]> SALOME platform Git repositories - modules/adao.git/blob - src/daComposant/daAlgorithms/NonLinearLeastSquares.py
Salome HOME
Updating test with unittest and extended user case definition
[modules/adao.git] / src / daComposant / daAlgorithms / NonLinearLeastSquares.py
1 # -*- coding: utf-8 -*-
2 #
3 # Copyright (C) 2008-2019 EDF R&D
4 #
5 # This library is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License.
9 #
10 # This library is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with this library; if not, write to the Free Software
17 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 #
19 # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
20 #
21 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
22
23 import logging
24 from daCore import BasicObjects
25 import numpy, scipy.optimize
26
27 # ==============================================================================
28 class ElementaryAlgorithm(BasicObjects.Algorithm):
29     def __init__(self):
30         BasicObjects.Algorithm.__init__(self, "NONLINEARLEASTSQUARES")
31         self.defineRequiredParameter(
32             name     = "Minimizer",
33             default  = "LBFGSB",
34             typecast = str,
35             message  = "Minimiseur utilisé",
36             listval  = ["LBFGSB","TNC", "CG", "NCG", "BFGS", "LM"],
37             )
38         self.defineRequiredParameter(
39             name     = "MaximumNumberOfSteps",
40             default  = 15000,
41             typecast = int,
42             message  = "Nombre maximal de pas d'optimisation",
43             minval   = -1,
44             )
45         self.defineRequiredParameter(
46             name     = "CostDecrementTolerance",
47             default  = 1.e-7,
48             typecast = float,
49             message  = "Diminution relative minimale du coût lors de l'arrêt",
50             minval   = 0.,
51             )
52         self.defineRequiredParameter(
53             name     = "ProjectedGradientTolerance",
54             default  = -1,
55             typecast = float,
56             message  = "Maximum des composantes du gradient projeté lors de l'arrêt",
57             minval   = -1,
58             )
59         self.defineRequiredParameter(
60             name     = "GradientNormTolerance",
61             default  = 1.e-05,
62             typecast = float,
63             message  = "Maximum des composantes du gradient lors de l'arrêt",
64             minval   = 0.,
65             )
66         self.defineRequiredParameter(
67             name     = "StoreInternalVariables",
68             default  = False,
69             typecast = bool,
70             message  = "Stockage des variables internes ou intermédiaires du calcul",
71             )
72         self.defineRequiredParameter(
73             name     = "StoreSupplementaryCalculations",
74             default  = [],
75             typecast = tuple,
76             message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
77             listval  = [
78                 "BMA",
79                 "CostFunctionJ",
80                 "CostFunctionJAtCurrentOptimum",
81                 "CostFunctionJb",
82                 "CostFunctionJbAtCurrentOptimum",
83                 "CostFunctionJo",
84                 "CostFunctionJoAtCurrentOptimum",
85                 "CurrentOptimum",
86                 "CurrentState",
87                 "IndexOfOptimum",
88                 "Innovation",
89                 "InnovationAtCurrentState",
90                 "OMA",
91                 "OMB",
92                 "SimulatedObservationAtBackground",
93                 "SimulatedObservationAtCurrentOptimum",
94                 "SimulatedObservationAtCurrentState",
95                 "SimulatedObservationAtOptimum",
96                 ]
97             )
98         self.defineRequiredParameter( # Pas de type
99             name     = "Bounds",
100             message  = "Liste des valeurs de bornes",
101             )
102         self.requireInputArguments(
103             mandatory= ("Xb", "Y", "HO", "R"),
104             )
105
106     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
107         self._pre_run(Parameters, Xb, Y, R, B, Q)
108         #
109         # Correction pour pallier a un bug de TNC sur le retour du Minimum
110         if "Minimizer" in self._parameters and self._parameters["Minimizer"] == "TNC":
111             self.setParameterValue("StoreInternalVariables",True)
112         #
113         # Opérateurs
114         # ----------
115         Hm = HO["Direct"].appliedTo
116         Ha = HO["Adjoint"].appliedInXTo
117         #
118         # Utilisation éventuelle d'un vecteur H(Xb) précalculé
119         # ----------------------------------------------------
120         if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
121             HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
122         else:
123             HXb = Hm( Xb )
124         HXb = numpy.asmatrix(numpy.ravel( HXb )).T
125         if Y.size != HXb.size:
126             raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
127         if max(Y.shape) != max(HXb.shape):
128             raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
129         #
130         # Précalcul des inversions de B et R
131         # ----------------------------------
132         RI = R.getI()
133         if self._parameters["Minimizer"] == "LM":
134             RdemiI = R.choleskyI()
135         #
136         # Définition de la fonction-coût
137         # ------------------------------
138         def CostFunction(x):
139             _X  = numpy.asmatrix(numpy.ravel( x )).T
140             if self._parameters["StoreInternalVariables"] or \
141                 self._toStore("CurrentState") or \
142                 self._toStore("CurrentOptimum"):
143                 self.StoredVariables["CurrentState"].store( _X )
144             _HX = Hm( _X )
145             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
146             _Innovation = Y - _HX
147             if self._toStore("SimulatedObservationAtCurrentState") or \
148                 self._toStore("SimulatedObservationAtCurrentOptimum"):
149                 self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
150             if self._toStore("InnovationAtCurrentState"):
