]> SALOME platform Git repositories - modules/adao.git/blob - src/daComposant/daAlgorithms/NonLinearLeastSquares.py
Salome HOME
Improvement of algorithms arguments validation and tests
[modules/adao.git] / src / daComposant / daAlgorithms / NonLinearLeastSquares.py
1 # -*- coding: utf-8 -*-
2 #
3 # Copyright (C) 2008-2020 EDF R&D
4 #
5 # This library is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License.
9 #
10 # This library is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with this library; if not, write to the Free Software
17 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 #
19 # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
20 #
21 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
22
23 import logging
24 from daCore import BasicObjects
25 import numpy, scipy.optimize, scipy.version
26
27 # ==============================================================================
28 class ElementaryAlgorithm(BasicObjects.Algorithm):
29     def __init__(self):
30         BasicObjects.Algorithm.__init__(self, "NONLINEARLEASTSQUARES")
31         self.defineRequiredParameter(
32             name     = "Minimizer",
33             default  = "LBFGSB",
34             typecast = str,
35             message  = "Minimiseur utilisé",
36             listval  = ["LBFGSB","TNC", "CG", "NCG", "BFGS", "LM"],
37             )
38         self.defineRequiredParameter(
39             name     = "MaximumNumberOfSteps",
40             default  = 15000,
41             typecast = int,
42             message  = "Nombre maximal de pas d'optimisation",
43             minval   = -1,
44             )
45         self.defineRequiredParameter(
46             name     = "CostDecrementTolerance",
47             default  = 1.e-7,
48             typecast = float,
49             message  = "Diminution relative minimale du coût lors de l'arrêt",
50             minval   = 0.,
51             )
52         self.defineRequiredParameter(
53             name     = "ProjectedGradientTolerance",
54             default  = -1,
55             typecast = float,
56             message  = "Maximum des composantes du gradient projeté lors de l'arrêt",
57             minval   = -1,
58             )
59         self.defineRequiredParameter(
60             name     = "GradientNormTolerance",
61             default  = 1.e-05,
62             typecast = float,
63             message  = "Maximum des composantes du gradient lors de l'arrêt",
64             minval   = 0.,
65             )
66         self.defineRequiredParameter(
67             name     = "StoreInternalVariables",
68             default  = False,
69             typecast = bool,
70             message  = "Stockage des variables internes ou intermédiaires du calcul",
71             )
72         self.defineRequiredParameter(
73             name     = "StoreSupplementaryCalculations",
74             default  = [],
75             typecast = tuple,
76             message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
77             listval  = [
78                 "Analysis",
79                 "BMA",
80                 "CostFunctionJ",
81                 "CostFunctionJAtCurrentOptimum",
82                 "CostFunctionJb",
83                 "CostFunctionJbAtCurrentOptimum",
84                 "CostFunctionJo",
85                 "CostFunctionJoAtCurrentOptimum",
86                 "CurrentOptimum",
87                 "CurrentState",
88                 "IndexOfOptimum",
89                 "Innovation",
90                 "InnovationAtCurrentState",
91                 "OMA",
92                 "OMB",
93                 "SimulatedObservationAtBackground",
94                 "SimulatedObservationAtCurrentOptimum",
95                 "SimulatedObservationAtCurrentState",
96                 "SimulatedObservationAtOptimum",
97                 ]
98             )
99         self.defineRequiredParameter( # Pas de type
100             name     = "Bounds",
101             message  = "Liste des valeurs de bornes",
102             )
103         self.requireInputArguments(
104             mandatory= ("Xb", "Y", "HO", "R"),
105             )
106         self.setAttributes(tags=(
107             "Optimization",
108             "NonLinear",
109             "Variational",
110             ))
111
112     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
113         self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
114         #
115         # Correction pour pallier a un bug de TNC sur le retour du Minimum
116         if "Minimizer" in self._parameters and self._parameters["Minimizer"] == "TNC":
117             self.setParameterValue("StoreInternalVariables",True)
118         #
119         # Opérateurs
120         # ----------
121         Hm = HO["Direct"].appliedTo
122         Ha = HO["Adjoint"].appliedInXTo
123         #
124         # Utilisation éventuelle d'un vecteur H(Xb) précalculé
125         # ----------------------------------------------------
126         if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
127             HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
128         else:
129             HXb = Hm( Xb )
130         HXb = numpy.asmatrix(numpy.ravel( HXb )).T
131         if Y.size != HXb.size:
132             raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
133         if max(Y.shape) != max(HXb.shape):
134             raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
135         #
136         # Précalcul des inversions de B et R
137         # ----------------------------------
138         RI = R.getI()
139         if self._parameters["Minimizer"] == "LM":
140             RdemiI = R.choleskyI()
141         #
142         # Définition de la fonction-coût
143         # ------------------------------
144         def CostFunction(x):
145             _X  = numpy.asmatrix(numpy.ravel( x )).T
146             if self._parameters["StoreInternalVariables"] or \
147                 self._toStore("CurrentState") or \
148                 self._toStore("CurrentOptimum"):
149                 self.StoredVariables["CurrentState"].store( _X )
150             _HX = Hm( _X )
151             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
152             _Innovation = Y - _HX
153             if self._toStore("SimulatedObservationAtCurrentState") or \
154                 self._toStore("SimulatedObservationAtCurrentOptimum"):
155                 self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
156             if self._toStore("InnovationAtCurrentState"):
