]> SALOME platform Git repositories - modules/adao.git/blob - src/daComposant/daAlgorithms/NonLinearLeastSquares.py
Salome HOME
Simplifying test for variables to store (2)
[modules/adao.git] / src / daComposant / daAlgorithms / NonLinearLeastSquares.py
1 # -*- coding: utf-8 -*-
2 #
3 # Copyright (C) 2008-2018 EDF R&D
4 #
5 # This library is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License.
9 #
10 # This library is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with this library; if not, write to the Free Software
17 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 #
19 # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
20 #
21 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
22
23 import logging
24 from daCore import BasicObjects
25 import numpy, scipy.optimize
26
27 # ==============================================================================
28 class ElementaryAlgorithm(BasicObjects.Algorithm):
29     def __init__(self):
30         BasicObjects.Algorithm.__init__(self, "NONLINEARLEASTSQUARES")
31         self.defineRequiredParameter(
32             name     = "Minimizer",
33             default  = "LBFGSB",
34             typecast = str,
35             message  = "Minimiseur utilisé",
36             listval  = ["LBFGSB","TNC", "CG", "NCG", "BFGS", "LM"],
37             )
38         self.defineRequiredParameter(
39             name     = "MaximumNumberOfSteps",
40             default  = 15000,
41             typecast = int,
42             message  = "Nombre maximal de pas d'optimisation",
43             minval   = -1,
44             )
45         self.defineRequiredParameter(
46             name     = "CostDecrementTolerance",
47             default  = 1.e-7,
48             typecast = float,
49             message  = "Diminution relative minimale du coût lors de l'arrêt",
50             )
51         self.defineRequiredParameter(
52             name     = "ProjectedGradientTolerance",
53             default  = -1,
54             typecast = float,
55             message  = "Maximum des composantes du gradient projeté lors de l'arrêt",
56             minval   = -1,
57             )
58         self.defineRequiredParameter(
59             name     = "GradientNormTolerance",
60             default  = 1.e-05,
61             typecast = float,
62             message  = "Maximum des composantes du gradient lors de l'arrêt",
63             )
64         self.defineRequiredParameter(
65             name     = "StoreInternalVariables",
66             default  = False,
67             typecast = bool,
68             message  = "Stockage des variables internes ou intermédiaires du calcul",
69             )
70         self.defineRequiredParameter(
71             name     = "StoreSupplementaryCalculations",
72             default  = [],
73             typecast = tuple,
74             message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
75             listval  = [
76                 "BMA",
77                 "OMA",
78                 "OMB",
79                 "CostFunctionJ",
80                 "CostFunctionJb",
81                 "CostFunctionJo",
82                 "CurrentState",
83                 "CurrentOptimum",
84                 "IndexOfOptimum",
85                 "Innovation",
86                 "InnovationAtCurrentState",
87                 "CostFunctionJAtCurrentOptimum",
88                 "CostFunctionJbAtCurrentOptimum",
89                 "CostFunctionJoAtCurrentOptimum",
90                 "SimulatedObservationAtBackground",
91                 "SimulatedObservationAtCurrentState",
92                 "SimulatedObservationAtOptimum",
93                 "SimulatedObservationAtCurrentOptimum",
94                 ]
95             )
96         self.defineRequiredParameter( # Pas de type
97             name     = "Bounds",
98             message  = "Liste des valeurs de bornes",
99             )
100         self.requireInputArguments(
101             mandatory= ("Xb", "Y", "HO", "R"),
102             )
103
104     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
105         self._pre_run(Parameters, Xb, Y, R, B, Q)
106         #
107         # Correction pour pallier a un bug de TNC sur le retour du Minimum
108         if "Minimizer" in self._parameters and self._parameters["Minimizer"] == "TNC":
109             self.setParameterValue("StoreInternalVariables",True)
110         #
111         # Opérateurs
112         # ----------
113         Hm = HO["Direct"].appliedTo
114         Ha = HO["Adjoint"].appliedInXTo
115         #
116         # Utilisation éventuelle d'un vecteur H(Xb) précalculé
117         # ----------------------------------------------------
118         if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
119             HXb = Hm( Xb, HO["AppliedInX"]["HXb"])
120         else:
121             HXb = Hm( Xb )
122         HXb = numpy.asmatrix(numpy.ravel( HXb )).T
123         if Y.size != HXb.size:
124             raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
125         if max(Y.shape) != max(HXb.shape):
126             raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
127         #
128         # Précalcul des inversions de B et R
129         # ----------------------------------
130         RI = R.getI()
131         if self._parameters["Minimizer"] == "LM":
132             RdemiI = R.choleskyI()
133         #
134         # Définition de la fonction-coût
135         # ------------------------------
136         def CostFunction(x):
137             _X  = numpy.asmatrix(numpy.ravel( x )).T
138             if self._parameters["StoreInternalVariables"] or \
139                 self._toStore("CurrentState") or \
140                 self._toStore("CurrentOptimum"):
141                 self.StoredVariables["CurrentState"].store( _X )
142             _HX = Hm( _X )
143             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
144             _Innovation = Y - _HX
145             if self._toStore("SimulatedObservationAtCurrentState") or \
146                 self._toStore("SimulatedObservationAtCurrentOptimum"):
147                 self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
148             if self._toStore("InnovationAtCurrentState"):