151                 self.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
152             #
153             Jb  = 0.
154             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
155             J   = Jb + Jo
156             #
157             self.StoredVariables["CostFunctionJb"].store( Jb )
158             self.StoredVariables["CostFunctionJo"].store( Jo )
159             self.StoredVariables["CostFunctionJ" ].store( J )
160             if self._toStore("IndexOfOptimum") or \
161                 self._toStore("CurrentOptimum") or \
162                 self._toStore("CostFunctionJAtCurrentOptimum") or \
163                 self._toStore("CostFunctionJbAtCurrentOptimum") or \
164                 self._toStore("CostFunctionJoAtCurrentOptimum") or \
165                 self._toStore("SimulatedObservationAtCurrentOptimum"):
166                 IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
167             if self._toStore("IndexOfOptimum"):
168                 self.StoredVariables["IndexOfOptimum"].store( IndexMin )
169             if self._toStore("CurrentOptimum"):
170                 self.StoredVariables["CurrentOptimum"].store( self.StoredVariables["CurrentState"][IndexMin] )
171             if self._toStore("SimulatedObservationAtCurrentOptimum"):
172                 self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
173             if self._toStore("CostFunctionJAtCurrentOptimum"):
174                 self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
175             if self._toStore("CostFunctionJbAtCurrentOptimum"):
176                 self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJb"][IndexMin] )
177             if self._toStore("CostFunctionJoAtCurrentOptimum"):
178                 self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJo"][IndexMin] )
179             return J
180         #
181         def GradientOfCostFunction(x):
182             _X      = numpy.asmatrix(numpy.ravel( x )).T
183             _HX     = Hm( _X )
184             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
185             GradJb  = 0.
186             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
187             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
188             return GradJ.A1
189         #
190         def CostFunctionLM(x):
191             _X  = numpy.asmatrix(numpy.ravel( x )).T
192             _HX = Hm( _X )
193             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
194             _Innovation = Y - _HX
195             Jb  = 0.
196             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
197             J   = Jb + Jo
198             if self._parameters["StoreInternalVariables"] or \
199                 self._toStore("CurrentState"):
200                 self.StoredVariables["CurrentState"].store( _X )
201             self.StoredVariables["CostFunctionJb"].store( Jb )
202             self.StoredVariables["CostFunctionJo"].store( Jo )
203             self.StoredVariables["CostFunctionJ" ].store( J )
204             #
205             return numpy.ravel( RdemiI*_Innovation )
206         #
207         def GradientOfCostFunctionLM(x):
208             _X      = numpy.asmatrix(numpy.ravel( x )).T
209             _HX     = Hm( _X )
