Salome HOME
Adding ParallelFunctionTest algorithm and improve parallel modes
[modules/adao.git] / src / daComposant / daAlgorithms / NonLinearLeastSquares.py
1 # -*- coding: utf-8 -*-
2 #
3 # Copyright (C) 2008-2019 EDF R&D
4 #
5 # This library is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License.
9 #
10 # This library is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with this library; if not, write to the Free Software
17 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 #
19 # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
20 #
21 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
22
23 import logging
24 from daCore import BasicObjects
25 import numpy, scipy.optimize, scipy.version
26
27 # ==============================================================================
28 class ElementaryAlgorithm(BasicObjects.Algorithm):
29     def __init__(self):
30         BasicObjects.Algorithm.__init__(self, "NONLINEARLEASTSQUARES")
31         self.defineRequiredParameter(
32             name     = "Minimizer",
33             default  = "LBFGSB",
34             typecast = str,
35             message  = "Minimiseur utilisé",
36             listval  = ["LBFGSB","TNC", "CG", "NCG", "BFGS", "LM"],
37             )
38         self.defineRequiredParameter(
39             name     = "MaximumNumberOfSteps",
40             default  = 15000,
41             typecast = int,
42             message  = "Nombre maximal de pas d'optimisation",
43             minval   = -1,
44             )
45         self.defineRequiredParameter(
46             name     = "CostDecrementTolerance",
47             default  = 1.e-7,
48             typecast = float,
49             message  = "Diminution relative minimale du coût lors de l'arrêt",
50             minval   = 0.,
51             )
52         self.defineRequiredParameter(
53             name     = "ProjectedGradientTolerance",
54             default  = -1,
55             typecast = float,
56             message  = "Maximum des composantes du gradient projeté lors de l'arrêt",
57             minval   = -1,
58             )
59         self.defineRequiredParameter(
60             name     = "GradientNormTolerance",
61             default  = 1.e-05,
62             typecast = float,
63             message  = "Maximum des composantes du gradient lors de l'arrêt",
64             minval   = 0.,
65             )
66         self.defineRequiredParameter(
67             name     = "StoreInternalVariables",
68             default  = False,
69             typecast = bool,
70             message  = "Stockage des variables internes ou intermédiaires du calcul",
71             )
72         self.defineRequiredParameter(
73             name     = "StoreSupplementaryCalculations",
74             default  = [],
75             typecast = tuple,
76             message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
77             listval  = [
78                 "Analysis",
79                 "BMA",
80                 "CostFunctionJ",
81                 "CostFunctionJAtCurrentOptimum",
82                 "CostFunctionJb",
83                 "CostFunctionJbAtCurrentOptimum",
84                 "CostFunctionJo",
85                 "CostFunctionJoAtCurrentOptimum",
86                 "CurrentOptimum",
87                 "CurrentState",
88                 "IndexOfOptimum",
89                 "Innovation",
90                 "InnovationAtCurrentState",
91                 "OMA",
92                 "OMB",
93                 "SimulatedObservationAtBackground",
94                 "SimulatedObservationAtCurrentOptimum",
95                 "SimulatedObservationAtCurrentState",
96                 "SimulatedObservationAtOptimum",
97                 ]
98             )
99         self.defineRequiredParameter( # Pas de type
100             name     = "Bounds",
101             message  = "Liste des valeurs de bornes",
102             )
103         self.requireInputArguments(
104             mandatory= ("Xb", "Y", "HO", "R"),
105             )
106
107     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
108         self._pre_run(Parameters, Xb, Y, R, B, Q)
109         #
110         # Correction pour pallier a un bug de TNC sur le retour du Minimum
111         if "Minimizer" in self._parameters and self._parameters["Minimizer"] == "TNC":
112             self.setParameterValue("StoreInternalVariables",True)
113         #
114         # Opérateurs
115         # ----------
116         Hm = HO["Direct"].appliedTo
117         Ha = HO["Adjoint"].appliedInXTo
118         #
119         # Utilisation éventuelle d'un vecteur H(Xb) précalculé
120         # ----------------------------------------------------
121         if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
122             HXb = Hm( Xb, HO["AppliedInX"]["HXb"] )
123         else:
124             HXb = Hm( Xb )
125         HXb = numpy.asmatrix(numpy.ravel( HXb )).T
126         if Y.size != HXb.size:
127             raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
128         if max(Y.shape) != max(HXb.shape):
129             raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
130         #
131         # Précalcul des inversions de B et R
132         # ----------------------------------
133         RI = R.getI()
134         if self._parameters["Minimizer"] == "LM":
135             RdemiI = R.choleskyI()
136         #
137         # Définition de la fonction-coût
138         # ------------------------------
139         def CostFunction(x):
140             _X  = numpy.asmatrix(numpy.ravel( x )).T
141             if self._parameters["StoreInternalVariables"] or \
142                 self._toStore("CurrentState") or \
143                 self._toStore("CurrentOptimum"):
144                 self.StoredVariables["CurrentState"].store( _X )
145             _HX = Hm( _X )
146             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
147             _Innovation = Y - _HX
148             if self._toStore("SimulatedObservationAtCurrentState") or \
149                 self._toStore("SimulatedObservationAtCurrentOptimum"):
150                 self.StoredVariables["SimulatedObservationAtCurrentState"].store( _HX )
151             if self._toStore("InnovationAtCurrentState"):
152                 self.StoredVariables["InnovationAtCurrentState"].store( _Innovation )