149                 self.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
150             #
151             Jb  = 0.
152             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
153             J   = Jb + Jo
154             #
155             self.StoredVariables["CostFunctionJb"].store( Jb )
156             self.StoredVariables["CostFunctionJo"].store( Jo )
157             self.StoredVariables["CostFunctionJ" ].store( J )
158             if self._toStore("IndexOfOptimum") or \
159                 self._toStore("CurrentOptimum") or \
160                 self._toStore("CostFunctionJAtCurrentOptimum") or \
161                 self._toStore("CostFunctionJbAtCurrentOptimum") or \
162                 self._toStore("CostFunctionJoAtCurrentOptimum") or \
163                 self._toStore("SimulatedObservationAtCurrentOptimum"):
164                 IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
165             if self._toStore("IndexOfOptimum"):
166                 self.StoredVariables["IndexOfOptimum"].store( IndexMin )
167             if self._toStore("CurrentOptimum"):
168                 self.StoredVariables["CurrentOptimum"].store( self.StoredVariables["CurrentState"][IndexMin] )
169             if self._toStore("SimulatedObservationAtCurrentOptimum"):
170                 self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
171             if self._toStore("CostFunctionJAtCurrentOptimum"):
172                 self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
173             if self._toStore("CostFunctionJbAtCurrentOptimum"):
174                 self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJb"][IndexMin] )
175             if self._toStore("CostFunctionJoAtCurrentOptimum"):
176                 self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJo"][IndexMin] )
177             return J
178         #
179         def GradientOfCostFunction(x):
180             _X      = numpy.asmatrix(numpy.ravel( x )).T
181             _HX     = Hm( _X )
182             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
183             GradJb  = 0.
184             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
185             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
186             return GradJ.A1
187         #
188         def CostFunctionLM(x):
189             _X  = numpy.asmatrix(numpy.ravel( x )).T
190             _HX = Hm( _X )
191             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
192             _Innovation = Y - _HX
193             Jb  = 0.
194             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
195             J   = Jb + Jo
196             if self._parameters["StoreInternalVariables"] or \
197                 self._toStore("CurrentState"):
198                 self.StoredVariables["CurrentState"].store( _X )
199             self.StoredVariables["CostFunctionJb"].store( Jb )
200             self.StoredVariables["CostFunctionJo"].store( Jo )
201             self.StoredVariables["CostFunctionJ" ].store( J )
202             #
203             return numpy.ravel( RdemiI*_Innovation )
204         #
205         def GradientOfCostFunctionLM(x):
206             _X      = numpy.asmatrix(numpy.ravel( x )).T
207             _HX     = Hm( _X )
