1 import FiniteElements2DPoisson_SQUARE
4 import matplotlib.pyplot as plt
6 from math import log10, sqrt
9 convergence_synthesis=dict(FiniteElements2DPoisson_SQUARE.test_desc)
11 def test_validation2DEF_skinny_triangles():
13 #### 2D FE skinny triangle mesh
14 #meshList=[5,9,15,21,31]
15 meshList=['squareWithSkinnyTriangles_0','squareWithSkinnyTriangles_1','squareWithSkinnyTriangles_2','squareWithSkinnyTriangles_3']#,'squareWithSkinnyTriangles_4'
16 mesh_path='../../../ressources/2DSkinnyTriangles/'
17 meshType="Regular_skinny_triangles"
18 mesh_name='squareWithSkinnyTriangles'
20 nbMeshes=len(meshList)
21 error_tab=[0]*nbMeshes
22 mesh_size_tab=[0]*nbMeshes
23 diag_data=[0]*nbMeshes
28 curv_abs=np.linspace(0,sqrt(2),resolution+1)
31 # Storing of numerical errors, mesh sizes and diagonal values
32 for filename in meshList:
34 #my_mesh=cdmath.Mesh(0,1,nx,0,1,nx*nx)#Use script provided by Adrien to split each quadrangle in 2 triangles
35 error_tab[i], mesh_size_tab[i], diag_data[i], min_tab[i], max_tab[i], time_tab[i] =FiniteElements2DPoisson_SQUARE.solve(mesh_path+filename, resolution, meshType, testColor)
36 assert min_tab[i]>-0.01
38 plt.plot(curv_abs, diag_data[i], label= str(mesh_size_tab[i]) + ' nodes')
39 error_tab[i]=log10(error_tab[i])
40 time_tab[i]=log10(time_tab[i])
45 # Plot over diagonal line
47 plt.xlabel('Position on diagonal line')
48 plt.ylabel('Value on diagonal line')
49 plt.title('Plot over diagonal line for finite elements \n for Laplace operator on 2D skinny triangle meshes')
50 plt.savefig(mesh_name+"_2DPoissonEF_PlotOverDiagonalLine.png")
53 # Plot of min and max curves
55 plt.plot(mesh_size_tab, min_tab, label='Minimum value')
56 plt.plot(mesh_size_tab, max_tab, label='Maximum value')
58 plt.xlabel('Number of nodes')
60 plt.title('Min/Max of Finite elements \n for Laplace operator on 2D skinny triangle meshes')
61 plt.savefig(mesh_name+"_2DPoissonEF_MinMax.png")
63 for i in range(nbMeshes):
64 mesh_size_tab[i] = 0.5*log10(mesh_size_tab[i])
66 # Least square linear regression
67 # Find the best a,b such that f(x)=ax+b best approximates the convergence curve
68 # The vector X=(a,b) solves a symmetric linear system AX=B with A=(a1,a2\\a2,a3), B=(b1,b2)
69 a1=np.dot(mesh_size_tab,mesh_size_tab)
70 a2=np.sum(mesh_size_tab)
72 b1=np.dot(error_tab,mesh_size_tab)
76 assert det!=0, 'test_validation2DEF_skinny_triangles() : Make sure you use distinct meshes and at least two meshes'
80 print( "FE on 2D skinny triangle mesh : scheme order is ", -a )
81 assert abs(a+1.397)<0.1
83 # Plot of convergence curves
85 plt.plot(mesh_size_tab, error_tab, label='log(|numerical-exact|)')
86 plt.plot(mesh_size_tab, a*np.array(mesh_size_tab)+b,label='least square slope : '+'%.3f' % a)
88 plt.xlabel('log(sqrt(number of nodes))')
89 plt.ylabel('log(error)')
90 plt.title('Convergence of finite elements \n for Laplace operator on 2D skinny triangle meshes')
91 plt.savefig(mesh_name+"_2DPoissonEF_ConvergenceCurve.png")
93 # Plot of computational time
95 plt.plot(mesh_size_tab, time_tab, label='log(cpu time)')
97 plt.xlabel('log(sqrt(number of nodes))')
98 plt.ylabel('log(cpu time)')
99 plt.title('Computational time of finite elements \n for Laplace operator on 2D skinny triangle meshes')
100 plt.savefig(mesh_name+"_2DPoissonEF_ComputationalTime.png")
104 convergence_synthesis["Mesh_names"]=meshList
105 convergence_synthesis["Mesh_type"]=meshType
106 convergence_synthesis["Mesh_path"]=mesh_path
107 convergence_synthesis["Mesh_description"]=mesh_name
108 convergence_synthesis["Mesh_sizes"]=[10**x for x in mesh_size_tab]
109 convergence_synthesis["Space_dimension"]=2
110 convergence_synthesis["Mesh_dimension"]=2
111 convergence_synthesis["Mesh_cell_type"]="Triangles"
112 convergence_synthesis["Errors"]=[10**x for x in error_tab]
113 convergence_synthesis["Scheme_order"]=-a
114 convergence_synthesis["Test_color"]=testColor
115 convergence_synthesis["Computational_time"]=end-start
117 with open('Convergence_Poisson_2DFE_'+mesh_name+'.json', 'w') as outfile:
118 json.dump(convergence_synthesis, outfile)
120 if __name__ == """__main__""":
121 test_validation2DEF_skinny_triangles()