153             #
154             Jb  = 0.
155             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
156             J   = Jb + Jo
157             #
158             self.StoredVariables["CostFunctionJb"].store( Jb )
159             self.StoredVariables["CostFunctionJo"].store( Jo )
160             self.StoredVariables["CostFunctionJ" ].store( J )
161             if self._toStore("IndexOfOptimum") or \
162                 self._toStore("CurrentOptimum") or \
163                 self._toStore("CostFunctionJAtCurrentOptimum") or \
164                 self._toStore("CostFunctionJbAtCurrentOptimum") or \
165                 self._toStore("CostFunctionJoAtCurrentOptimum") or \
166                 self._toStore("SimulatedObservationAtCurrentOptimum"):
167                 IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
168             if self._toStore("IndexOfOptimum"):
169                 self.StoredVariables["IndexOfOptimum"].store( IndexMin )
170             if self._toStore("CurrentOptimum"):
171                 self.StoredVariables["CurrentOptimum"].store( self.StoredVariables["CurrentState"][IndexMin] )
172             if self._toStore("SimulatedObservationAtCurrentOptimum"):
173                 self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
174             if self._toStore("CostFunctionJbAtCurrentOptimum"):
175                 self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJb"][IndexMin] )
176             if self._toStore("CostFunctionJoAtCurrentOptimum"):
177                 self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( self.StoredVariables["CostFunctionJo"][IndexMin] )
178             if self._toStore("CostFunctionJAtCurrentOptimum"):
179                 self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( self.StoredVariables["CostFunctionJ" ][IndexMin] )
180             return J
181         #
182         def GradientOfCostFunction(x):
183             _X      = numpy.asmatrix(numpy.ravel( x )).T
184             _HX     = Hm( _X )
185             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
186             GradJb  = 0.
187             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
188             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
189             return GradJ.A1
190         #
191         def CostFunctionLM(x):
192             _X  = numpy.asmatrix(numpy.ravel( x )).T
193             _HX = Hm( _X )
194             _HX = numpy.asmatrix(numpy.ravel( _HX )).T
195             _Innovation = Y - _HX
196             Jb  = 0.
197             Jo  = float( 0.5 * _Innovation.T * RI * _Innovation )
198             J   = Jb + Jo
199             if self._parameters["StoreInternalVariables"] or \
200                 self._toStore("CurrentState"):
201                 self.StoredVariables["CurrentState"].store( _X )
202             self.StoredVariables["CostFunctionJb"].store( Jb )
203             self.StoredVariables["CostFunctionJo"].store( Jo )
204             self.StoredVariables["CostFunctionJ" ].store( J )
205             #
206             return numpy.ravel( RdemiI*_Innovation )
207         #
208         def GradientOfCostFunctionLM(x):
209             _X      = numpy.asmatrix(numpy.ravel( x )).T
210             _HX     = Hm( _X )
