]> SALOME platform Git repositories - tools/solverlab.git/blob
Salome HOME
8bf2e2d642a7001dec6bb4e01c5e53bd21c01d6f
[tools/solverlab.git] /
1 import FiniteVolumes2DDiffusion_SQUARE
2 import matplotlib.pyplot as plt
3 import numpy as np
4 from math import log10, sqrt
5 import time, json
6
7 convergence_synthesis=dict(FiniteVolumes2DDiffusion_SQUARE.test_desc)
8
9 def test_validation2DVF_flat_cross_triangles():
10     start = time.time()
11     ### 2D FV flat cross triangles mesh
12     #meshList=[5,9,15,21,31]
13     meshList=['squareWithFlatCrossTriangles_0','squareWithFlatCrossTriangles_1','squareWithFlatCrossTriangles_2','squareWithFlatCrossTriangles_3']#,'squareWithFlatCrossTriangles_4'
14     mesh_path='../../../ressources/2DFlatCrossTriangles/'
15     meshType="Regular_flat_cross_triangles"
16     testColor="Green"
17     nbMeshes=len(meshList)
18     error_tab=[0]*nbMeshes
19     mesh_size_tab=[0]*nbMeshes
20     mesh_name='squareWithFlatCrossTriangles'
21     diag_data=[0]*nbMeshes
22     time_tab=[0]*nbMeshes
23     resolution=100
24     curv_abs=np.linspace(0,sqrt(2),resolution+1)
25     plt.close('all')
26     i=0
27     # Storing of numerical errors, mesh sizes and diagonal values
28     for filename in meshList:
29     #for nx in meshList:
30         #my_mesh=cdmath.Mesh(0,1,nx,0,1,nx*nx)#Use script provided by Adrien to split each quadrangle in 4 triangles
31         #error_tab[i], mesh_size_tab[i], diag_data[i], min_sol_num, max_sol_num, time_tab[i] =FiniteVolumes2DDiffusion_SQUARE.solve(my_mesh,str(nx)+'x'+str(nx),resolution,meshType,testColor)
32         error_tab[i], mesh_size_tab[i], diag_data[i], min_sol_num, max_sol_num, time_tab[i] =FiniteVolumes2DDiffusion_SQUARE.solve_file(mesh_path+filename,resolution,meshType,testColor)
33         assert min_sol_num>-0.01 
34         assert max_sol_num<4.2
35         plt.plot(curv_abs, diag_data[i], label= str(mesh_size_tab[i]) + ' cells')
36         error_tab[i]=log10(error_tab[i])
37         time_tab[i]=log10(time_tab[i])
38         mesh_size_tab[i] = 0.5*log10(mesh_size_tab[i])
39         i=i+1
40         
41     end = time.time()
42
43     # Plot over diagonal line
44     plt.legend()
45     plt.xlabel('Position on diagonal line')
46     plt.ylabel('Value on diagonal line')
47     plt.title('Plot over diagonal line for finite volumes \n for the diffusion equation on 2D flat cross triangles meshes')
48     plt.savefig(mesh_name+"_2DDiffusionFV_PlotOverDiagonalLine.png", dpi='figure')
49
50     # Least square linear regression
51     # Find the best a,b such that f(x)=ax+b best approximates the convergence curve
52     # The vector X=(a,b) solves a symmetric linear system AX=B with A=(a1,a2\\a2,a3), B=(b1,b2)
53     a1=np.dot(mesh_size_tab,mesh_size_tab)
54     a2=np.sum(mesh_size_tab)
55     a3=nbMeshes
56     b1=np.dot(error_tab,mesh_size_tab)   
57     b2=np.sum(error_tab)
58     
59     det=a1*a3-a2*a2
60     assert det!=0, 'test_validation2DVF_flat_triangles() : Make sure you use distinct meshes and at least two meshes'
61     a=( a3*b1-a2*b2)/det
62     b=(-a2*b1+a1*b2)/det
63     
64     print( "FV for diffusion on 2D flat cross triangles meshes : scheme order is ", -a)
65     assert abs(a-0.32)<0.1
66     
67     # Plot of convergence curve
68     plt.close()
69     plt.plot(mesh_size_tab, error_tab, label='log(|numerical-exact|)')
70     plt.plot(mesh_size_tab, a*np.array(mesh_size_tab)+b,label='least square slope : '+'%.3f' % a)
71     plt.legend()
72     plt.plot(mesh_size_tab, error_tab)
73     plt.xlabel('log(sqrt(number of cells))')
74     plt.ylabel('log(error)')
75     plt.title('Convergence of finite volumes for \n the diffusion equation on 2D flat cross triangles meshes')
76     plt.savefig(mesh_name+"_2DDiffusionFV_ConvergenceCurve.png", dpi='figure')
77
78     # Plot of computational time
79     plt.close()
80     plt.plot(mesh_size_tab, time_tab, label='log(cpu time)')
81     plt.legend()
82     plt.xlabel('log(sqrt(number of cells))')
83     plt.ylabel('log(cpu time)')
84     plt.title('Computational time of finite volumes \n for the diffusion equation on 2D flat cross triangles meshes')
85     plt.savefig(mesh_name+"_2DDiffusionFV_ComputationalTime.png", dpi='figure')
86     
87     plt.close('all')
88
89     convergence_synthesis["Mesh_names"]=meshList
90     convergence_synthesis["Mesh_type"]=meshType
91     convergence_synthesis["Mesh_path"]=mesh_path
92     convergence_synthesis["Mesh_description"]=mesh_name
93     convergence_synthesis["Mesh_sizes"]=[10**x for x in mesh_size_tab]
94     convergence_synthesis["Space_dimension"]=2
95     convergence_synthesis["Mesh_dimension"]=2
96     convergence_synthesis["Mesh_cell_type"]="flat cross triangles"
97     convergence_synthesis["Errors"]=[10**x for x in error_tab]
98     convergence_synthesis["Scheme_order"]=-a
99     convergence_synthesis["Test_color"]=testColor
100     convergence_synthesis["Computational_time"]=end-start
101
102     with open('Convergence_Diffusion_2DVF_'+mesh_name+'.json', 'w') as outfile:  
103         json.dump(convergence_synthesis, outfile)
104
105 if __name__ == """__main__""":
106     test_validation2DVF_flat_cross_triangles()