Salome HOME
Improvement and documentation of state initialization
[modules/adao.git] / src / daComposant / daAlgorithms / NonLinearLeastSquares.py
1 # -*- coding: utf-8 -*-
2 #
3 # Copyright (C) 2008-2021 EDF R&D
4 #
5 # This library is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License.
9 #
10 # This library is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with this library; if not, write to the Free Software
17 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 #
19 # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
20 #
21 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
22
23 import logging
24 from daCore import BasicObjects
25 import numpy, scipy.optimize, scipy.version
26
27 # ==============================================================================
28 class ElementaryAlgorithm(BasicObjects.Algorithm):
29     def __init__(self):
30         BasicObjects.Algorithm.__init__(self, "NONLINEARLEASTSQUARES")
31         self.defineRequiredParameter(
32             name     = "Minimizer",
33             default  = "LBFGSB",
34             typecast = str,
35             message  = "Minimiseur utilisé",
36             listval  = ["LBFGSB","TNC", "CG", "NCG", "BFGS", "LM"],
37             )
38         self.defineRequiredParameter(
39             name     = "MaximumNumberOfSteps",
40             default  = 15000,
41             typecast = int,
42             message  = "Nombre maximal de pas d'optimisation",
43             minval   = -1,
44             )
45         self.defineRequiredParameter(
46             name     = "CostDecrementTolerance",
47             default  = 1.e-7,
48             typecast = float,
49             message  = "Diminution relative minimale du coût lors de l'arrêt",
50             minval   = 0.,
51             )
52         self.defineRequiredParameter(
53             name     = "ProjectedGradientTolerance",
54             default  = -1,
55             typecast = float,
56             message  = "Maximum des composantes du gradient projeté lors de l'arrêt",
57             minval   = -1,
58             )
59         self.defineRequiredParameter(
60             name     = "GradientNormTolerance",
61             default  = 1.e-05,
62             typecast = float,
63             message  = "Maximum des composantes du gradient lors de l'arrêt",
64             minval   = 0.,
65             )
66         self.defineRequiredParameter(
67             name     = "StoreInternalVariables",
68             default  = False,
69             typecast = bool,
70             message  = "Stockage des variables internes ou intermédiaires du calcul",
71             )
72         self.defineRequiredParameter(
73             name     = "StoreSupplementaryCalculations",
74             default  = [],
75             typecast = tuple,
76             message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
77             listval  = [
78                 "Analysis",
79                 "BMA",
80                 "CostFunctionJ",
81                 "CostFunctionJAtCurrentOptimum",
82                 "CostFunctionJb",
83                 "CostFunctionJbAtCurrentOptimum",
84                 "CostFunctionJo",
85                 "CostFunctionJoAtCurrentOptimum",
86                 "CurrentIterationNumber",
87                 "CurrentOptimum",
88                 "CurrentState",
89                 "IndexOfOptimum",
90                 "Innovation",
91                 "InnovationAtCurrentState",
92                 "OMA",
93                 "OMB",
94                 "SimulatedObservationAtBackground",
95                 "SimulatedObservationAtCurrentOptimum",
96                 "SimulatedObservationAtCurrentState",
97                 "SimulatedObservationAtOptimum",
98                 ]
99             )
100         self.defineRequiredParameter( # Pas de type
101             name     = "Bounds",
102             message  = "Liste des valeurs de bornes",
103             )
104         self.defineRequiredParameter(
105             name     = "InitializationPoint",
106             typecast = numpy.ravel,
107             message  = "État initial imposé (par défaut, c'est l'ébauche si None)",
108             )
109         self.requireInputArguments(
110             mandatory= ("Xb", "Y", "HO", "R"),
111             )
112         self.setAttributes(tags=(
113             "Optimization",
114             "NonLinear",
115             "Variational",
116             ))
117
118     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
119         self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
120         #
121         # Correction pour pallier a un bug de TNC sur le retour du Minimum
122         if "Minimizer" in self._parameters and self._parameters["Minimizer"] == "TNC":
123             self.setParameterValue("StoreInternalVariables",True)
124         #
125         # Opérateurs
126         # ----------
127         Hm = HO["Direct"].appliedTo
128         Ha = HO["Adjoint"].appliedInXTo
129         #
130         # Utilisation éventuelle d'un vecteur H(Xb) précalculé
131         # ----------------------------------------------------
132         if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
133             HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
134         else:
135             HXb = Hm( Xb )
136         HXb = numpy.asmatrix(numpy.ravel( HXb )).T
137         if Y.size != HXb.size:
138             raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
139         if max(Y.shape) != max(HXb.shape):
140             raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
141         #
142         # Précalcul des inversions de B et R
143         # ----------------------------------
144         RI = R.getI()
145         if self._parameters["Minimizer"] == "LM":
146             RdemiI = R.choleskyI()
147         #
148         # Définition de la fonction-coût
149         # ------------------------------
150         def CostFunction(x):
151             _X  = numpy.asmatrix(numpy.ravel( x )).T
152             if self._parameters["StoreInternalVariables"] or \
153                 self._toStore("CurrentState") or \
154                 self._toStore("CurrentOptimum"):
155                 self.StoredVariables["CurrentState"].store( _X )
156             _HX = Hm( _X )
157             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
158             _Innovation = Y - _HX
159             if self._toStore("SimulatedObservationAtCurrentState") or \
160                 self._toStore("SimulatedObservationAtCurrentOptimum"):
161                 self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
162             if self._toStore("InnovationAtCurrentState"):
