]> SALOME platform Git repositories - tools/solverlab.git/blob
Salome HOME
49cea53ed09b8dde5401d017cf4afc628f87b51a
[tools/solverlab.git] /
1 import cdmath
2 import FiniteVolumes2DPoisson_SQUARE
3 import matplotlib.pyplot as plt
4 import numpy as np
5 from math import log10, sqrt
6 import time, json
7
8 convergence_synthesis=dict(FiniteVolumes2DPoisson_SQUARE.test_desc)
9
10 def test_validation2DVF_equilateral_triangles():
11     start = time.time()
12     ### 2D FV equilateral triangles mesh
13     #meshList=[5,20,50,100,200]
14     meshList=['squareWithEquilateralTriangles5','squareWithEquilateralTriangles20','squareWithEquilateralTriangles50','squareWithEquilateralTriangles100','squareWithEquilateralTriangles200']
15     mesh_path='../../../ressources/2DEquilateralTriangles/'
16     meshType="Regular_equilateral_triangles"
17     testColor="Green"
18     nbMeshes=len(meshList)
19     error_tab=[0]*nbMeshes
20     mesh_size_tab=[0]*nbMeshes
21     mesh_name='squareWithEquilateralTriangles'
22     diag_data=[0]*nbMeshes
23     time_tab=[0]*nbMeshes
24     resolution=100
25     curv_abs=np.linspace(0,sqrt(2),resolution+1)
26     plt.close('all')
27     i=0
28     eps=1e-6;
29     # Storing of numerical errors, mesh sizes and diagonal values
30     #for filename in meshList:
31     for filename in meshList:
32         error_tab[i], mesh_size_tab[i], diag_data[i], min_sol_num, max_sol_num, time_tab[i] =FiniteVolumes2DPoisson_SQUARE.solve_file(mesh_path+filename,resolution,meshType,testColor)
33         assert min_sol_num>-0.01 
34         assert max_sol_num<1.4
35         plt.plot(curv_abs, diag_data[i], label= str(mesh_size_tab[i]) + ' cells')
36         error_tab[i]=log10(error_tab[i])
37         time_tab[i]=log10(time_tab[i])
38         mesh_size_tab[i] = 0.5*log10(mesh_size_tab[i])
39         i=i+1
40         
41     end = time.time()
42
43     # Plot over diagonal line
44     plt.legend()
45     plt.xlabel('Position on diagonal line')
46     plt.ylabel('Value on diagonal line')
47     plt.title('Plot over diagonal line for finite volumes \n for Laplace operator on 2D equilateral triangles meshes')
48     plt.savefig(mesh_name+"_2DPoissonFV_PlotOverDiagonalLine.png")
49
50     # Least square linear regression
51     # Find the best a,b such that f(x)=ax+b best approximates the convergence curve
52     # The vector X=(a,b) solves a symmetric linear system AX=B with A=(a1,a2\\a2,a3), B=(b1,b2)
53     a1=np.dot(mesh_size_tab,mesh_size_tab)
54     a2=np.sum(mesh_size_tab)
55     a3=nbMeshes
56     b1=np.dot(error_tab,mesh_size_tab)   
57     b2=np.sum(error_tab)
58     
59     det=a1*a3-a2*a2
60     assert det!=0, 'test_validation2DVF_equilateral_triangles() : Make sure you use distinct meshes and at least two meshes'
61     a=( a3*b1-a2*b2)/det
62     b=(-a2*b1+a1*b2)/det
63     
64     print( "FV on 2D equilateral triangles mesh : scheme order is ", -a)
65     assert abs(a+1.98)<0.01
66     
67     # Plot of convergence curve
68     plt.close()
69     plt.plot(mesh_size_tab, error_tab, label='log(|numerical-exact|)')
70     plt.plot(mesh_size_tab, a*np.array(mesh_size_tab)+b,label='least square slope : '+'%.3f' % a)
71     plt.legend()
72     plt.plot(mesh_size_tab, error_tab)
73     plt.xlabel('log(sqrt(number of cells))')
74     plt.ylabel('log(error)')
75     plt.title('Convergence of finite volumes for \n Laplace operator on 2D equilateral triangles meshes')
76     plt.savefig(mesh_name+"_2DPoissonFV_ConvergenceCurve.png")
77
78     # Plot of computational time
79     plt.close()
80     plt.plot(mesh_size_tab, time_tab, label='log(cpu time)')
81     plt.legend()
82     plt.xlabel('log(sqrt(number of cells))')
83     plt.ylabel('log(cpu time)')
84     plt.title('Computational time of finite volumes \n for Laplace operator on 2D equilateral triangles meshes')
85     plt.savefig(mesh_name+"_2DPoissonFV_ComputationalTime.png")
86     
87     plt.close('all')
88
89     convergence_synthesis["Mesh_names"]=meshList
90     convergence_synthesis["Mesh_type"]=meshType
91     convergence_synthesis["Mesh_path"]=mesh_path
92     convergence_synthesis["Mesh_description"]=mesh_name
93     convergence_synthesis["Mesh_sizes"]=[10**x for x in mesh_size_tab]
94     convergence_synthesis["Space_dimension"]=2
95     convergence_synthesis["Mesh_dimension"]=2
96     convergence_synthesis["Mesh_cell_type"]="Triangles"
97     convergence_synthesis["Errors"]=[10**x for x in error_tab]
98     convergence_synthesis["Scheme_order"]=-a
99     convergence_synthesis["Test_color"]=testColor
100     convergence_synthesis["Computational_time"]=end-start
101
102     with open('Convergence_Poisson_2DVF_'+mesh_name+'.json', 'w') as outfile:  
103         json.dump(convergence_synthesis, outfile)
104
105 if __name__ == """__main__""":
106     test_validation2DVF_equilateral_triangles()