2 import WaveSystemUpwind
5 import matplotlib.pyplot as plt
7 from math import log10, sqrt
12 def test_validation3DWaveSystemUpwindTetrahedra(bctype,scaling):
14 #### 3D tetrahedral mesh of a cartesian mesh
15 #meshList=[5,11,21,26]
16 meshList=['meshCubeTetrahedra_0','meshCubeTetrahedra_1','meshCubeTetrahedra_2','meshCubeTetrahedra_3','meshCubeTetrahedra_4']
17 mesh_path='../../../ressources/3DTetrahedra/'
18 meshType="Unstructured tetrahedra"
20 nbMeshes=len(meshList)
21 error_p_tab=[0]*nbMeshes
22 error_u_tab=[0]*nbMeshes
23 mesh_size_tab=[0]*nbMeshes
24 mesh_name='CubeWithTetrahedra'
25 diag_data_press=[0]*nbMeshes
26 diag_data_vel=[0]*nbMeshes
29 ndt_final=[0]*nbMeshes
32 curv_abs=np.linspace(0,sqrt(3),resolution+1)
38 # Storing of numerical errors, mesh sizes and diagonal values
39 for filename in meshList:
41 #my_mesh=cdmath.Mesh(0.,1.,nx,0.,1.,nx,0.,1.,nx,6)
42 #error_p_tab[i], error_u_tab[i], mesh_size_tab[i], t_final[i], ndt_final[i], max_vel[i], diag_data_press[i], diag_data_vel[i], time_tab[i] =WaveSystemUpwind.solve(my_mesh, mesh_name+str(my_mesh.getNumberOfCells()), resolution,scaling,meshType,testColor,cfl,bctype)
43 error_p_tab[i], error_u_tab[i], mesh_size_tab[i], t_final[i], ndt_final[i], max_vel[i], diag_data_press[i], diag_data_vel[i], time_tab[i] =WaveSystemUpwind.solve_file(mesh_path+filename, mesh_name, resolution,scaling,meshType,testColor,cfl,bctype)
44 print("max_vel[i]=", max_vel[i])
45 assert max_vel[i]>0.5 and max_vel[i]<2
46 error_p_tab[i]=log10(error_p_tab[i])
47 error_u_tab[i]=log10(error_u_tab[i])
52 # Plot over diagonal line
53 for i in range(nbMeshes):
54 plt.plot(curv_abs, diag_data_press[i], label= str(mesh_size_tab[i]) + ' cells')
56 plt.xlabel('Position on diagonal line')
57 plt.ylabel('Pressure on diagonal line')
58 plt.title('Plot over diagonal line for stationary wave system \n on 3D tetrahedral meshes')
59 plt.savefig(mesh_name+'_Pressure_3DWaveSystemUpwind_'+"PlotOverDiagonalLine.png")
63 for i in range(nbMeshes):
64 plt.plot(curv_abs, diag_data_vel[i], label= str(mesh_size_tab[i]) + ' cells')
66 plt.xlabel('Position on diagonal line')
67 plt.ylabel('Velocity on diagonal line')
68 plt.title('Plot over diagonal line for the stationary wave system \n on 3D tetrahedral meshes')
69 plt.savefig(mesh_name+"_Velocity_3DWaveSystemUpwind_"+"PlotOverDiagonalLine.png")
72 # Plot of number of time steps
74 plt.plot(mesh_size_tab, ndt_final, label='Number of time step to reach stationary regime')
76 plt.xlabel('number of cells')
77 plt.ylabel('Max time steps for stationary regime')
78 plt.title('Number of times steps required \n for the stationary Wave System on 3D tetrahedral meshes')
79 plt.savefig(mesh_name+"_3DWaveSystemUpwind_"+"TimeSteps.png")
81 # Plot of time where stationary regime is reached
83 plt.plot(mesh_size_tab, t_final, label='Time where stationary regime is reached')
85 plt.xlabel('number of cells')
86 plt.ylabel('Max time for stationary regime')
87 plt.title('Simulated time \n for the stationary Wave System on 3D tetrahedral meshes')
88 plt.savefig(mesh_name+"_3DWaveSystemUpwind_"+"TimeFinal.png")
90 # Plot of maximal velocity norm
92 plt.plot(mesh_size_tab, max_vel, label='Maximum velocity norm')
94 plt.xlabel('number of cells')
95 plt.ylabel('Max velocity norm')
96 plt.title('Maximum velocity norm \n for the stationary Wave System on 3D tetrahedral meshes')
97 plt.savefig(mesh_name+"_3DWaveSystemUpwind_"+"MaxVelNorm.png")
100 for i in range(nbMeshes):
101 mesh_size_tab[i] = 0.5*log10(mesh_size_tab[i])
103 # Least square linear regression
104 # Find the best a,b such that f(x)=ax+b best approximates the convergence curve
105 # The vector X=(a,b) solves a symmetric linear system AX=B with A=(a1,a2\\a2,a3), B=(b1,b2)