211             _HX     = numpy.asmatrix(numpy.ravel( _HX )).T
212             GradJb  = 0.
213             GradJo  = - Ha( (_X, RI * (Y - _HX)) )
214             GradJ   = numpy.asmatrix( numpy.ravel( GradJb ) + numpy.ravel( GradJo ) ).T
215             return - RdemiI*HO["Tangent"].asMatrix( _X )
216         #
217         # Point de démarrage de l'optimisation : Xini = Xb
218         # ------------------------------------
219         Xini = numpy.ravel(Xb)
220         #
221         # Minimisation de la fonctionnelle
222         # --------------------------------
223         nbPreviousSteps = self.StoredVariables["CostFunctionJ"].stepnumber()
224         #
225         if self._parameters["Minimizer"] == "LBFGSB":
226             # Minimum, J_optimal, Informations = scipy.optimize.fmin_l_bfgs_b(
227             if "0.19" <= scipy.version.version <= "1.1.0":
228                 import lbfgsbhlt as optimiseur
229             else:
230                 import scipy.optimize as optimiseur
231             Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
232                 func        = CostFunction,
233                 x0          = Xini,
234                 fprime      = GradientOfCostFunction,
235                 args        = (),
236                 bounds      = self._parameters["Bounds"],
237                 maxfun      = self._parameters["MaximumNumberOfSteps"]-1,
238                 factr       = self._parameters["CostDecrementTolerance"]*1.e14,
239                 pgtol       = self._parameters["ProjectedGradientTolerance"],
240                 iprint      = self._parameters["optiprint"],
241                 )
242             nfeval = Informations['funcalls']
243             rc     = Informations['warnflag']
244         elif self._parameters["Minimizer"] == "TNC":
245             Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
246                 func        = CostFunction,
247                 x0          = Xini,
248                 fprime      = GradientOfCostFunction,
249                 args        = (),
250                 bounds      = self._parameters["Bounds"],
251                 maxfun      = self._parameters["MaximumNumberOfSteps"],
252                 pgtol       = self._parameters["ProjectedGradientTolerance"],
253                 ftol        = self._parameters["CostDecrementTolerance"],
254                 messages    = self._parameters["optmessages"],
255                 )
256         elif self._parameters["Minimizer"] == "CG":
257             Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
258                 f           = CostFunction,
259                 x0          = Xini,
260                 fprime      = GradientOfCostFunction,
261                 args        = (),
262                 maxiter     = self._parameters["MaximumNumberOfSteps"],
263                 gtol        = self._parameters["GradientNormTolerance"],
264                 disp        = self._parameters["optdisp"],
265                 full_output = True,
266                 )
267         elif self._parameters["Minimizer"] == "NCG":
268             Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
269                 f           = CostFunction,
270                 x0          = Xini,
271                 fprime      = GradientOfCostFunction,
272                 args        = (),
273                 maxiter     = self._parameters["MaximumNumberOfSteps"],
274                 avextol     = self._parameters["CostDecrementTolerance"],
275                 disp        = self._parameters["optdisp"],
276                 full_output = True,
277                 )
278         elif self._parameters["Minimizer"] == "BFGS":
279             Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
280                 f           = CostFunction,
281                 x0          = Xini,
282                 fprime      = GradientOfCostFunction,
283                 args        = (),
284                 maxiter     = self._parameters["MaximumNumberOfSteps"],
285                 gtol        = self._parameters["GradientNormTolerance"],
286                 disp        = self._parameters["optdisp"],
287                 full_output = True,
288                 )
289         elif self._parameters["Minimizer"] == "LM":
290             Minimum, cov_x, infodict, mesg, rc = scipy.optimize.leastsq(
291                 func        = CostFunctionLM,
292                 x0          = Xini,
293                 Dfun        = GradientOfCostFunctionLM,
294                 args        = (),
295                 ftol        = self._parameters["CostDecrementTolerance"],
296                 maxfev      = self._parameters["MaximumNumberOfSteps"],
297                 gtol        = self._parameters["GradientNormTolerance"],
298                 full_output = True,
299                 )
300             nfeval = infodict['nfev']
301         else:
302             raise ValueError("Error in Minimizer name: %s"%self._parameters["Minimizer"])
303         #
304         IndexMin = numpy.argmin( self.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
305         MinJ     = self.StoredVariables["CostFunctionJ"][IndexMin]
306         #
307         # Correction pour pallier a un bug de TNC sur le retour du Minimum
308         # ----------------------------------------------------------------
309         if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
310             Minimum = self.StoredVariables["CurrentState"][IndexMin]
311         #
312         # Obtention de l'analyse
313         # ----------------------
314         Xa = numpy.asmatrix(numpy.ravel( Minimum )).T
315         #
316         self.StoredVariables["Analysis"].store( Xa.A1 )
317         #
318         if self._toStore("OMA") or \
319             self._toStore("SimulatedObservationAtOptimum"):
320             if self._toStore("SimulatedObservationAtCurrentState"):
321                 HXa = self.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
322             elif self._toStore("SimulatedObservationAtCurrentOptimum"):
323                 HXa = self.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
324             else:
325                 HXa = Hm( Xa )
326         #
327         #
328         # Calculs et/ou stockages supplémentaires
329         # ---------------------------------------
330         if self._toStore("Innovation") or \
331             self._toStore("OMB"):
332             d  = Y - HXb
333         if self._toStore("Innovation"):
334             self.StoredVariables["Innovation"].store( numpy.ravel(d) )
335         if self._toStore("BMA"):
336             self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
337         if self._toStore("OMA"):
338             self.StoredVariables["OMA"].store( numpy.ravel(Y) - numpy.ravel(HXa) )
339         if self._toStore("OMB"):
340             self.StoredVariables["OMB"].store( numpy.ravel(d) )
341         if self._toStore("SimulatedObservationAtBackground"):
342             self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
343         if self._toStore("SimulatedObservationAtOptimum"):
344             self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
345         #
346         self._post_run(HO)
347         return 0
348
349 # ==============================================================================
350 if __name__ == "__main__":
351     print('\n AUTODIAGNOSTIC\n')