Salome HOME
Updating version and copyright date information
[modules/adao.git] / src / daComposant / daAlgorithms / ExtendedBlue.py
1 # -*- coding: utf-8 -*-
2 #
3 # Copyright (C) 2008-2020 EDF R&D
4 #
5 # This library is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License.
9 #
10 # This library is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with this library; if not, write to the Free Software
17 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 #
19 # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
20 #
21 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
22
23 import logging
24 from daCore import BasicObjects
25 import numpy
26
27 # ==============================================================================
28 class ElementaryAlgorithm(BasicObjects.Algorithm):
29     def __init__(self):
30         BasicObjects.Algorithm.__init__(self, "EXTENDEDBLUE")
31         self.defineRequiredParameter(
32             name     = "StoreInternalVariables",
33             default  = False,
34             typecast = bool,
35             message  = "Stockage des variables internes ou intermédiaires du calcul",
36             )
37         self.defineRequiredParameter(
38             name     = "StoreSupplementaryCalculations",
39             default  = [],
40             typecast = tuple,
41             message  = "Liste de calculs supplémentaires à stocker et/ou effectuer",
42             listval  = [
43                 "Analysis",
44                 "APosterioriCorrelations",
45                 "APosterioriCovariance",
46                 "APosterioriStandardDeviations",
47                 "APosterioriVariances",
48                 "BMA",
49                 "CostFunctionJ",
50                 "CostFunctionJAtCurrentOptimum",
51                 "CostFunctionJb",
52                 "CostFunctionJbAtCurrentOptimum",
53                 "CostFunctionJo",
54                 "CostFunctionJoAtCurrentOptimum",
55                 "CurrentOptimum",
56                 "CurrentState",
57                 "Innovation",
58                 "MahalanobisConsistency",
59                 "OMA",
60                 "OMB",
61                 "SigmaBck2",
62                 "SigmaObs2",
63                 "SimulatedObservationAtBackground",
64                 "SimulatedObservationAtCurrentOptimum",
65                 "SimulatedObservationAtCurrentState",
66                 "SimulatedObservationAtOptimum",
67                 "SimulationQuantiles",
68                 ]
69             )
70         self.defineRequiredParameter(
71             name     = "Quantiles",
72             default  = [],
73             typecast = tuple,
74             message  = "Liste des valeurs de quantiles",
75             minval   = 0.,
76             maxval   = 1.,
77             )
78         self.defineRequiredParameter(
79             name     = "SetSeed",
80             typecast = numpy.random.seed,
81             message  = "Graine fixée pour le générateur aléatoire",
82             )
83         self.defineRequiredParameter(
84             name     = "NumberOfSamplesForQuantiles",
85             default  = 100,
86             typecast = int,
87             message  = "Nombre d'échantillons simulés pour le calcul des quantiles",
88             minval   = 1,
89             )
90         self.defineRequiredParameter(
91             name     = "SimulationForQuantiles",
92             default  = "Linear",
93             typecast = str,
94             message  = "Type de simulation pour l'estimation des quantiles",
95             listval  = ["Linear", "NonLinear"]
96             )
97         self.requireInputArguments(
98             mandatory= ("Xb", "Y", "HO", "R", "B"),
99             )
100
101     def run(self, Xb=None, Y=None, U=None, HO=None, EM=None, CM=None, R=None, B=None, Q=None, Parameters=None):
102         self._pre_run(Parameters, Xb, Y, R, B, Q)
103         #
104         Hm = HO["Tangent"].asMatrix(Xb)
105         Hm = Hm.reshape(Y.size,Xb.size) # ADAO & check shape
106         Ha = HO["Adjoint"].asMatrix(Xb)
107         Ha = Ha.reshape(Xb.size,Y.size) # ADAO & check shape
108         H  = HO["Direct"].appliedTo
109         #
110         # Utilisation éventuelle d'un vecteur H(Xb) précalculé
