1 import WaveSystemCentered
2 import matplotlib.pyplot as plt
4 from math import log10, sqrt
9 def test_validation2DWaveSystemCenteredFlatCrossTriangles(scaling):
11 #### 2D flat cross triangle meshes
12 meshList=['squareWithFlatCrossTriangles_00','squareWithFlatCrossTriangles_0','squareWithFlatCrossTriangles_1']#,'squareWithFlatCrossTriangles_2','squareWithFlatCrossTriangles_3'
13 meshType="Unstructured_flat_cross_triangles"
15 nbMeshes=len(meshList)
16 mesh_size_tab=[0]*nbMeshes
17 mesh_path='../../../ressources/2DFlatCrossTriangles/'
18 mesh_name='squareWithFlatCrossTriangles'
20 curv_abs=np.linspace(0,sqrt(2),resolution+1)
22 error_p_tab=[0]*nbMeshes
23 error_u_tab=[0]*nbMeshes
24 diag_data_press=[0]*nbMeshes
25 diag_data_vel=[0]*nbMeshes
28 ndt_final=[0]*nbMeshes
30 cond_number=[0]*nbMeshes
35 # Storing of numerical errors, mesh sizes and diagonal values
36 for filename in meshList:
37 error_p_tab[i], error_u_tab[i], mesh_size_tab[i], t_final[i], ndt_final[i], max_vel[i], diag_data_press[i], diag_data_vel[i], time_tab[i], cond_number[i] = WaveSystemCentered.solve_file(mesh_path+filename, mesh_name, resolution,scaling,meshType,testColor,cfl,"Periodic")
38 assert max_vel[i]>0.94 and max_vel[i]<1.1
39 error_p_tab[i]=log10(error_p_tab[i])
40 error_u_tab[i]=log10(error_u_tab[i])
41 time_tab[i]=log10(time_tab[i])
46 # Plot over diagonal line
47 for i in range(nbMeshes):
49 plt.plot(curv_abs, diag_data_press[i], label= str(mesh_size_tab[i]) + ' cells - no scaling')
51 plt.plot(curv_abs, diag_data_press[i], label= str(mesh_size_tab[i]) + ' cells - with scaling')
53 plt.xlabel('Position on diagonal line')
54 plt.ylabel('Pressure on diagonal line')
55 plt.title('Plot over diagonal line for stationary wave system \n with centered scheme on 2D flat cross triangular meshes')
56 plt.savefig(mesh_name+'_Pressure_2DWaveSystemCentered_'+"scaling"+str(scaling)+"_PlotOverDiagonalLine.png")
60 for i in range(nbMeshes):
62 plt.plot(curv_abs, diag_data_vel[i], label= str(mesh_size_tab[i]) + ' cells - no scaling')
64 plt.plot(curv_abs, diag_data_vel[i], label= str(mesh_size_tab[i]) + ' cells - with scaling')
66 plt.xlabel('Position on diagonal line')
67 plt.ylabel('Velocity on diagonal line')
68 plt.title('Plot over diagonal line for the stationary wave system \n with centered scheme on 2D flat cross triangle meshes')
69 plt.savefig(mesh_name+"_Velocity_2DWaveSystemCentered_"+"scaling"+str(scaling)+"_PlotOverDiagonalLine.png")
72 # Plot of number of time steps
75 plt.plot(mesh_size_tab, ndt_final, label='Number of time step to reach stationary regime - no scaling')
77 plt.plot(mesh_size_tab, ndt_final, label='Number of time step to reach stationary regime - with scaling')
79 plt.xlabel('Number of cells')
80 plt.ylabel('Max time steps for stationary regime')
81 plt.title('Number of times steps required for the stationary Wave System \n with centered scheme on 2D flat cross triangle meshes')
82 plt.savefig(mesh_name+"_2DWaveSystemCentered_"+"scaling"+str(scaling)+"_TimeSteps.png")
84 # Plot of number of stationary time
87 plt.plot(mesh_size_tab, t_final, label='Time where stationary regime is reached - no scaling')
89 plt.plot(mesh_size_tab, t_final, label='Time where stationary regime is reached - with scaling')
91 plt.xlabel('Number of cells')
92 plt.ylabel('Max time for stationary regime')
93 plt.title('Simulated time for the stationary Wave System \n with centered scheme on 2D flat cross triangle meshes')
94 plt.savefig(mesh_name+"_2DWaveSystemCentered_"+"scaling"+str(scaling)+"_FinalTime.png")
96 # Plot of number of maximal velocity norm
99 plt.plot(mesh_size_tab, max_vel, label='Maximum velocity norm - no scaling')
101 plt.plot(mesh_size_tab, max_vel, label='Maximum velocity norm - with scaling')
103 plt.xlabel('Number of cells')
104 plt.ylabel('Max velocity norm')
105 plt.title('Maximum velocity norm for the stationary Wave System \n with centered scheme on 2D flat cross triangle meshes')
106 plt.savefig(mesh_name+"_2DWaveSystemCentered_"+"scaling"+str(scaling)+"_MaxVelNorm.png")
108 # Plot of condition number
111 plt.plot(mesh_size_tab, cond_number, label='Condition number - no scaling')
113 plt.plot(mesh_size_tab, cond_number, label='Condition number - with scaling')
115 plt.xlabel('Number of cells')
116 plt.ylabel('Condition number')
117 plt.title('Condition number for the stationary Wave System \n with centered scheme on 2D square meshes')
118 plt.savefig(mesh_name+"_2DWaveSystemCentered_"+"scaling"+str(scaling)+"_condition_number.png")
120 for i in range(nbMeshes):
121 mesh_size_tab[i]=0.5*log10(mesh_size_tab[i])
123 # Least square linear regression
124 # Find the best a,b such that f(x)=ax+b best approximates the convergence curve
