Salome HOME
Updating version and copyright date information
[modules/adao.git] / src / daComposant / daAlgorithms / NonLinearLeastSquares.py
1 # -*- coding: utf-8 -*-
2 #
3 # Copyright (C) 2008-2021 EDF R&D
4 #
5 # This library is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License.
9 #
10 # This library is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with this library; if not, write to the Free Software
17 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 #
19 # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
20 #
21 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
22
23 import logging
24 from daCore import BasicObjects
25 import numpy, scipy.optimize, scipy.version
26
27 # ==============================================================================
28 class ElementaryAlgorithm(BasicObjects.Algorithm):
29     def __init__(self):
30         BasicObjects.Algorithm.__init__(self, "NONLINEARLEASTSQUARES")
31         self.defineRequiredParameter(
32             name     = "Minimizer",
33             default  = "LBFGSB",
34             typecast = str,
35             message  = "Minimiseur utilisé",
36             listval  = ["LBFGSB","TNC", "CG", "NCG", "BFGS", "LM"],
37             )
38         self.defineRequiredParameter(
39             name     = "MaximumNumberOfSteps",
40             default  = 15000,
41             typecast = int,
42             message  = "Nombre maximal de pas d'optimisation",
43             minval   = -1,
44             )
45         self.defineRequiredParameter(
46             name     = "CostDecrementTolerance",
47             default  = 1.e-7,
48             typecast = float,
49             message  = "Diminution relative minimale du coût lors de l'arrêt",
50             minval   = 0.,
51             )
52         self.defineRequiredParameter(
53             name     = "ProjectedGradientTolerance",
54             default  = -1,
55             typecast = float,
56             message  = "Maximum des composantes du gradient projeté lors de l'arrêt",
57             minval   = -1,
58             )
59         self.defineRequiredParameter(
60             name     = "GradientNormTolerance",
61             default  = 1.e-05,
62             typecast = float,
63             message  = "Maximum des composantes du gradient lors de l'arrêt",
64             minval   = 0.,
65             )
66         self.defineRequiredParameter(
67             name     = "StoreInternalVariables",
68             default  = False,
69             typecast = bool,
70             message  = "Stockage des variables internes ou intermédiaires du calcul",
71             )
72         self.defineRequiredParameter(
73             name     = "StoreSupplementaryCalculations",
74             default  = [],
75             typecast = tuple,
76             message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
77             listval  = [
78                 "Analysis",
79                 "BMA",
80                 "CostFunctionJ",
81                 "CostFunctionJAtCurrentOptimum",
82                 "CostFunctionJb",
83                 "CostFunctionJbAtCurrentOptimum",
84                 "CostFunctionJo",
85                 "CostFunctionJoAtCurrentOptimum",
86                 "CurrentIterationNumber",
87                 "CurrentOptimum",
88                 "CurrentState",
89                 "IndexOfOptimum",
90                 "Innovation",
91                 "InnovationAtCurrentState",
92                 "OMA",
93                 "OMB",
94                 "SimulatedObservationAtBackground",
95                 "SimulatedObservationAtCurrentOptimum",
96                 "SimulatedObservationAtCurrentState",
97                 "SimulatedObservationAtOptimum",
98                 ]
99             )
100         self.defineRequiredParameter( # Pas de type
101             name     = "Bounds",
102             message  = "Liste des valeurs de bornes",
103             )
104         self.requireInputArguments(
105             mandatory= ("Xb", "Y", "HO", "R"),
106             )
107         self.setAttributes(tags=(
108             "Optimization",
109             "NonLinear",
110             "Variational",
111             ))
112
113     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
114         self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
115         #
116         # Correction pour pallier a un bug de TNC sur le retour du Minimum
117         if "Minimizer" in self._parameters and self._parameters["Minimizer"] == "TNC":
118             self.setParameterValue("StoreInternalVariables",True)
119         #
120         # Opérateurs
121         # ----------
122         Hm = HO["Direct"].appliedTo
123         Ha = HO["Adjoint"].appliedInXTo
124         #
125         # Utilisation éventuelle d'un vecteur H(Xb) précalculé
126         # ----------------------------------------------------
127         if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
128             HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
129         else:
130             HXb = Hm( Xb )
131         HXb = numpy.asmatrix(numpy.ravel( HXb )).T
132         if Y.size != HXb.size:
133             raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
134         if max(Y.shape) != max(HXb.shape):
135             raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
136         #
137         # Précalcul des inversions de B et R
138         # ----------------------------------
139         RI = R.getI()
140         if self._parameters["Minimizer"] == "LM":
141             RdemiI = R.choleskyI()
142         #
143         # Définition de la fonction-coût
144         # ------------------------------
145         def CostFunction(x):
146             _X  = numpy.asmatrix(numpy.ravel( x )).T
147             if self._parameters["StoreInternalVariables"] or \
148                 self._toStore("CurrentState") or \
149                 self._toStore("CurrentOptimum"):
150                 self.StoredVariables["CurrentState"].store( _X )
151             _HX = Hm( _X )
152             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
153             _Innovation = Y - _HX
154             if self._toStore("SimulatedObservationAtCurrentState") or \
155                 self._toStore("SimulatedObservationAtCurrentOptimum"):
156                 self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
157             if self._toStore("InnovationAtCurrentState"):