106 a1=np.dot(mesh_size_tab,mesh_size_tab)
107 a2=np.sum(mesh_size_tab)
111 assert det!=0, 'test_validation3DWaveSystemUpwindSquaresFV() : Make sure you use distinct meshes and at least two meshes'
113 b1p=np.dot(error_p_tab,mesh_size_tab)
114 b2p=np.sum(error_p_tab)
115 ap=( a3*b1p-a2*b2p)/det
116 bp=(-a2*b1p+a1*b2p)/det
118 print("FV on 3D tetrahedral meshes : scheme order for pressure is ", -ap)
120 b1u=np.dot(error_u_tab,mesh_size_tab)
121 b2u=np.sum(error_u_tab)
122 au=( a3*b1u-a2*b2u)/det
123 bu=(-a2*b1u+a1*b2u)/det
125 print("FV on 3D tetrahedral meshes : scheme order for velocity is ", -au)
127 # Plot of convergence curves
129 plt.plot(mesh_size_tab, error_p_tab, label='|error on stationary pressure|')
131 plt.xlabel('number of cells')
132 plt.ylabel('error p')
133 plt.title('Convergence of finite volumes for \n the stationary Wave System on 3D tetrahedral meshes')
134 plt.savefig(mesh_name+"_Pressure_3DWaveSystemUpwind_"+"ConvergenceCurve.png")
137 plt.plot(mesh_size_tab, error_u_tab, label='|error on stationary velocity|')
139 plt.xlabel('number of cells')
140 plt.ylabel('error p')
141 plt.title('Convergence of finite volumes for \n the stationary Wave System on 3D tetrahedral meshes')
142 plt.savefig(mesh_name+"_Velocity_3DWaveSystemUpwind_"+"ConvergenceCurve.png")
144 # Plot of computational time
146 plt.plot(mesh_size_tab, time_tab, label='log(cpu time)')
148 plt.xlabel('number of cells')
149 plt.ylabel('cpu time')
150 plt.title('Computational time of finite volumes \n for the stationary Wave System on 3D tetrahedral meshes')
151 plt.savefig(mesh_name+"_3DWaveSystemUpwind_"+"_scaling_"+str(scaling)+"_ComputationalTime.png")
156 convergence_synthesis={}
158 convergence_synthesis["PDE_model"]="Wave system"
159 convergence_synthesis["PDE_is_stationary"]=False
160 convergence_synthesis["PDE_search_for_stationary_solution"]=True
161 convergence_synthesis["Numerical_method_name"]="Upwind"
162 convergence_synthesis["Numerical_method_space_discretization"]="Finite volumes"
163 convergence_synthesis["Numerical_method_time_discretization"]="Implicit"
164 convergence_synthesis["Initial_data"]="Constant pressure, divergence free velocity"
165 convergence_synthesis["Boundary_conditions"]="Periodic"
166 convergence_synthesis["Numerical_parameter_cfl"]=cfl
167 convergence_synthesis["Space_dimension"]=3
168 convergence_synthesis["Mesh_dimension"]=3
169 convergence_synthesis["Mesh_names"]=meshList
170 convergence_synthesis["Mesh_type"]=meshType
171 #convergence_synthesis["Mesh_path"]=mesh_path
172 convergence_synthesis["Mesh_description"]=mesh_name
173 convergence_synthesis["Mesh_sizes"]=mesh_size_tab
174 convergence_synthesis["Mesh_cell_type"]="Tetrahedra"
175 convergence_synthesis["Numerical_error_velocity"]=error_u_tab
176 convergence_synthesis["Numerical_error_pressure"]=error_p_tab
177 convergence_synthesis["Max_vel_norm"]=max_vel
178 convergence_synthesis["Final_time"]=t_final
179 convergence_synthesis["Final_time_step"]=ndt_final
180 convergence_synthesis["Scheme_order"]=min(-au,-ap)
181 convergence_synthesis["Scheme_order_vel"]=-au
182 convergence_synthesis["Scheme_order_press"]=-ap
183 convergence_synthesis["Scaling_preconditioner"]="None"
184 convergence_synthesis["Test_color"]=testColor
185 convergence_synthesis["Computational_time"]=end-start
187 with open('Convergence_WaveSystem_3DFV_Upwind_'+mesh_name+"_scaling_"+str(scaling)+'.json', 'w') as outfile:
188 json.dump(convergence_synthesis, outfile)
190 if __name__ == """__main__""":
191 if len(sys.argv) >2 :
193 scaling = int(sys.argv[2])
194 test_validation3DWaveSystemUpwindTetrahedra(bctype,scaling)
196 raise ValueError("test_validation3DWaveSystemUpwindTetrahedra.py expects a mesh file name and a scaling parameter")