4 import validationStationaryDiffusionEquation
6 import matplotlib.pyplot as plt
8 from math import log10, sqrt
11 convergence_synthesis=dict(validationStationaryDiffusionEquation.test_desc)
13 def convergence_StationaryDiffusion_3DFV_Dirichlet_RegularTetrahedra():
15 ### 3D FV Regular Tetrahedra meshes
19 mesh_name='cubeWithRegularTetrahedra'
20 meshType="Regular_Tetrahedra"
21 nbMeshes=len(meshList)
22 error_tab=[0]*nbMeshes
23 mesh_size_tab=[0]*nbMeshes
24 diag_data=[0]*nbMeshes
27 curv_abs=np.linspace(0,sqrt(2),resolution+1)
31 # Storing of numerical errors, mesh sizes and diagonal values
33 my_mesh=cm.Mesh(0,1,nx,0,1,nx,0,1,nx,1)
34 error_tab[i], mesh_size_tab[i], diag_data[i], min_sol_num, max_sol_num, time_tab[i] =validationStationaryDiffusionEquation.SolveStationaryDiffusionEquation(my_mesh,resolution,meshType,method,BC)
38 plt.plot(curv_abs, diag_data[i], label= str(mesh_size_tab[i]) + ' cells')
39 error_tab[i]=log10(error_tab[i])
40 time_tab[i]=log10(time_tab[i])
41 mesh_size_tab[i] = 0.5*log10(mesh_size_tab[i])
46 # Plot over diagonal line
48 plt.xlabel('Position on diagonal line')
49 plt.ylabel('Value on diagonal line')
50 plt.title('Plot over diagonal line for finite volumes for Poisson problem \n on 3D regular tetrahedra with Dirichlet BC')
51 plt.savefig(mesh_name+"_3DFV_StatDiffusion_Dirichlet_PlotOverDiagonalLine.png")
53 # Least square linear regression
54 # Find the best a,b such that f(x)=ax+b best approximates the convergence curve
55 # The vector X=(a,b) solves a symmetric linear system AX=B with A=(a1,a2\\a2,a3), B=(b1,b2)
56 a1=np.dot(mesh_size_tab,mesh_size_tab)
57 a2=np.sum(mesh_size_tab)
59 b1=np.dot(error_tab,mesh_size_tab)
63 assert det!=0, 'convergence_StationaryDiffusion_3DFV_Dirichlet_regularTetrahedra() : Make sure you use distinct meshes and at least two meshes'
67 print "FV for diffusion on 3D regular tetrahedron meshes: scheme order is ", -a
68 assert abs(a+0.006)<0.001
70 # Plot of convergence curve
72 plt.plot(mesh_size_tab, error_tab, label='log(|numerical-exact|)')
73 plt.plot(mesh_size_tab, a*np.array(mesh_size_tab)+b,label='least square slope : '+'%.3f' % a)
75 plt.plot(mesh_size_tab, error_tab)
76 plt.xlabel('log(sqrt(number of cells))')
77 plt.ylabel('log(error)')
78 plt.title('Convergence of finite volumes for Poisson problem \n on 3D regular tetrahedra meshes with Dirichlet BC')
79 plt.savefig(mesh_name+"_3DFV_StatDiffusion_Dirichlet_ConvergenceCurve.png")
81 # Plot of computational time
83 plt.plot(mesh_size_tab, time_tab, label='log(cpu time)')
85 plt.xlabel('log(sqrt(number of cells))')
86 plt.ylabel('log(cpu time)')
87 plt.title('Computational time of finite volumes for Poisson problem \n on 3D regular tetrahedra meshes with Dirichlet BC')
88 plt.savefig(mesh_name+"_3DFV_StatDiffusion_Dirichlet_ComputationalTime.png")
92 convergence_synthesis["Mesh_names"]=meshList
93 convergence_synthesis["Mesh_type"]=meshType
94 #convergence_synthesis["Mesh_path"]=mesh_path
95 convergence_synthesis["Mesh_description"]=mesh_name
96 convergence_synthesis["Mesh_sizes"]=[10**x for x in mesh_size_tab]
97 convergence_synthesis["Space_dimn"]=3
98 convergence_synthesis["Mesh_dim"]=3
99 convergence_synthesis["Mesh_cell_type"]="Tetrahedron"
100 convergence_synthesis["Errors"]=[10**x for x in error_tab]
101 convergence_synthesis["Scheme_order"]=round(-a,4)
102 convergence_synthesis["Test_color"]=testColor
103 convergence_synthesis["PDE_model"]='Poisson'
104 convergence_synthesis["Num_method"]=method
105 convergence_synthesis["Bound_cond"]=BC
106 convergence_synthesis["Comput_time"]=round(end-start,3)
108 with open('Convergence_Poisson_3DFV_'+mesh_name+'.json', 'w') as outfile:
109 json.dump(convergence_synthesis, outfile)
112 if __name__ == """__main__""":
113 convergence_StationaryDiffusion_3DFV_Dirichlet_RegularTetrahedra()