125 # The vector X=(a,b) solves a symmetric linear system AX=B with A=(a1,a2\\a2,a3), B=(b1,b2)
126 a1=np.dot(mesh_size_tab,mesh_size_tab)
127 a2=np.sum(mesh_size_tab)
131 assert det!=0, 'test_validation2DWaveSystemFVCentered() : Make sure you use distinct meshes and at least two meshes'
133 b1p=np.dot(error_p_tab,mesh_size_tab)
134 b2p=np.sum(error_p_tab)
135 ap=( a3*b1p-a2*b2p)/det
136 bp=(-a2*b1p+a1*b2p)/det
139 print("FV Centered on 2D flat cross triangle meshes : scheme order for pressure without scaling is ", -ap)
141 print("FV Centered on 2D flat cross triangle meshes : scheme order for pressure with scaling is ", -ap)
143 b1u=np.dot(error_u_tab,mesh_size_tab)
144 b2u=np.sum(error_u_tab)
145 au=( a3*b1u-a2*b2u)/det
146 bu=(-a2*b1u+a1*b2u)/det
149 print("FV Centered on 2D flat cross triangle meshes : scheme order for velocity without scaling is ", -au)
151 print("FV Centered on 2D flat cross triangle meshes : scheme order for velocity with scaling is ", -au)
153 # Plot of convergence curves
156 plt.plot(mesh_size_tab, error_p_tab, label='|error on stationary pressure| - no scaling')
158 plt.plot(mesh_size_tab, error_p_tab, label='|error on stationary pressure| - with scaling')
160 plt.xlabel('1/2 log(Number of cells)')
161 plt.ylabel('log(|error p|)')
162 plt.title('Convergence of finite volumes for the stationary Wave System \n with centered scheme on 2D flat cross triangle meshes')
163 plt.savefig(mesh_name+"_Pressure_2DWaveSystemCentered_"+"scaling"+str(scaling)+"_ConvergenceCurve.png")
167 plt.plot(mesh_size_tab, error_u_tab, label='log(|error on stationary velocity|) - no scaling')
169 plt.plot(mesh_size_tab, error_u_tab, label='log(|error on stationary velocity|) - with scaling')
171 plt.xlabel('1/2 log(Number of cells)')
172 plt.ylabel('log(|error u|)')
173 plt.title('Convergence of finite volumes for the stationary Wave System \n with centered scheme on 2D flat cross triangle meshes')
174 plt.savefig(mesh_name+"_Velocity_2DWaveSystemCentered_"+"scaling"+str(scaling)+"_ConvergenceCurve.png")
176 # Plot of computational time
179 plt.plot(mesh_size_tab, time_tab, label='log(cpu time) - no scaling')
181 plt.plot(mesh_size_tab, time_tab, label='log(cpu time) - with scaling')
183 plt.xlabel('1/2 log(Number of cells)')
184 plt.ylabel('log(cpu time)')
185 plt.title('Computational time of finite volumes for the stationary Wave System \n with centered scheme on 2D flat cross triangle meshes')
186 plt.savefig(mesh_name+"2DWaveSystemCentered_"+"scaling"+str(scaling)+"_ComputationalTime.png")
190 convergence_synthesis={}
192 convergence_synthesis["PDE_model"]="Wave system"
193 convergence_synthesis["PDE_is_stationary"]=False
194 convergence_synthesis["PDE_search_for_stationary_solution"]=True
196 convergence_synthesis["Numerical_method_name"]="Centered scheme no scaling"
198 convergence_synthesis["Numerical_method_name"]="Centered scheme scaling"
199 convergence_synthesis["Numerical_method_space_discretization"]="Finite volumes"
200 convergence_synthesis["Numerical_method_time_discretization"]="Implicit"
201 convergence_synthesis["Initial_data"]="Constant pressure, divergence free velocity"
202 convergence_synthesis["Boundary_conditions"]="Periodic"
203 convergence_synthesis["Numerical_parameter_cfl"]=cfl
204 convergence_synthesis["Space_dimension"]=2
205 convergence_synthesis["Mesh_dimension"]=2
206 convergence_synthesis["Mesh_names"]=meshList
207 convergence_synthesis["Mesh_type"]=meshType
208 convergence_synthesis["Mesh_path"]=mesh_path
209 convergence_synthesis["Mesh_description"]=mesh_name
210 convergence_synthesis["Mesh_sizes"]=mesh_size_tab
211 convergence_synthesis["Mesh_cell_type"]="Triangles"
212 convergence_synthesis["Numerical_error_velocity"]=error_u_tab
213 convergence_synthesis["Numerical_error_pressure"]=error_p_tab
214 convergence_synthesis["Max_vel_norm"]=max_vel
215 convergence_synthesis["Final_time"]=t_final
216 convergence_synthesis["Final_time_step"]=ndt_final
217 convergence_synthesis["Scheme_order"]=-au
218 convergence_synthesis["Scheme_order_vel"]=-au
219 convergence_synthesis["Scaling_preconditioner"]=scaling
220 convergence_synthesis["Condition_numbers"]=cond_number
221 convergence_synthesis["Test_color"]=testColor
222 convergence_synthesis["Computational_time"]=end-start
224 with open('Convergence_WaveSystem_2DFV_Centered_'+mesh_name+'.json', 'w') as outfile:
225 json.dump(convergence_synthesis, outfile)
227 if __name__ == """__main__""":
228 if len(sys.argv) >1 :
229 scaling = int(sys.argv[1])
230 test_validation2DWaveSystemCenteredFlatCrossTriangles(scaling)
232 test_validation2DWaveSystemCenteredFlatCrossTriangles(2)