158                 self.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
159             #
160             Jb  = 0.
161             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
162             J   = Jb + Jo
163             #
164             self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
165             self.StoredVariables["CostFunctionJb"].store( Jb )
166             self.StoredVariables["CostFunctionJo"].store( Jo )
167             self.StoredVariables["CostFunctionJ" ].store( J )
168             if self._toStore("IndexOfOptimum") or \
169                 self._toStore("CurrentOptimum") or \
170                 self._toStore("CostFunctionJAtCurrentOptimum") or \
171                 self._toStore("CostFunctionJbAtCurrentOptimum") or \
172                 self._toStore("CostFunctionJoAtCurrentOptimum") or \
173                 self._toStore("SimulatedObservationAtCurrentOptimum"):
174                 IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
175             if self._toStore("IndexOfOptimum"):
176                 self.StoredVariables["IndexOfOptimum"].store( IndexMin )
177             if self._toStore("CurrentOptimum"):
178                 self.StoredVariables["CurrentOptimum"].store( self.StoredVariables["CurrentState"][IndexMin] )
179             if self._toStore("SimulatedObservationAtCurrentOptimum"):
180                 self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
181             if self._toStore("CostFunctionJbAtCurrentOptimum"):
182                 self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJb"][IndexMin] )
183             if self._toStore("CostFunctionJoAtCurrentOptimum"):
184                 self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJo"][IndexMin] )
185             if self._toStore("CostFunctionJAtCurrentOptimum"):
186                 self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
187             return J
188         #
189         def GradientOfCostFunction(x):
190             _X      = numpy.asmatrix(numpy.ravel( x )).T
191             _HX     = Hm( _X )
192             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
193             GradJb  = 0.
194             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
195             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
196             return GradJ.A1
197         #
198         def CostFunctionLM(x):
199             _X  = numpy.asmatrix(numpy.ravel( x )).T
200             _HX = Hm( _X )
201             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
202             _Innovation = Y - _HX
203             Jb  = 0.
204             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
205             J   = Jb + Jo
206             if self._parameters["StoreInternalVariables"] or \
207                 self._toStore("CurrentState"):
208                 self.StoredVariables["CurrentState"].store( _X )
209             self.StoredVariables["CostFunctionJb"].store( Jb )
210             self.StoredVariables["CostFunctionJo"].store( Jo )
211             self.StoredVariables["CostFunctionJ" ].store( J )
212             #
213             return numpy.ravel( RdemiI*_Innovation )
214         #
215         def GradientOfCostFunctionLM(x):
216             _X      = numpy.asmatrix(numpy.ravel( x )).T
217             _HX     = Hm( _X )
