]> SALOME platform Git repositories - tools/solverlab.git/blob
Salome HOME
b542e212964ee7d3c6db26eef084f4305954f654
[tools/solverlab.git] /
1 import WaveSystemPStag
2 import matplotlib.pyplot as plt
3 import numpy as np
4 from math import log10, sqrt
5 import sys
6 import time, json
7
8 def test_validation2DWaveSystemPStagCheckerboard(scaling):
9     start = time.time()
10     #### 2D checkerboard mesh
11     meshList=['checkerboard_5x5','checkerboard_9x9','checkerboard_17x17','checkerboard_33x33']#,'checkerboard_65x65'
12     meshType="Regular checkerboard"
13     testColor="Green"
14     nbMeshes=len(meshList)
15     error_p_tab=[0]*nbMeshes
16     error_u_tab=[0]*nbMeshes
17     mesh_size_tab=[0]*nbMeshes
18     mesh_path='../../../ressources/2DCheckerboard/'
19     mesh_name='squareWithCheckerboard'
20     diag_data_press=[0]*nbMeshes
21     diag_data_vel=[0]*nbMeshes
22     time_tab=[0]*nbMeshes
23     t_final=[0]*nbMeshes
24     ndt_final=[0]*nbMeshes
25     max_vel=[0]*nbMeshes
26     resolution=100
27     curv_abs=np.linspace(0,sqrt(2),resolution+1)
28     cond_number=[0]*nbMeshes
29
30     plt.close('all')
31     i=0
32     cfl=0.5
33     # Storing of numerical errors, mesh sizes and diagonal values
34     for filename in meshList:
35         error_p_tab[i], error_u_tab[i], mesh_size_tab[i], t_final[i], ndt_final[i], max_vel[i], diag_data_press[i], diag_data_vel[i], time_tab[i], cond_number[i] =WaveSystemPStag.solve_file(mesh_path+filename, mesh_name, resolution,scaling,meshType,testColor,cfl,"Periodic")
36         assert max_vel[i]>0.2 and max_vel[i]<1.3
37         error_p_tab[i]=log10(error_p_tab[i])
38         error_u_tab[i]=log10(error_u_tab[i])
39         time_tab[i]=log10(time_tab[i])
40         i=i+1
41     
42     end = time.time()
43
44     # Plot over diagonal line
45     for i in range(nbMeshes):
46         if(scaling==0):
47             plt.plot(curv_abs, diag_data_press[i], label= str(mesh_size_tab[i]) + ' cells - no scaling')
48         else:
49             plt.plot(curv_abs, diag_data_press[i], label= str(mesh_size_tab[i]) + ' cells - with scaling')
50     plt.legend()
51     plt.xlabel('Position on diagonal line')
52     plt.ylabel('Pressure on diagonal line')
53     plt.title('Plot over diagonal line for stationary wave system \n with pseudo staggered scheme on 2D checkerboard meshes')
54     plt.savefig(mesh_name+'_Pressure_2DWaveSystemPStag_'+"scaling"+str(scaling)+"_PlotOverDiagonalLine.png")
55     plt.close()
56
57     plt.clf()
58     for i in range(nbMeshes):
59         if(scaling==0):
60             plt.plot(curv_abs, diag_data_vel[i],   label= str(mesh_size_tab[i]) + ' cells - no scaling')
61         else:
62             plt.plot(curv_abs, diag_data_vel[i],   label= str(mesh_size_tab[i]) + ' cells - with scaling')
63     plt.legend()
64     plt.xlabel('Position on diagonal line')
65     plt.ylabel('Velocity on diagonal line')
66     plt.title('Plot over diagonal line for the stationary wave system \n with pseudo staggered scheme on 2D checkerboard meshes')
67     plt.savefig(mesh_name+"_Velocity_2DWaveSystemPStag_"+"scaling"+str(scaling)+"_PlotOverDiagonalLine.png")    
68     plt.close()
69
70     # Plot of number of time steps
71     plt.close()
72     if(scaling==0):
73         plt.plot(mesh_size_tab, ndt_final, label='Number of time step to reach stationary regime - no scaling')
74     else:
75         plt.plot(mesh_size_tab, ndt_final, label='Number of time step to reach stationary regime - with scaling')
76     plt.legend()
77     plt.xlabel('Number of cells')
78     plt.ylabel('Max time steps for stationary regime')
79     plt.title('Number of times steps required for the stationary Wave System \n with pseudo staggered scheme on 2D checkerboard meshes')
