]> SALOME platform Git repositories - tools/solverlab.git/blob
Salome HOME
01eeb8e41c66b3f0874b5f379a33b43d25933e07
[tools/solverlab.git] /
1 #!/usr/bin/env python
2 # -*-coding:utf-8 -*
3
4 import validationStationaryDiffusionEquation
5 import cdmath as cm
6 import matplotlib.pyplot as plt
7 import numpy as np
8 from math import log10, sqrt
9 import time, json
10
11 convergence_synthesis=dict(validationStationaryDiffusionEquation.test_desc)
12
13 def convergence_StationaryDiffusion_2DFV_Neumann_RightTriangles(): 
14     start = time.time()
15     ### 2D FV right triangles mesh
16     method = 'FV' 
17     BC = 'Neumann'
18     meshList=[5,20,50,100, 200,400]
19     nbMeshes=len(meshList)
20     error_tab=[0]*nbMeshes
21     mesh_size_tab=[0]*nbMeshes
22     mesh_name='squareWithTriangles'
23     meshType="Regular_RightTriangles"
24     diag_data=[0]*nbMeshes
25     time_tab=[0]*nbMeshes
26     resolution=100
27     curv_abs=np.linspace(0,sqrt(2),resolution+1)
28     plt.close('all')
29     i=0
30     testColor="Orange \n (suspicious order 0 convergence), singular matrix"#Convergence of the linear solver if direct solver. Scheme seems to diverge (order -0.005)
31     # Storing of numerical errors, mesh sizes and diagonal values
32     for nx in meshList:
33                 my_mesh=cm.Mesh(0,1,nx,0,1,nx,1)
34                 error_tab[i], mesh_size_tab[i], diag_data[i], min_sol_num, max_sol_num, time_tab[i] =validationStationaryDiffusionEquation.SolveStationaryDiffusionEquation(my_mesh,resolution,meshType,method,BC)
35
36                 assert min_sol_num>-1.22
37                 assert max_sol_num<1.
38                 plt.plot(curv_abs, diag_data[i], label= str(mesh_size_tab[i]) + ' cells')
39                 error_tab[i]=log10(error_tab[i])
40                 time_tab[i]=log10(time_tab[i])
41                 mesh_size_tab[i] = 0.5*log10(mesh_size_tab[i])
42                 i=i+1
43     end = time.time()
44         
45    
46
47     # Plot over diagonal line
48     plt.legend()
49     plt.xlabel('Position on diagonal line')
50     plt.ylabel('Value on diagonal line')
51     plt.title('Plot over diagonal line for finite volumes for the Poisson problem \n on 2D right triangles meshes with with Neumann BC')
52     plt.savefig(mesh_name+"_2DFV_StatDiffusion_Neumann_PlotOverDiagonalLine.png")
53
54     # Least square linear regression
55     # Find the best a,b such that f(x)=ax+b best approximates the convergence curve
56     # The vector X=(a,b) solves a symmetric linear system AX=B with A=(a1,a2\\a2,a3), B=(b1,b2)
57     a1=np.dot(mesh_size_tab,mesh_size_tab)
58     a2=np.sum(mesh_size_tab)
59     a3=nbMeshes
60     b1=np.dot(error_tab,mesh_size_tab)   
61     b2=np.sum(error_tab)
62     
63     det=a1*a3-a2*a2
64     assert det!=0, 'convergence_StationaryDiffusion_2DFV_Neumann_RightTriangles() : Make sure you use distinct meshes and at least two meshes'
65     a=( a3*b1-a2*b2)/det
66     b=(-a2*b1+a1*b2)/det
67     
68     print "FV for diffusion on 2D right triangle meshes: scheme order is ", -a
69     assert abs(a-0.005)<0.01
70     
71     # Plot of convergence curve
72     plt.close()
73     plt.plot(mesh_size_tab, error_tab, label='log(|numerical-exact|)')
74     plt.plot(mesh_size_tab, a*np.array(mesh_size_tab)+b,label='least square slope : '+'%.3f' % a)
75     plt.legend()
76     plt.plot(mesh_size_tab, error_tab)
77     plt.xlabel('log(sqrt(number of cells))')
78     plt.ylabel('log(error)')
79     plt.title('Convergence of finite volumes  for the Poisson problem \n on 2D right triangles meshes with with Neumann BC')
80     plt.savefig(mesh_name+"_2DFV_StatDiffusion_Neumann_ConvergenceCurve.png")
81
82     # Plot of computational time
83     plt.close()
84     plt.plot(mesh_size_tab, time_tab, label='log(cpu time)')
85     plt.legend()
86     plt.xlabel('log(sqrt(number of cells))')
87     plt.ylabel('log(cpu time)')
88     plt.title('Computational time of finite volumes for the Poisson problem \n on 2D right triangles meshes with with Neumann BC')
89     plt.savefig(mesh_name+"_2DFV_StatDiffusion_Neumann_ComputationalTime.png")
90     
91     plt.close('all')
92
93     convergence_synthesis["Mesh_names"]=meshList
94     convergence_synthesis["Mesh_type"]=meshType
95     #convergence_synthesis["Mesh_path"]=mesh_path
96     convergence_synthesis["Mesh_description"]=mesh_name
97     convergence_synthesis["Mesh_sizes"]=[10**x for x in mesh_size_tab]
98     convergence_synthesis["Space_dim"]=2
99     convergence_synthesis["Mesh_dim"]=2
100     convergence_synthesis["Mesh_cell_type"]="Triangles"
101     convergence_synthesis["Errors"]=[10**x for x in error_tab]
102     convergence_synthesis["Scheme_order"]=round(-a,4)
103     convergence_synthesis["Test_color"]=testColor
104     convergence_synthesis["PDE_model"]='Poisson'
105     convergence_synthesis["Num_method"]=method
106     convergence_synthesis["Bound_cond"]=BC
107     convergence_synthesis["Comput_time"]=round(end-start,3)
108
109     with open('Convergence_Poisson_2DFV_'+mesh_name+'.json', 'w') as outfile:  
110         json.dump(convergence_synthesis, outfile)
111
112    
113 if __name__ == """__main__""":
114     convergence_StationaryDiffusion_2DFV_Neumann_RightTriangles()