111         # ----------------------------------------------------
112         if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
113             HXb = H( Xb, HO["AppliedInX"]["HXb"])
114         else:
115             HXb = H( Xb )
116         HXb = numpy.asmatrix(numpy.ravel( HXb )).T
117         if Y.size != HXb.size:
118             raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
119         if max(Y.shape) != max(HXb.shape):
120             raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
121         #
122         # Précalcul des inversions de B et R
123         # ----------------------------------
124         BI = B.getI()
125         RI = R.getI()
126         #
127         # Calcul de l'innovation
128         # ----------------------
129         d  = Y - HXb
130         #
131         # Calcul de la matrice de gain et de l'analyse
132         # --------------------------------------------
133         if Y.size <= Xb.size:
134             _A = R + numpy.dot(Hm, B * Ha)
135             _u = numpy.linalg.solve( _A , d )
136             Xa = Xb + B * Ha * _u
137         else:
138             _A = BI + numpy.dot(Ha, RI * Hm)
139             _u = numpy.linalg.solve( _A , numpy.dot(Ha, RI * d) )
140             Xa = Xb + _u
141         self.StoredVariables["Analysis"].store( Xa.A1 )
142         #
143         # Calcul de la fonction coût
144         # --------------------------
145         if self._parameters["StoreInternalVariables"] or \
146             self._toStore("CostFunctionJ")  or self._toStore("CostFunctionJAtCurrentOptimum") or \
147             self._toStore("CostFunctionJb") or self._toStore("CostFunctionJbAtCurrentOptimum") or \
148             self._toStore("CostFunctionJo") or self._toStore("CostFunctionJoAtCurrentOptimum") or \
149             self._toStore("OMA") or \
150             self._toStore("SigmaObs2") or \
151             self._toStore("MahalanobisConsistency") or \
152             self._toStore("SimulatedObservationAtCurrentOptimum") or \
153             self._toStore("SimulatedObservationAtCurrentState") or \
154             self._toStore("SimulatedObservationAtOptimum") or \
155             self._toStore("SimulationQuantiles"):
156             HXa  = numpy.matrix(numpy.ravel( H( Xa ) )).T
157             oma = Y - HXa
158         if self._parameters["StoreInternalVariables"] or \
159             self._toStore("CostFunctionJ")  or self._toStore("CostFunctionJAtCurrentOptimum") or \
160             self._toStore("CostFunctionJb") or self._toStore("CostFunctionJbAtCurrentOptimum") or \
161             self._toStore("CostFunctionJo") or self._toStore("CostFunctionJoAtCurrentOptimum") or \
162             self._toStore("MahalanobisConsistency"):
163             Jb  = float( 0.5 * (Xa - Xb).T * BI * (Xa - Xb) )
164             Jo  = float( 0.5 * oma.T * RI * oma )
165             J   = Jb + Jo
166             self.StoredVariables["CostFunctionJb"].store( Jb )
167             self.StoredVariables["CostFunctionJo"].store( Jo )
168             self.StoredVariables["CostFunctionJ" ].store( J )
169             self.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( Jb )
170             self.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( Jo )
171             self.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( J )
172         #
173         # Calcul de la covariance d'analyse
174         # ---------------------------------
175         if self._toStore("APosterioriCovariance") or \
176             self._toStore("SimulationQuantiles"):
177             if   (Y.size <= Xb.size): K  = B * Ha * (R + numpy.dot(Hm, B * Ha)).I
178             elif (Y.size >  Xb.size): K = (BI + numpy.dot(Ha, RI * Hm)).I * Ha * RI
179             A = B - K * Hm * B
180             if min(A.shape) != max(A.shape):
181                 raise ValueError("The %s a posteriori covariance matrix A is of shape %s, despites it has to be a squared matrix. There is an error in the observation operator, please check it."%(self._name,str(A.shape)))
182             if (numpy.diag(A) < 0).any():
183                 raise ValueError("The %s a posteriori covariance matrix A has at least one negative value on its diagonal. There is an error in the observation operator, please check it."%(self._name,))