218             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
219             GradJb  = 0.
220             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
221             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
222             return - RdemiI*HO["Tangent"].asMatrix( _X )
223         #
224         # Point de démarrage de l'optimisation : Xini = Xb
225         # ------------------------------------
226         Xini = numpy.ravel(Xb)
227         #
228         # Minimisation de la fonctionnelle
229         # --------------------------------
230         nbPreviousSteps = self.StoredVariables["CostFunctionJ"].stepnumber()
231         #
232         if self._parameters["Minimizer"] == "LBFGSB":
233             # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
234             if "0.19" <= scipy.version.version <= "1.1.0":
235                 import lbfgsbhlt as optimiseur
236             else:
237                 import scipy.optimize as optimiseur
238             Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
239                 func        = CostFunction,
240                 x0          = Xini,
241                 fprime      = GradientOfCostFunction,
242                 args        = (),
243                 bounds      = self._parameters["Bounds"],
244                 maxfun      = self._parameters["MaximumNumberOfSteps"]-1,
245                 factr       = self._parameters["CostDecrementTolerance"]*1.e14,
246                 pgtol       = self._parameters["ProjectedGradientTolerance"],
247                 iprint      = self._parameters["optiprint"],
248                 )
249             nfeval = Informations['funcalls']
250             rc     = Informations['warnflag']
251         elif self._parameters["Minimizer"] == "TNC":
252             Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
253                 func        = CostFunction,
254                 x0          = Xini,
255                 fprime      = GradientOfCostFunction,
256                 args        = (),
257                 bounds      = self._parameters["Bounds"],
258                 maxfun      = self._parameters["MaximumNumberOfSteps"],
259                 pgtol       = self._parameters["ProjectedGradientTolerance"],
260                 ftol        = self._parameters["CostDecrementTolerance"],
261                 messages    = self._parameters["optmessages"],
262                 )
263         elif self._parameters["Minimizer"] == "CG":
264             Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
265                 f           = CostFunction,
266                 x0          = Xini,
267                 fprime      = GradientOfCostFunction,
268                 args        = (),
269                 maxiter     = self._parameters["MaximumNumberOfSteps"],
270                 gtol        = self._parameters["GradientNormTolerance"],
271                 disp        = self._parameters["optdisp"],
272                 full_output = True,
273                 )
274         elif self._parameters["Minimizer"] == "NCG":
275             Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
276                 f           = CostFunction,
277                 x0          = Xini,
278                 fprime      = GradientOfCostFunction,
279                 args        = (),
280                 maxiter     = self._parameters["MaximumNumberOfSteps"],
281                 avextol     = self._parameters["CostDecrementTolerance"],
282                 disp        = self._parameters["optdisp"],
283                 full_output = True,
284                 )
285         elif self._parameters["Minimizer"] == "BFGS":
286             Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
287                 f           = CostFunction,
288                 x0          = Xini,
289                 fprime      = GradientOfCostFunction,
290                 args        = (),
291                 maxiter     = self._parameters["MaximumNumberOfSteps"],
292                 gtol        = self._parameters["GradientNormTolerance"],
293                 disp        = self._parameters["optdisp"],
294                 full_output = True,
295                 )
296         elif self._parameters["Minimizer"] == "LM":
297             Minimum, cov_x, infodict, mesg, rc = scipy.optimize.leastsq(
298                 func        = CostFunctionLM,
299                 x0          = Xini,
300                 Dfun        = GradientOfCostFunctionLM,
301                 args        = (),
302                 ftol        = self._parameters["CostDecrementTolerance"],
303                 maxfev      = self._parameters["MaximumNumberOfSteps"],
304                 gtol        = self._parameters["GradientNormTolerance"],
305                 full_output = True,
306                 )
307             nfeval = infodict['nfev']
308         else:
309             raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"])
310         #
311         IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
312         MinJ     = self.StoredVariables["CostFunctionJ"][IndexMin]
313         #
314         # Correction pour pallier a un bug de TNC sur le retour du Minimum
315         # ----------------------------------------------------------------
316         if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
317             Minimum = self.StoredVariables["CurrentState"][IndexMin]
318         #
319         # Obtention de l'analyse
320         # ----------------------
321         Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
322         #
323         self.StoredVariables["Analysis"].store( Xa.A1 )
324         #
325         if self._toStore("OMA") or \
326             self._toStore("SimulatedObservationAtOptimum"):
327             if self._toStore("SimulatedObservationAtCurrentState"):
328                 HXa = self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
329             elif self._toStore("SimulatedObservationAtCurrentOptimum"):
330                 HXa = self.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
331             else:
332                 HXa = Hm( Xa )
333         #
334         #
335         # Calculs et/ou stockages supplémentaires
336         # ---------------------------------------
337         if self._toStore("Innovation") or \
338             self._toStore("OMB"):
339             d  = Y - HXb
340         if self._toStore("Innovation"):
341             self.StoredVariables["Innovation"].store( numpy.ravel(d) )
342         if self._toStore("BMA"):
343             self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
344         if self._toStore("OMA"):
345             self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
346         if self._toStore("OMB"):
347             self.StoredVariables["OMB"].store( numpy.ravel(d) )
348         if self._toStore("SimulatedObservationAtBackground"):
349             self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
350         if self._toStore("SimulatedObservationAtOptimum"):
351             self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
352         #
353         self._post_run(HO)
354         return 0
355
356 # ==============================================================================
357 if __name__ == "__main__":
358     print('\n AUTODIAGNOSTIC\n')