|')
130 plt.xlabel('number of cells')
131 plt.ylabel('error p')
132 plt.title('Convergence of finite volumes for \n the stationary Wave System on 3D tetrahedral meshes')
133 plt.savefig(mesh_name+"_Pressure_3DWaveSystemUpwind_"+"ConvergenceCurve.png")
136 plt.plot(mesh_size_tab, error_u_tab, label='|error on stationary velocity|')
138 plt.xlabel('number of cells')
139 plt.ylabel('error p')
140 plt.title('Convergence of finite volumes for \n the stationary Wave System on 3D tetrahedral meshes')
141 plt.savefig(mesh_name+"_Velocity_3DWaveSystemUpwind_"+"ConvergenceCurve.png")
143 # Plot of computational time
145 plt.plot(mesh_size_tab, time_tab, label='log(cpu time)')
147 plt.xlabel('number of cells')
148 plt.ylabel('cpu time')
149 plt.title('Computational time of finite volumes \n for the stationary Wave System on 3D tetrahedral meshes')
150 plt.savefig(mesh_name+"_3DWaveSystemUpwind_"+"_scaling_"+str(scaling)+"_ComputationalTime.png")
155 convergence_synthesis={}
157 convergence_synthesis["PDE_model"]="Wave system"
158 convergence_synthesis["PDE_is_stationary"]=False
159 convergence_synthesis["PDE_search_for_stationary_solution"]=True
160 convergence_synthesis["Numerical_method_name"]="Upwind"
161 convergence_synthesis["Numerical_method_space_discretization"]="Finite volumes"
162 convergence_synthesis["Numerical_method_time_discretization"]="Implicit"
163 convergence_synthesis["Initial_data"]="Constant pressure, divergence free velocity"
164 convergence_synthesis["Boundary_conditions"]="Periodic"
165 convergence_synthesis["Numerical_parameter_cfl"]=cfl
166 convergence_synthesis["Space_dimension"]=3
167 convergence_synthesis["Mesh_dimension"]=3
168 convergence_synthesis["Mesh_names"]=meshList
169 convergence_synthesis["Mesh_type"]=meshType
170 #convergence_synthesis["Mesh_path"]=mesh_path
171 convergence_synthesis["Mesh_description"]=mesh_name
172 convergence_synthesis["Mesh_sizes"]=mesh_size_tab
173 convergence_synthesis["Mesh_cell_type"]="Tetrahedra"
174 convergence_synthesis["Numerical_error_velocity"]=error_u_tab
175 convergence_synthesis["Numerical_error_pressure"]=error_p_tab
176 convergence_synthesis["Max_vel_norm"]=max_vel
177 convergence_synthesis["Final_time"]=t_final
178 convergence_synthesis["Final_time_step"]=ndt_final
179 convergence_synthesis["Scheme_order"]=min(-au,-ap)
180 convergence_synthesis["Scheme_order_vel"]=-au
181 convergence_synthesis["Scheme_order_press"]=-ap
182 convergence_synthesis["Scaling_preconditioner"]="None"
183 convergence_synthesis["Test_color"]=testColor
184 convergence_synthesis["Computational_time"]=end-start
186 with open('Convergence_WaveSystem_3DFV_Upwind_'+mesh_name+"_scaling_"+str(scaling)+'.json', 'w') as outfile:
187 json.dump(convergence_synthesis, outfile)
189 if __name__ == """__main__""":
190 if len(sys.argv) >2 :
192 scaling = int(sys.argv[2])
193 test_validation3DWaveSystemUpwindTetrahedra(bctype,scaling)
195 raise ValueError("test_validation3DWaveSystemUpwindTetrahedra.py expects a mesh file name and a scaling parameter")