184             if logging.getLogger().level < logging.WARNING: # La verification n'a lieu qu'en debug
185                 try:
186                     L = numpy.linalg.cholesky( A )
187                 except:
188                     raise ValueError("The %s a posteriori covariance matrix A is not symmetric positive-definite. Please check your a priori covariances and your observation operator."%(self._name,))
189             self.StoredVariables["APosterioriCovariance"].store( A )
190         #
191         # Calculs et/ou stockages supplémentaires
192         # ---------------------------------------
193         if self._parameters["StoreInternalVariables"] or self._toStore("CurrentState"):
194             self.StoredVariables["CurrentState"].store( numpy.ravel(Xa) )
195         if self._toStore("CurrentOptimum"):
196             self.StoredVariables["CurrentOptimum"].store( numpy.ravel(Xa) )
197         if self._toStore("Innovation"):
198             self.StoredVariables["Innovation"].store( numpy.ravel(d) )
199         if self._toStore("BMA"):
200             self.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
201         if self._toStore("OMA"):
202             self.StoredVariables["OMA"].store( numpy.ravel(oma) )
203         if self._toStore("OMB"):
204             self.StoredVariables["OMB"].store( numpy.ravel(d) )
205         if self._toStore("SigmaObs2"):
206             TraceR = R.trace(Y.size)
207             self.StoredVariables["SigmaObs2"].store( float( (d.T * (numpy.asmatrix(numpy.ravel(oma)).T)) ) / TraceR )
208         if self._toStore("SigmaBck2"):
209             self.StoredVariables["SigmaBck2"].store( float( (d.T * Hm * (Xa - Xb))/(Hm * B * Hm.T).trace() ) )
210         if self._toStore("MahalanobisConsistency"):
211             self.StoredVariables["MahalanobisConsistency"].store( float( 2.*J/d.size ) )
212         if self._toStore("SimulationQuantiles"):
213             nech = self._parameters["NumberOfSamplesForQuantiles"]
214             HtM  = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
215             HtM  = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
216             YfQ  = None
217             for i in range(nech):
218                 if self._parameters["SimulationForQuantiles"] == "Linear":
219                     dXr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A) - Xa.A1).T
220                     dYr = numpy.matrix(numpy.ravel( HtM * dXr )).T
221                     Yr = HXa + dYr
222                 elif self._parameters["SimulationForQuantiles"] == "NonLinear":
223                     Xr = numpy.matrix(numpy.random.multivariate_normal(Xa.A1,A)).T
224                     Yr = numpy.matrix(numpy.ravel( H( Xr ) )).T
225                 if YfQ is None:
226                     YfQ = Yr
227                 else:
228                     YfQ = numpy.hstack((YfQ,Yr))
229             YfQ.sort(axis=-1)
230             YQ = None
231             for quantile in self._parameters["Quantiles"]:
232                 if not (0. <= float(quantile) <= 1.): continue
233                 indice = int(nech * float(quantile) - 1./nech)
234                 if YQ is None: YQ = YfQ[:,indice]
235                 else:          YQ = numpy.hstack((YQ,YfQ[:,indice]))
236             self.StoredVariables["SimulationQuantiles"].store( YQ )
237         if self._toStore("SimulatedObservationAtBackground"):
238             self.StoredVariables["SimulatedObservationAtBackground"].store( numpy.ravel(HXb) )
239         if self._toStore("SimulatedObservationAtCurrentState"):
240             self.StoredVariables["SimulatedObservationAtCurrentState"].store( numpy.ravel(HXa) )
241         if self._toStore("SimulatedObservationAtCurrentOptimum"):
242             self.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( numpy.ravel(HXa) )
243         if self._toStore("SimulatedObservationAtOptimum"):
244             self.StoredVariables["SimulatedObservationAtOptimum"].store( numpy.ravel(HXa) )
245         #
246         self._post_run(HO)
247         return 0
248
249 # ==============================================================================
250 if __name__ == "__main__":
251     print('\n AUTODIAGNOSTIC\n')