208             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
209             GradJb  = 0.
210             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
211             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
212             return - RdemiI*HO["Tangent"].asMatrix( _X )
213         #
214         # Point de démarrage de l'optimisation : Xini = Xb
215         # ------------------------------------
216         Xini = numpy.ravel(Xb)
217         #
218         # Minimisation de la fonctionnelle
219         # --------------------------------
220         nbPreviousSteps = self.StoredVariables["CostFunctionJ"].stepnumber()
221         #
222         if self._parameters["Minimizer"] == "LBFGSB":
223             # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
224             import lbfgsbhlt
225             Minimum, J_optimal, Informations = lbfgsbhlt.fmin_l_bfgs_b(
226                 func        = CostFunction,
227                 x0          = Xini,
228                 fprime      = GradientOfCostFunction,
229                 args        = (),
230                 bounds      = self._parameters["Bounds"],
231                 maxfun      = self._parameters["MaximumNumberOfSteps"]-1,
232                 factr       = self._parameters["CostDecrementTolerance"]*1.e14,
233                 pgtol       = self._parameters["ProjectedGradientTolerance"],
234                 iprint      = self._parameters["optiprint"],
235                 )
236             nfeval = Informations['funcalls']
237             rc     = Informations['warnflag']
238         elif self._parameters["Minimizer"] == "TNC":
239             Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
240                 func        = CostFunction,
241                 x0          = Xini,
242                 fprime      = GradientOfCostFunction,
243                 args        = (),
244                 bounds      = self._parameters["Bounds"],
245                 maxfun      = self._parameters["MaximumNumberOfSteps"],
246                 pgtol       = self._parameters["ProjectedGradientTolerance"],
247                 ftol        = self._parameters["CostDecrementTolerance"],
248                 messages    = self._parameters["optmessages"],
249                 )
250         elif self._parameters["Minimizer"] == "CG":
251             Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
252                 f           = CostFunction,
253                 x0          = Xini,
254                 fprime      = GradientOfCostFunction,
255                 args        = (),
256                 maxiter     = self._parameters["MaximumNumberOfSteps"],
257                 gtol        = self._parameters["GradientNormTolerance"],
258                 disp        = self._parameters["optdisp"],
259                 full_output = True,
260                 )
261         elif self._parameters["Minimizer"] == "NCG":
262             Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
263                 f           = CostFunction,
264                 x0          = Xini,
265                 fprime      = GradientOfCostFunction,
266                 args        = (),
267                 maxiter     = self._parameters["MaximumNumberOfSteps"],
268                 avextol     = self._parameters["CostDecrementTolerance"],
269                 disp        = self._parameters["optdisp"],
270                 full_output = True,
271                 )
272         elif self._parameters["Minimizer"] == "BFGS":
273             Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
274                 f           = CostFunction,
275                 x0          = Xini,
276                 fprime      = GradientOfCostFunction,
277                 args        = (),
278                 maxiter     = self._parameters["MaximumNumberOfSteps"],
279                 gtol        = self._parameters["GradientNormTolerance"],
280                 disp        = self._parameters["optdisp"],
281                 full_output = True,
282                 )
283         elif self._parameters["Minimizer"] == "LM":
284             Minimum, cov_x, infodict, mesg, rc = scipy.optimize.leastsq(
285                 func        = CostFunctionLM,
286                 x0          = Xini,
287                 Dfun        = GradientOfCostFunctionLM,
288                 args        = (),
289                 ftol        = self._parameters["CostDecrementTolerance"],
290                 maxfev      = self._parameters["MaximumNumberOfSteps"],
291                 gtol        = self._parameters["GradientNormTolerance"],
292                 full_output = True,
293                 )
294             nfeval = infodict['nfev']
295         else:
296             raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"])
297         #
298         IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
299         MinJ     = self.StoredVariables["CostFunctionJ"][IndexMin]
300         #
301         # Correction pour pallier a un bug de TNC sur le retour du Minimum
302         # ----------------------------------------------------------------
303         if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
304             Minimum = self.StoredVariables["CurrentState"][IndexMin]
305         #
306         # Obtention de l'analyse
307         # ----------------------
308         Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
309         #
310         self.StoredVariables["Analysis"].store( Xa.A1 )
311         #
312         if self._toStore("OMA") or \
313             self._toStore("SimulatedObservationAtOptimum"):
314             if self._toStore("SimulatedObservationAtCurrentState"):
315                 HXa = self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
316             elif self._toStore("SimulatedObservationAtCurrentOptimum"):
317                 HXa = self.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
318             else:
319                 HXa = Hm(Xa)
320         #
321         #
322         # Calculs et/ou stockages supplémentaires
323         # ---------------------------------------
324         if self._toStore("Innovation") or self._toStore("OMB"):
325             d  = Y - HXb
326         if self._toStore("Innovation"):
327             self.StoredVariables["Innovation"].store( numpy.ravel(d) )
328         if self._toStore("BMA"):
329             self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
330         if self._toStore("OMA"):
331             self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
332         if self._toStore("OMB"):
333             self.StoredVariables["OMB"].store( numpy.ravel(d) )
334         if self._toStore("SimulatedObservationAtBackground"):
335             self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
336         if self._toStore("SimulatedObservationAtOptimum"):
337             self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
338         #
339         self._post_run(HO)
340         return 0
341
342 # ==============================================================================
343 if __name__ == "__main__":
344     print('\n AUTODIAGNOSTIC \n')