80     plt.savefig(mesh_name+"_2DWaveSystemPStag_"+"scaling"+str(scaling)+"_TimeSteps.png")
81     
82     # Plot of number of stationary time
83     plt.close()
84     if(scaling==0):
85         plt.plot(mesh_size_tab, t_final, label='Time where stationary regime is reached - no scaling')
86     else:
87         plt.plot(mesh_size_tab, t_final, label='Time where stationary regime is reached - with scaling')
88     plt.legend()
89     plt.xlabel('Number of cells')
90     plt.ylabel('Max time for stationary regime')
91     plt.title('Simulated time for the stationary Wave System \n with pseudo staggered scheme on 2D checkerboard meshes')
92     plt.savefig(mesh_name+"_2DWaveSystemPStag_"+"scaling"+str(scaling)+"TimeFinal.png")
93     
94     # Plot of number of maximal velocity norm
95     plt.close()
96     if(scaling==0):
97         plt.plot(mesh_size_tab, max_vel, label='Maximum velocity norm - no scaling')
98     else:
99         plt.plot(mesh_size_tab, max_vel, label='Maximum velocity norm - with scaling')
100     plt.legend()
101     plt.xlabel('Number of cells')
102     plt.ylabel('Max velocity norm')
103     plt.title('Maximum velocity norm for the stationary Wave System \n with pseudo staggered scheme on 2D checkerboard meshes')
104     plt.savefig(mesh_name+"_2DWaveSystemCPStag_"+"scaling"+str(scaling)+"_MaxVelNorm.png")
105     
106     # Plot of condition number 
107     plt.close()
108     if(scaling==0):
109         plt.plot(mesh_size_tab, cond_number, label='Condition number - no scaling')
110     else:
111         plt.plot(mesh_size_tab, cond_number, label='Condition number - with scaling')
112     plt.legend()
113     plt.xlabel('Number of cells')
114     plt.ylabel('Condition number')
115     plt.title('Condition number for the stationary Wave System \n with pseudo staggered scheme on 2D square meshes')
116     plt.savefig(mesh_name+"_2DWaveSystemPStag_"+"scaling"+str(scaling)+"_condition_number.png")
117
118     for i in range(nbMeshes):
119         mesh_size_tab[i]=0.5*log10(mesh_size_tab[i])
120         
121     # Least square linear regression
122     # Find the best a,b such that f(x)=ax+b best approximates the convergence curve
123     # The vector X=(a,b) solves a symmetric linear system AX=B with A=(a1,a2\\a2,a3), B=(b1,b2)
124     a1=np.dot(mesh_size_tab,mesh_size_tab)
125     a2=np.sum(mesh_size_tab)
126     a3=nbMeshes
127     
128     det=a1*a3-a2*a2
129     assert det!=0, 'test_validation2DWaveSystemPStagCheckerboardFV() : Make sure you use distinct meshes and at least two meshes'
130
131     b1p=np.dot(error_p_tab,mesh_size_tab)   
132     b2p=np.sum(error_p_tab)
133     ap=( a3*b1p-a2*b2p)/det
134     bp=(-a2*b1p+a1*b2p)/det
135     
136     if(scaling==0):
137         print("FV pseudo staggered on 2D checkerboard meshes : scheme order for pressure without scaling is ", -ap)
138     else:
139         print("FV pseudo staggered on 2D checkerboard meshes : scheme order for pressure with scaling is ", -ap)
140
141     b1u=np.dot(error_u_tab,mesh_size_tab)   
142     b2u=np.sum(error_u_tab)
143     au=( a3*b1u-a2*b2u)/det
144     bu=(-a2*b1u+a1*b2u)/det
145     
146     if(scaling==0):
147         print("FV pseudo staggered on 2D checkerboard meshes : scheme order for velocity without scaling is ", -au)
148     else:
149         print("FV pseudo staggered on 2D checkerboard meshes : scheme order for velocity with scaling is ", -au)
150     
151     # Plot of convergence curves
152     plt.close()
153     if(scaling==0):
154         plt.plot(mesh_size_tab, error_p_tab, label='|error on stationary pressure| - no scaling')
155     else:
156         plt.plot(mesh_size_tab, error_p_tab, label='|error on stationary pressure| - with scaling')
157     plt.legend()
158     plt.xlabel('1/2 log(Number of cells)')
