]> SALOME platform Git repositories - modules/adao.git/blob - src/daComposant/daAlgorithms/NonLinearLeastSquares.py
Salome HOME
Minor improvements and fixes for internal variables
[modules/adao.git] / src / daComposant / daAlgorithms / NonLinearLeastSquares.py
1 # -*- coding: utf-8 -*-
2 #
3 # Copyright (C) 2008-2021 EDF R&D
4 #
5 # This library is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License.
9 #
10 # This library is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with this library; if not, write to the Free Software
17 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 #
19 # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
20 #
21 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
22
23 import logging
24 from daCore import BasicObjects
25 import numpy, scipy.optimize, scipy.version
26
27 # ==============================================================================
28 class ElementaryAlgorithm(BasicObjects.Algorithm):
29     def __init__(self):
30         BasicObjects.Algorithm.__init__(self, "NONLINEARLEASTSQUARES")
31         self.defineRequiredParameter(
32             name     = "Minimizer",
33             default  = "LBFGSB",
34             typecast = str,
35             message  = "Minimiseur utilisé",
36             listval  = ["LBFGSB","TNC", "CG", "NCG", "BFGS", "LM"],
37             )
38         self.defineRequiredParameter(
39             name     = "MaximumNumberOfSteps",
40             default  = 15000,
41             typecast = int,
42             message  = "Nombre maximal de pas d'optimisation",
43             minval   = -1,
44             )
45         self.defineRequiredParameter(
46             name     = "CostDecrementTolerance",
47             default  = 1.e-7,
48             typecast = float,
49             message  = "Diminution relative minimale du coût lors de l'arrêt",
50             minval   = 0.,
51             )
52         self.defineRequiredParameter(
53             name     = "ProjectedGradientTolerance",
54             default  = -1,
55             typecast = float,
56             message  = "Maximum des composantes du gradient projeté lors de l'arrêt",
57             minval   = -1,
58             )
59         self.defineRequiredParameter(
60             name     = "GradientNormTolerance",
61             default  = 1.e-05,
62             typecast = float,
63             message  = "Maximum des composantes du gradient lors de l'arrêt",
64             minval   = 0.,
65             )
66         self.defineRequiredParameter(
67             name     = "StoreInternalVariables",
68             default  = False,
69             typecast = bool,
70             message  = "Stockage des variables internes ou intermédiaires du calcul",
71             )
72         self.defineRequiredParameter(
73             name     = "StoreSupplementaryCalculations",
74             default  = [],
75             typecast = tuple,
76             message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
77             listval  = [
78                 "Analysis",
79                 "BMA",
80                 "CostFunctionJ",
81                 "CostFunctionJAtCurrentOptimum",
82                 "CostFunctionJb",
83                 "CostFunctionJbAtCurrentOptimum",
84                 "CostFunctionJo",
85                 "CostFunctionJoAtCurrentOptimum",
86                 "CurrentIterationNumber",
87                 "CurrentOptimum",
88                 "CurrentState",
89                 "IndexOfOptimum",
90                 "Innovation",
91                 "InnovationAtCurrentState",
92                 "OMA",
93                 "OMB",
94                 "SimulatedObservationAtBackground",
95                 "SimulatedObservationAtCurrentOptimum",
96                 "SimulatedObservationAtCurrentState",
97                 "SimulatedObservationAtOptimum",
98                 ]
99             )
100         self.defineRequiredParameter( # Pas de type
101             name     = "Bounds",
102             message  = "Liste des valeurs de bornes",
103             )
104         self.defineRequiredParameter(
105             name     = "InitializationPoint",
106             typecast = numpy.ravel,
107             message  = "État initial imposé (par défaut, c'est l'ébauche si None)",
108             )
109         self.requireInputArguments(
110             mandatory= ("Xb", "Y", "HO", "R"),
111             )
112         self.setAttributes(tags=(
113             "Optimization",
114             "NonLinear",
115             "Variational",
116             ))
117
118     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
119         self._pre_run(Parameters, Xb, Y, U, HO, EM, CM, R, B, Q)
120         #
121         # Opérateurs
122         # ----------
123         Hm = HO["Direct"].appliedTo
124         Ha = HO["Adjoint"].appliedInXTo
125         #
126         # Utilisation éventuelle d'un vecteur H(Xb) précalculé
127         # ----------------------------------------------------
128         if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
129             HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
130         else:
131             HXb = Hm( Xb )
132         HXb = numpy.asmatrix(numpy.ravel( HXb )).T
133         if Y.size != HXb.size:
134             raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
135         if max(Y.shape) != max(HXb.shape):
136             raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
137         #
138         # Précalcul des inversions de B et R
139         # ----------------------------------
140         RI = R.getI()
141         if self._parameters["Minimizer"] == "LM":
142             RdemiI = R.choleskyI()
143         #
144         # Définition de la fonction-coût
145         # ------------------------------
146         def CostFunction(x):
147             _X  = numpy.asmatrix(numpy.ravel( x )).T
148             if self._parameters["StoreInternalVariables"] or \
149                 self._toStore("CurrentState") or \
150                 self._toStore("CurrentOptimum"):
151                 self.StoredVariables["CurrentState"].store( _X )
152             _HX = Hm( _X )
153             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
154             _Innovation = Y - _HX
155             if self._toStore("SimulatedObservationAtCurrentState") or \
156                 self._toStore("SimulatedObservationAtCurrentOptimum"):
157                 self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
158             if self._toStore("InnovationAtCurrentState"):