157                 self.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
158             #
159             Jb  = 0.
160             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
161             J   = Jb + Jo
162             #
163             self.StoredVariables["CostFunctionJb"].store( Jb )
164             self.StoredVariables["CostFunctionJo"].store( Jo )
165             self.StoredVariables["CostFunctionJ" ].store( J )
166             if self._toStore("IndexOfOptimum") or \
167                 self._toStore("CurrentOptimum") or \
168                 self._toStore("CostFunctionJAtCurrentOptimum") or \
169                 self._toStore("CostFunctionJbAtCurrentOptimum") or \
170                 self._toStore("CostFunctionJoAtCurrentOptimum") or \
171                 self._toStore("SimulatedObservationAtCurrentOptimum"):
172                 IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
173             if self._toStore("IndexOfOptimum"):
174                 self.StoredVariables["IndexOfOptimum"].store( IndexMin )
175             if self._toStore("CurrentOptimum"):
176                 self.StoredVariables["CurrentOptimum"].store( self.StoredVariables["CurrentState"][IndexMin] )
177             if self._toStore("SimulatedObservationAtCurrentOptimum"):
178                 self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
179             if self._toStore("CostFunctionJbAtCurrentOptimum"):
180                 self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJb"][IndexMin] )
181             if self._toStore("CostFunctionJoAtCurrentOptimum"):
182                 self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJo"][IndexMin] )
183             if self._toStore("CostFunctionJAtCurrentOptimum"):
184                 self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
185             return J
186         #
187         def GradientOfCostFunction(x):
188             _X      = numpy.asmatrix(numpy.ravel( x )).T
189             _HX     = Hm( _X )
190             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
191             GradJb  = 0.
192             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
193             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
194             return GradJ.A1
195         #
196         def CostFunctionLM(x):
197             _X  = numpy.asmatrix(numpy.ravel( x )).T
198             _HX = Hm( _X )
199             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
200             _Innovation = Y - _HX
201             Jb  = 0.
202             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
203             J   = Jb + Jo
204             if self._parameters["StoreInternalVariables"] or \
205                 self._toStore("CurrentState"):
206                 self.StoredVariables["CurrentState"].store( _X )
207             self.StoredVariables["CostFunctionJb"].store( Jb )
208             self.StoredVariables["CostFunctionJo"].store( Jo )
209             self.StoredVariables["CostFunctionJ" ].store( J )
210             #
211             return numpy.ravel( RdemiI*_Innovation )
212         #
213         def GradientOfCostFunctionLM(x):
214             _X      = numpy.asmatrix(numpy.ravel( x )).T
215             _HX     = Hm( _X )