163                 self.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
164             #
165             Jb  = 0.
166             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
167             J   = Jb + Jo
168             #
169             self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
170             self.StoredVariables["CostFunctionJb"].store( Jb )
171             self.StoredVariables["CostFunctionJo"].store( Jo )
172             self.StoredVariables["CostFunctionJ" ].store( J )
173             if self._toStore("IndexOfOptimum") or \
174                 self._toStore("CurrentOptimum") or \
175                 self._toStore("CostFunctionJAtCurrentOptimum") or \
176                 self._toStore("CostFunctionJbAtCurrentOptimum") or \
177                 self._toStore("CostFunctionJoAtCurrentOptimum") or \
178                 self._toStore("SimulatedObservationAtCurrentOptimum"):
179                 IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
180             if self._toStore("IndexOfOptimum"):
181                 self.StoredVariables["IndexOfOptimum"].store( IndexMin )
182             if self._toStore("CurrentOptimum"):
183                 self.StoredVariables["CurrentOptimum"].store( self.StoredVariables["CurrentState"][IndexMin] )
184             if self._toStore("SimulatedObservationAtCurrentOptimum"):
185                 self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
186             if self._toStore("CostFunctionJbAtCurrentOptimum"):
187                 self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJb"][IndexMin] )
188             if self._toStore("CostFunctionJoAtCurrentOptimum"):
189                 self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJo"][IndexMin] )
190             if self._toStore("CostFunctionJAtCurrentOptimum"):
191                 self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
192             return J
193         #
194         def GradientOfCostFunction(x):
195             _X      = numpy.asmatrix(numpy.ravel( x )).T
196             _HX     = Hm( _X )
197             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
198             GradJb  = 0.
199             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
200             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
201             return GradJ.A1
202         #
203         def CostFunctionLM(x):
204             _X  = numpy.asmatrix(numpy.ravel( x )).T
205             _HX = Hm( _X )
206             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
207             _Innovation = Y - _HX
208             Jb  = 0.
209             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
210             J   = Jb + Jo
211             if self._parameters["StoreInternalVariables"] or \
212                 self._toStore("CurrentState"):
213                 self.StoredVariables["CurrentState"].store( _X )
214             self.StoredVariables["CostFunctionJb"].store( Jb )
215             self.StoredVariables["CostFunctionJo"].store( Jo )
216             self.StoredVariables["CostFunctionJ" ].store( J )
217             #
218             return numpy.ravel( RdemiI*_Innovation )
219         #
220         def GradientOfCostFunctionLM(x):
221             _X      = numpy.asmatrix(numpy.ravel( x )).T
222             _HX     = Hm( _X )