210             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
211             GradJb  = 0.
212             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
213             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
214             return - RdemiI*HO["Tangent"].asMatrix( _X )
215         #
216         # Point de démarrage de l'optimisation : Xini = Xb
217         # ------------------------------------
218         Xini = numpy.ravel(Xb)
219         #
220         # Minimisation de la fonctionnelle
221         # --------------------------------
222         nbPreviousSteps = self.StoredVariables["CostFunctionJ"].stepnumber()
223         #
224         if self._parameters["Minimizer"] == "LBFGSB":
225             # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
226             import lbfgsbhlt
227             Minimum, J_optimal, Informations = lbfgsbhlt.fmin_l_bfgs_b(
228                 func        = CostFunction,
229                 x0          = Xini,
230                 fprime      = GradientOfCostFunction,
231                 args        = (),
232                 bounds      = self._parameters["Bounds"],
233                 maxfun      = self._parameters["MaximumNumberOfSteps"]-1,
234                 factr       = self._parameters["CostDecrementTolerance"]*1.e14,
235                 pgtol       = self._parameters["ProjectedGradientTolerance"],
236                 iprint      = self._parameters["optiprint"],
237                 )
238             nfeval = Informations['funcalls']
239             rc     = Informations['warnflag']
240         elif self._parameters["Minimizer"] == "TNC":
241             Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
242                 func        = CostFunction,
243                 x0          = Xini,
244                 fprime      = GradientOfCostFunction,
245                 args        = (),
246                 bounds      = self._parameters["Bounds"],
247                 maxfun      = self._parameters["MaximumNumberOfSteps"],
248                 pgtol       = self._parameters["ProjectedGradientTolerance"],
249                 ftol        = self._parameters["CostDecrementTolerance"],
250                 messages    = self._parameters["optmessages"],
251                 )
252         elif self._parameters["Minimizer"] == "CG":
253             Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
254                 f           = CostFunction,
255                 x0          = Xini,
256                 fprime      = GradientOfCostFunction,
257                 args        = (),
258                 maxiter     = self._parameters["MaximumNumberOfSteps"],
259                 gtol        = self._parameters["GradientNormTolerance"],
260                 disp        = self._parameters["optdisp"],
261                 full_output = True,
262                 )
263         elif self._parameters["Minimizer"] == "NCG":
264             Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
265                 f           = CostFunction,
266                 x0          = Xini,
267                 fprime      = GradientOfCostFunction,
268                 args        = (),
269                 maxiter     = self._parameters["MaximumNumberOfSteps"],
270                 avextol     = self._parameters["CostDecrementTolerance"],
271                 disp        = self._parameters["optdisp"],
272                 full_output = True,
273                 )
274         elif self._parameters["Minimizer"] == "BFGS":
275             Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
276                 f           = CostFunction,
277                 x0          = Xini,
278                 fprime      = GradientOfCostFunction,
279                 args        = (),
280                 maxiter     = self._parameters["MaximumNumberOfSteps"],
281                 gtol        = self._parameters["GradientNormTolerance"],
282                 disp        = self._parameters["optdisp"],
283                 full_output = True,
284                 )
285         elif self._parameters["Minimizer"] == "LM":
286             Minimum, cov_x, infodict, mesg, rc = scipy.optimize.leastsq(
287                 func        = CostFunctionLM,
288                 x0          = Xini,
289                 Dfun        = GradientOfCostFunctionLM,
290                 args        = (),
291                 ftol        = self._parameters["CostDecrementTolerance"],
292                 maxfev      = self._parameters["MaximumNumberOfSteps"],
293                 gtol        = self._parameters["GradientNormTolerance"],
294                 full_output = True,
295                 )
296             nfeval = infodict['nfev']
297         else:
298             raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"])
299         #
300         IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
301         MinJ     = self.StoredVariables["CostFunctionJ"][IndexMin]
302         #
303         # Correction pour pallier a un bug de TNC sur le retour du Minimum
304         # ----------------------------------------------------------------
305         if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
306             Minimum = self.StoredVariables["CurrentState"][IndexMin]
307         #
308         # Obtention de l'analyse
309         # ----------------------
310         Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
311         #
312         self.StoredVariables["Analysis"].store( Xa.A1 )
313         #
314         if self._toStore("OMA") or \
315             self._toStore("SimulatedObservationAtOptimum"):
316             if self._toStore("SimulatedObservationAtCurrentState"):
317                 HXa = self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
318             elif self._toStore("SimulatedObservationAtCurrentOptimum"):
319                 HXa = self.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
320             else:
321                 HXa = Hm( Xa )
322         #
323         #
324         # Calculs et/ou stockages supplémentaires
325         # ---------------------------------------
326         if self._toStore("Innovation") or \
327             self._toStore("OMB"):
328             d  = Y - HXb
329         if self._toStore("Innovation"):
330             self.StoredVariables["Innovation"].store( numpy.ravel(d) )
331         if self._toStore("BMA"):
332             self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
333         if self._toStore("OMA"):
334             self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
335         if self._toStore("OMB"):
336             self.StoredVariables["OMB"].store( numpy.ravel(d) )
337         if self._toStore("SimulatedObservationAtBackground"):
338             self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
339         if self._toStore("SimulatedObservationAtOptimum"):
340             self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
341         #
342         self._post_run(HO)
343         return 0
344
345 # ==============================================================================
346 if __name__ == "__main__":
347     print('\n AUTODIAGNOSTIC \n')