159                 self.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
160             #
161             Jb  = 0.
162             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
163             J   = Jb + Jo
164             #
165             self.StoredVariables["CurrentIterationNumber"].store( len(self.StoredVariables["CostFunctionJ"]) )
166             self.StoredVariables["CostFunctionJb"].store( Jb )
167             self.StoredVariables["CostFunctionJo"].store( Jo )
168             self.StoredVariables["CostFunctionJ" ].store( J )
169             if self._toStore("IndexOfOptimum") or \
170                 self._toStore("CurrentOptimum") or \
171                 self._toStore("CostFunctionJAtCurrentOptimum") or \
172                 self._toStore("CostFunctionJbAtCurrentOptimum") or \
173                 self._toStore("CostFunctionJoAtCurrentOptimum") or \
174                 self._toStore("SimulatedObservationAtCurrentOptimum"):
175                 IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
176             if self._toStore("IndexOfOptimum"):
177                 self.StoredVariables["IndexOfOptimum"].store( IndexMin )
178             if self._toStore("CurrentOptimum"):
179                 self.StoredVariables["CurrentOptimum"].store( self.StoredVariables["CurrentState"][IndexMin] )
180             if self._toStore("SimulatedObservationAtCurrentOptimum"):
181                 self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
182             if self._toStore("CostFunctionJbAtCurrentOptimum"):
183                 self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJb"][IndexMin] )
184             if self._toStore("CostFunctionJoAtCurrentOptimum"):
185                 self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJo"][IndexMin] )
186             if self._toStore("CostFunctionJAtCurrentOptimum"):
187                 self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
188             return J
189         #
190         def GradientOfCostFunction(x):
191             _X      = numpy.asmatrix(numpy.ravel( x )).T
192             _HX     = Hm( _X )
193             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
194             GradJb  = 0.
195             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
196             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
197             return GradJ.A1
198         #
199         def CostFunctionLM(x):
200             _X  = numpy.asmatrix(numpy.ravel( x )).T
201             _HX = Hm( _X )
202             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
203             _Innovation = Y - _HX
204             Jb  = 0.
205             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
206             J   = Jb + Jo
207             if self._parameters["StoreInternalVariables"] or \
208                 self._toStore("CurrentState"):
209                 self.StoredVariables["CurrentState"].store( _X )
210             self.StoredVariables["CostFunctionJb"].store( Jb )
211             self.StoredVariables["CostFunctionJo"].store( Jo )
212             self.StoredVariables["CostFunctionJ" ].store( J )
213             #
214             return numpy.ravel( RdemiI*_Innovation )
215         #
216         def GradientOfCostFunctionLM(x):
217             _X      = numpy.asmatrix(numpy.ravel( x )).T
218             _HX     = Hm( _X )