216             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
217             GradJb  = 0.
218             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
219             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
220             return - RdemiI*HO["Tangent"].asMatrix( _X )
221         #
222         # Point de démarrage de l'optimisation : Xini = Xb
223         # ------------------------------------
224         Xini = numpy.ravel(Xb)
225         #
226         # Minimisation de la fonctionnelle
227         # --------------------------------
228         nbPreviousSteps = self.StoredVariables["CostFunctionJ"].stepnumber()
229         #
230         if self._parameters["Minimizer"] == "LBFGSB":
231             # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
232             if "0.19" <= scipy.version.version <= "1.1.0":
233                 import lbfgsbhlt as optimiseur
234             else:
235                 import scipy.optimize as optimiseur
236             Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
237                 func        = CostFunction,
238                 x0          = Xini,
239                 fprime      = GradientOfCostFunction,
240                 args        = (),
241                 bounds      = self._parameters["Bounds"],
242                 maxfun      = self._parameters["MaximumNumberOfSteps"]-1,
243                 factr       = self._parameters["CostDecrementTolerance"]*1.e14,
244                 pgtol       = self._parameters["ProjectedGradientTolerance"],
245                 iprint      = self._parameters["optiprint"],
246                 )
247             nfeval = Informations['funcalls']
248             rc     = Informations['warnflag']
249         elif self._parameters["Minimizer"] == "TNC":
250             Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
251                 func        = CostFunction,
252                 x0          = Xini,
253                 fprime      = GradientOfCostFunction,
254                 args        = (),
255                 bounds      = self._parameters["Bounds"],
256                 maxfun      = self._parameters["MaximumNumberOfSteps"],
257                 pgtol       = self._parameters["ProjectedGradientTolerance"],
258                 ftol        = self._parameters["CostDecrementTolerance"],
259                 messages    = self._parameters["optmessages"],
260                 )
261         elif self._parameters["Minimizer"] == "CG":
262             Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
263                 f           = CostFunction,
264                 x0          = Xini,
265                 fprime      = GradientOfCostFunction,
266                 args        = (),
267                 maxiter     = self._parameters["MaximumNumberOfSteps"],
268                 gtol        = self._parameters["GradientNormTolerance"],
269                 disp        = self._parameters["optdisp"],
270                 full_output = True,
271                 )
272         elif self._parameters["Minimizer"] == "NCG":
273             Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
274                 f           = CostFunction,
275                 x0          = Xini,
276                 fprime      = GradientOfCostFunction,
277                 args        = (),
278                 maxiter     = self._parameters["MaximumNumberOfSteps"],
279                 avextol     = self._parameters["CostDecrementTolerance"],
280                 disp        = self._parameters["optdisp"],
281                 full_output = True,
282                 )
283         elif self._parameters["Minimizer"] == "BFGS":
284             Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
285                 f           = CostFunction,
286                 x0          = Xini,
287                 fprime      = GradientOfCostFunction,
288                 args        = (),
289                 maxiter     = self._parameters["MaximumNumberOfSteps"],
290                 gtol        = self._parameters["GradientNormTolerance"],
291                 disp        = self._parameters["optdisp"],
292                 full_output = True,
293                 )
294         elif self._parameters["Minimizer"] == "LM":
295             Minimum, cov_x, infodict, mesg, rc = scipy.optimize.leastsq(
296                 func        = CostFunctionLM,
297                 x0          = Xini,
298                 Dfun        = GradientOfCostFunctionLM,
299                 args        = (),
300                 ftol        = self._parameters["CostDecrementTolerance"],
301                 maxfev      = self._parameters["MaximumNumberOfSteps"],
302                 gtol        = self._parameters["GradientNormTolerance"],
303                 full_output = True,
304                 )
305             nfeval = infodict['nfev']
306         else:
307             raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"])
308         #
309         IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
310         MinJ     = self.StoredVariables["CostFunctionJ"][IndexMin]
311         #
312         # Correction pour pallier a un bug de TNC sur le retour du Minimum
313         # ----------------------------------------------------------------
314         if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
315             Minimum = self.StoredVariables["CurrentState"][IndexMin]
316         #
317         # Obtention de l'analyse
318         # ----------------------
319         Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
320         #
321         self.StoredVariables["Analysis"].store( Xa.A1 )
322         #
323         if self._toStore("OMA") or \
324             self._toStore("SimulatedObservationAtOptimum"):
325             if self._toStore("SimulatedObservationAtCurrentState"):
326                 HXa = self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
327             elif self._toStore("SimulatedObservationAtCurrentOptimum"):
328                 HXa = self.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
329             else:
330                 HXa = Hm( Xa )
331         #
332         #
333         # Calculs et/ou stockages supplémentaires
334         # ---------------------------------------
335         if self._toStore("Innovation") or \
336             self._toStore("OMB"):
337             d  = Y - HXb
338         if self._toStore("Innovation"):
339             self.StoredVariables["Innovation"].store( numpy.ravel(d) )
340         if self._toStore("BMA"):
341             self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
342         if self._toStore("OMA"):
343             self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
344         if self._toStore("OMB"):
345             self.StoredVariables["OMB"].store( numpy.ravel(d) )
346         if self._toStore("SimulatedObservationAtBackground"):
347             self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
348         if self._toStore("SimulatedObservationAtOptimum"):
349             self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
350         #
351         self._post_run(HO)
352         return 0
353
354 # ==============================================================================
355 if __name__ == "__main__":
356     print('\n AUTODIAGNOSTIC\n')