223             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
224             GradJb  = 0.
225             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
226             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
227             return - RdemiI*HO["Tangent"].asMatrix( _X )
228         #
229         # Point de démarrage de l'optimisation : Xini = Xb
230         # ------------------------------------
231         Xini = self._parameters["InitializationPoint"]
232         #
233         # Minimisation de la fonctionnelle
234         # --------------------------------
235         nbPreviousSteps = self.StoredVariables["CostFunctionJ"].stepnumber()
236         #
237         if self._parameters["Minimizer"] == "LBFGSB":
238             # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
239             if "0.19" <= scipy.version.version <= "1.1.0":
240                 import lbfgsbhlt as optimiseur
241             else:
242                 import scipy.optimize as optimiseur
243             Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
244                 func        = CostFunction,
245                 x0          = Xini,
246                 fprime      = GradientOfCostFunction,
247                 args        = (),
248                 bounds      = self._parameters["Bounds"],
249                 maxfun      = self._parameters["MaximumNumberOfSteps"]-1,
250                 factr       = self._parameters["CostDecrementTolerance"]*1.e14,
251                 pgtol       = self._parameters["ProjectedGradientTolerance"],
252                 iprint      = self._parameters["optiprint"],
253                 )
254             nfeval = Informations['funcalls']
255             rc     = Informations['warnflag']
256         elif self._parameters["Minimizer"] == "TNC":
257             Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
258                 func        = CostFunction,
259                 x0          = Xini,
260                 fprime      = GradientOfCostFunction,
261                 args        = (),
262                 bounds      = self._parameters["Bounds"],
263                 maxfun      = self._parameters["MaximumNumberOfSteps"],
264                 pgtol       = self._parameters["ProjectedGradientTolerance"],
265                 ftol        = self._parameters["CostDecrementTolerance"],
266                 messages    = self._parameters["optmessages"],
267                 )
268         elif self._parameters["Minimizer"] == "CG":
269             Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
270                 f           = CostFunction,
271                 x0          = Xini,
272                 fprime      = GradientOfCostFunction,
273                 args        = (),
274                 maxiter     = self._parameters["MaximumNumberOfSteps"],
275                 gtol        = self._parameters["GradientNormTolerance"],
276                 disp        = self._parameters["optdisp"],
277                 full_output = True,
278                 )
279         elif self._parameters["Minimizer"] == "NCG":
280             Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
281                 f           = CostFunction,
282                 x0          = Xini,
283                 fprime      = GradientOfCostFunction,
284                 args        = (),
285                 maxiter     = self._parameters["MaximumNumberOfSteps"],
286                 avextol     = self._parameters["CostDecrementTolerance"],
287                 disp        = self._parameters["optdisp"],
288                 full_output = True,
289                 )
290         elif self._parameters["Minimizer"] == "BFGS":
291             Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
292                 f           = CostFunction,
293                 x0          = Xini,
294                 fprime      = GradientOfCostFunction,
295                 args        = (),
296                 maxiter     = self._parameters["MaximumNumberOfSteps"],
297                 gtol        = self._parameters["GradientNormTolerance"],
298                 disp        = self._parameters["optdisp"],
299                 full_output = True,
300                 )
301         elif self._parameters["Minimizer"] == "LM":
302             Minimum, cov_x, infodict, mesg, rc = scipy.optimize.leastsq(
303                 func        = CostFunctionLM,
304                 x0          = Xini,
305                 Dfun        = GradientOfCostFunctionLM,
306                 args        = (),
307                 ftol        = self._parameters["CostDecrementTolerance"],
308                 maxfev      = self._parameters["MaximumNumberOfSteps"],
309                 gtol        = self._parameters["GradientNormTolerance"],
310                 full_output = True,
311                 )
312             nfeval = infodict['nfev']
313         else:
314             raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"])
315         #
316         IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
317         MinJ     = self.StoredVariables["CostFunctionJ"][IndexMin]
318         #
319         # Correction pour pallier a un bug de TNC sur le retour du Minimum
320         # ----------------------------------------------------------------
321         if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
322             Minimum = self.StoredVariables["CurrentState"][IndexMin]
323         #
324         # Obtention de l'analyse
325         # ----------------------
326         Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
327         #
328         self.StoredVariables["Analysis"].store( Xa.A1 )
329         #
330         if self._toStore("OMA") or \
331             self._toStore("SimulatedObservationAtOptimum"):
332             if self._toStore("SimulatedObservationAtCurrentState"):
333                 HXa = self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
334             elif self._toStore("SimulatedObservationAtCurrentOptimum"):
335                 HXa = self.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
336             else:
337                 HXa = Hm( Xa )
338         #
339         #
340         # Calculs et/ou stockages supplémentaires
341         # ---------------------------------------
342         if self._toStore("Innovation") or \
343             self._toStore("OMB"):
344             d  = Y - HXb
345         if self._toStore("Innovation"):
346             self.StoredVariables["Innovation"].store( numpy.ravel(d) )
347         if self._toStore("BMA"):
348             self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
349         if self._toStore("OMA"):
350             self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
351         if self._toStore("OMB"):
352             self.StoredVariables["OMB"].store( numpy.ravel(d) )
353         if self._toStore("SimulatedObservationAtBackground"):
354             self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
355         if self._toStore("SimulatedObservationAtOptimum"):
356             self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
357         #
358         self._post_run(HO)
359         return 0
360
361 # ==============================================================================
362 if __name__ == "__main__":
363     print('\n AUTODIAGNOSTIC\n')