159     plt.ylabel('log(Error p)')
160     plt.title('Convergence of finite volumes for the stationary Wave System \n with pseudo staggered scheme on 2D checkerboard meshes')
161     plt.savefig(mesh_name+"_Pressure_2DWaveSystemPStag_"+"scaling"+str(scaling)+"_ConvergenceCurve.png")
162     
163     plt.close()
164     if(scaling==0):
165         plt.plot(mesh_size_tab, error_u_tab, label='log(|error on stationary velocity|) - no scaling')
166     else:
167         plt.plot(mesh_size_tab, error_u_tab, label='log(|error on stationary velocity|) - with scaling')
168     plt.legend()
169     plt.xlabel('1/2 log(Number of cells)')
170     plt.ylabel('log(Error u)')
171     plt.title('Convergence of finite volumes for the stationary Wave System \n with pseudo staggered scheme on 2D checkerboard meshes')
172     plt.savefig(mesh_name+"_Velocity_2DWaveSystemPStag_"+"scaling"+str(scaling)+"_ConvergenceCurve.png")
173     
174     # Plot of computational time
175     plt.close()
176     if(scaling==0):
177         plt.plot(mesh_size_tab, time_tab, label='log(cpu time) - no scaling')
178     else:
179         plt.plot(mesh_size_tab, time_tab, label='log(cpu time) - with scaling')
180     plt.legend()
181     plt.xlabel('1/2 log(Number of cells)')
182     plt.ylabel('log(cpu time)')
183     plt.title('Computational time of finite volumes for the stationary Wave System \n with pseudo staggered scheme on 2D checkerboard meshes')
184     plt.savefig(mesh_name+"_2DWaveSystemPStag_"+"scaling"+str(scaling)+"_ComputationalTime.png")
185     
186     plt.close('all')
187     
188     convergence_synthesis={}
189
190     convergence_synthesis["PDE_model"]="Wave system"
191     convergence_synthesis["PDE_is_stationary"]=False
192     convergence_synthesis["PDE_search_for_stationary_solution"]=True
193     convergence_synthesis["Numerical_method_name"]="PStag"
194     convergence_synthesis["Numerical_method_space_discretization"]="Finite volumes"
195     convergence_synthesis["Numerical_method_time_discretization"]="Implicit"
196     convergence_synthesis["Initial_data"]="Constant pressure, divergence free velocity"
197     convergence_synthesis["Boundary_conditions"]="Periodic"
198     convergence_synthesis["Numerical_parameter_cfl"]=cfl
199     convergence_synthesis["Space_dimension"]=2
200     convergence_synthesis["Mesh_dimension"]=2
201     convergence_synthesis["Mesh_names"]=meshList
202     convergence_synthesis["Mesh_type"]=meshType
203     convergence_synthesis["Mesh_path"]=mesh_path
204     convergence_synthesis["Mesh_description"]=mesh_name
205     convergence_synthesis["Mesh_sizes"]=mesh_size_tab
206     convergence_synthesis["Mesh_cell_type"]="Squares"
207     convergence_synthesis["Numerical_error_velocity"]=error_u_tab
208     convergence_synthesis["Numerical_error_pressure"]=error_p_tab
209     convergence_synthesis["Max_vel_norm"]=max_vel
210     convergence_synthesis["Final_time"]=t_final  
211     convergence_synthesis["Final_time_step"]=ndt_final  
212     convergence_synthesis["Scheme_order"]=min(-au,-ap)
213     convergence_synthesis["Scheme_order_vel"]=-au
214     convergence_synthesis["Scheme_order_press"]=-ap
215     convergence_synthesis["Scaling_preconditioner"]="None"
216     convergence_synthesis["Test_color"]=testColor
217     convergence_synthesis["Computational_time"]=end-start
218
219     with open('Convergence_WaveSystem_2DFV_PStag_'+mesh_name+'.json', 'w') as outfile:  
220         json.dump(convergence_synthesis, outfile)
221
222 if __name__ == """__main__""":
223     if len(sys.argv) >1 :
224         scaling = int(sys.argv[1])
225         test_validation2DWaveSystemPStagCheckerboard(scaling)
226     else :
227         test_validation2DWaveSystemPStagCheckerboard(2)