219             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
220             GradJb  = 0.
221             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
222             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
223             return - RdemiI*HO["Tangent"].asMatrix( _X )
224         #
225         # Point de démarrage de l'optimisation : Xini = Xb
226         # ------------------------------------
227         Xini = self._parameters["InitializationPoint"]
228         #
229         # Minimisation de la fonctionnelle
230         # --------------------------------
231         nbPreviousSteps = self.StoredVariables["CostFunctionJ"].stepnumber()
232         #
233         if self._parameters["Minimizer"] == "LBFGSB":
234             # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
235             if "0.19" <= scipy.version.version <= "1.1.0":
236                 import lbfgsbhlt as optimiseur
237             else:
238                 import scipy.optimize as optimiseur
239             Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
240                 func        = CostFunction,
241                 x0          = Xini,
242                 fprime      = GradientOfCostFunction,
243                 args        = (),
244                 bounds      = self._parameters["Bounds"],
245                 maxfun      = self._parameters["MaximumNumberOfSteps"]-1,
246                 factr       = self._parameters["CostDecrementTolerance"]*1.e14,
247                 pgtol       = self._parameters["ProjectedGradientTolerance"],
248                 iprint      = self._parameters["optiprint"],
249                 )
250             nfeval = Informations['funcalls']
251             rc     = Informations['warnflag']
252         elif self._parameters["Minimizer"] == "TNC":
253             Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
254                 func        = CostFunction,
255                 x0          = Xini,
256                 fprime      = GradientOfCostFunction,
257                 args        = (),
258                 bounds      = self._parameters["Bounds"],
259                 maxfun      = self._parameters["MaximumNumberOfSteps"],
260                 pgtol       = self._parameters["ProjectedGradientTolerance"],
261                 ftol        = self._parameters["CostDecrementTolerance"],
262                 messages    = self._parameters["optmessages"],
263                 )
264         elif self._parameters["Minimizer"] == "CG":
265             Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
266                 f           = CostFunction,
267                 x0          = Xini,
268                 fprime      = GradientOfCostFunction,
269                 args        = (),
270                 maxiter     = self._parameters["MaximumNumberOfSteps"],
271                 gtol        = self._parameters["GradientNormTolerance"],
272                 disp        = self._parameters["optdisp"],
273                 full_output = True,
274                 )
275         elif self._parameters["Minimizer"] == "NCG":
276             Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
277                 f           = CostFunction,
278                 x0          = Xini,
279                 fprime      = GradientOfCostFunction,
280                 args        = (),
281                 maxiter     = self._parameters["MaximumNumberOfSteps"],
282                 avextol     = self._parameters["CostDecrementTolerance"],
283                 disp        = self._parameters["optdisp"],
284                 full_output = True,
285                 )
286         elif self._parameters["Minimizer"] == "BFGS":
287             Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
288                 f           = CostFunction,
289                 x0          = Xini,
290                 fprime      = GradientOfCostFunction,
291                 args        = (),
292                 maxiter     = self._parameters["MaximumNumberOfSteps"],
293                 gtol        = self._parameters["GradientNormTolerance"],
294                 disp        = self._parameters["optdisp"],
295                 full_output = True,
296                 )
297         elif self._parameters["Minimizer"] == "LM":
298             Minimum, cov_x, infodict, mesg, rc = scipy.optimize.leastsq(
299                 func        = CostFunctionLM,
300                 x0          = Xini,
301                 Dfun        = GradientOfCostFunctionLM,
302                 args        = (),
303                 ftol        = self._parameters["CostDecrementTolerance"],
304                 maxfev      = self._parameters["MaximumNumberOfSteps"],
305                 gtol        = self._parameters["GradientNormTolerance"],
306                 full_output = True,
307                 )
308             nfeval = infodict['nfev']
309         else:
310             raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"])
311         #
312         IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
313         MinJ     = self.StoredVariables["CostFunctionJ"][IndexMin]
314         #
315         # Correction pour pallier a un bug de TNC sur le retour du Minimum
316         # ----------------------------------------------------------------
317         if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
318             Minimum = self.StoredVariables["CurrentState"][IndexMin]
319         #
320         # Obtention de l'analyse
321         # ----------------------
322         Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
323         #
324         self.StoredVariables["Analysis"].store( Xa.A1 )
325         #
326         if self._toStore("OMA") or \
327             self._toStore("SimulatedObservationAtOptimum"):
328             if self._toStore("SimulatedObservationAtCurrentState"):
329                 HXa = self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
330             elif self._toStore("SimulatedObservationAtCurrentOptimum"):
331                 HXa = self.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
332             else:
333                 HXa = Hm( Xa )
334         #
335         #
336         # Calculs et/ou stockages supplémentaires
337         # ---------------------------------------
338         if self._toStore("Innovation") or \
339             self._toStore("OMB"):
340             d  = Y - HXb
341         if self._toStore("Innovation"):
342             self.StoredVariables["Innovation"].store( numpy.ravel(d) )
343         if self._toStore("BMA"):
344             self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
345         if self._toStore("OMA"):
346             self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
347         if self._toStore("OMB"):
348             self.StoredVariables["OMB"].store( numpy.ravel(d) )
349         if self._toStore("SimulatedObservationAtBackground"):
350             self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
351         if self._toStore("SimulatedObservationAtOptimum"):
352             self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
353         #
354         self._post_run(HO)
355         return 0
356
357 # ==============================================================================
358 if __name__ == "__main__":
359     print('\n AUTODIAGNOSTIC\n')