Salome HOME
Code and documentation update
[modules/adao.git] / src / daComposant / daAlgorithms / Atoms / psas3dvar.py
1 # -*- coding: utf-8 -*-
2 #
3 # Copyright (C) 2008-2022 EDF R&D
4 #
5 # This library is free software; you can redistribute it and/or
6 # modify it under the terms of the GNU Lesser General Public
7 # License as published by the Free Software Foundation; either
8 # version 2.1 of the License.
9 #
10 # This library is distributed in the hope that it will be useful,
11 # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 # Lesser General Public License for more details.
14 #
15 # You should have received a copy of the GNU Lesser General Public
16 # License along with this library; if not, write to the Free Software
17 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18 #
19 # See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
20 #
21 # Author: Jean-Philippe Argaud, jean-philippe.argaud@edf.fr, EDF R&D
22
23 __doc__ = """
24     3DVAR PSAS
25 """
26 __author__ = "Jean-Philippe ARGAUD"
27
28 import numpy, scipy, scipy.optimize, scipy.version
29 from daCore.NumericObjects import HessienneEstimation, QuantilesEstimations
30
31 # ==============================================================================
32 def psas3dvar(selfA, Xb, Y, U, HO, CM, R, B, __storeState = False):
33     """
34     Correction
35     """
36     #
37     # Initialisations
38     # ---------------
39     Hm = HO["Direct"].appliedTo
40     #
41     if HO["AppliedInX"] is not None and "HXb" in HO["AppliedInX"]:
42         HXb = numpy.asarray(Hm( Xb, HO["AppliedInX"]["HXb"] ))
43     else:
44         HXb = numpy.asarray(Hm( Xb ))
45     HXb = HXb.reshape((-1,1))
46     if Y.size != HXb.size:
47         raise ValueError("The size %i of observations Y and %i of observed calculation H(X) are different, they have to be identical."%(Y.size,HXb.size))
48     if max(Y.shape) != max(HXb.shape):
49         raise ValueError("The shapes %s of observations Y and %s of observed calculation H(X) are different, they have to be identical."%(Y.shape,HXb.shape))
50     #
51     Ht = HO["Tangent"].asMatrix(Xb)
52     Ht = Ht.reshape(Y.size,Xb.size) # ADAO & check shape
53     BHT = B * Ht.T
54     HBHTpR = R + Ht * BHT
55     Innovation = Y - HXb
56     #
57     if selfA._toStore("JacobianMatrixAtBackground"):
58         selfA.StoredVariables["JacobianMatrixAtBackground"].store( Ht )
59     #
60     Xini = numpy.zeros(Y.size)
61     #
62     # Définition de la fonction-coût
63     # ------------------------------
64     def CostFunction(w):
65         _W = numpy.asarray(w).reshape((-1,1))
66         if selfA._parameters["StoreInternalVariables"] or \
67             selfA._toStore("CurrentState") or \
68             selfA._toStore("CurrentOptimum"):
69             selfA.StoredVariables["CurrentState"].store( Xb + BHT @ _W )
70         if selfA._toStore("SimulatedObservationAtCurrentState") or \
71             selfA._toStore("SimulatedObservationAtCurrentOptimum"):
72             selfA.StoredVariables["SimulatedObservationAtCurrentState"].store( Hm( Xb + BHT @ _W ) )
73         if selfA._toStore("InnovationAtCurrentState"):
74             selfA.StoredVariables["InnovationAtCurrentState"].store( Innovation )
75         #
76         Jb  = float( 0.5 * _W.T @ (HBHTpR @ _W) )
77         Jo  = float( - _W.T @ Innovation )
78         J   = Jb + Jo
79         #
80         selfA.StoredVariables["CurrentIterationNumber"].store( len(selfA.StoredVariables["CostFunctionJ"]) )
81         selfA.StoredVariables["CostFunctionJb"].store( Jb )
82         selfA.StoredVariables["CostFunctionJo"].store( Jo )
83         selfA.StoredVariables["CostFunctionJ" ].store( J )
84         if selfA._toStore("IndexOfOptimum") or \
85             selfA._toStore("CurrentOptimum") or \
86             selfA._toStore("CostFunctionJAtCurrentOptimum") or \
87             selfA._toStore("CostFunctionJbAtCurrentOptimum") or \
88             selfA._toStore("CostFunctionJoAtCurrentOptimum") or \
89             selfA._toStore("SimulatedObservationAtCurrentOptimum"):
90             IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
91         if selfA._toStore("IndexOfOptimum"):
92             selfA.StoredVariables["IndexOfOptimum"].store( IndexMin )
93         if selfA._toStore("CurrentOptimum"):
94             selfA.StoredVariables["CurrentOptimum"].store( selfA.StoredVariables["CurrentState"][IndexMin] )
95         if selfA._toStore("SimulatedObservationAtCurrentOptimum"):
96             selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"].store( selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin] )
97         if selfA._toStore("CostFunctionJbAtCurrentOptimum"):
98             selfA.StoredVariables["CostFunctionJbAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJb"][IndexMin] )
99         if selfA._toStore("CostFunctionJoAtCurrentOptimum"):
100             selfA.StoredVariables["CostFunctionJoAtCurrentOptimum"].store( selfA.StoredVariables["CostFunctionJo"][IndexMin] )
101         if selfA._toStore("CostFunctionJAtCurrentOptimum"):
102             selfA.StoredVariables["CostFunctionJAtCurrentOptimum" ].store( selfA.StoredVariables["CostFunctionJ" ][IndexMin] )
103         return J
104     #
105     def GradientOfCostFunction(w):
106         _W = numpy.asarray(w).reshape((-1,1))
107         GradJb  = HBHTpR @ _W
108         GradJo  = - Innovation
109         GradJ   = numpy.ravel( GradJb ) + numpy.ravel( GradJo )
110         return GradJ
111     #
112     # Minimisation de la fonctionnelle
113     # --------------------------------
114     nbPreviousSteps = selfA.StoredVariables["CostFunctionJ"].stepnumber()
115     #
116     if selfA._parameters["Minimizer"] == "LBFGSB":
117         if "0.19" <= scipy.version.version <= "1.4.99":
118             import daAlgorithms.Atoms.lbfgsb14hlt as optimiseur
119         elif "1.5.0" <= scipy.version.version <= "1.7.99":
120             import daAlgorithms.Atoms.lbfgsb17hlt as optimiseur
121         elif "1.8.0" <= scipy.version.version <= "1.8.99":
122             import daAlgorithms.Atoms.lbfgsb18hlt as optimiseur
123         elif "1.9.0" <= scipy.version.version <= "1.9.99":
124             import daAlgorithms.Atoms.lbfgsb19hlt as optimiseur
125         else:
126             import scipy.optimize as optimiseur
127         Minimum, J_optimal, Informations = optimiseur.fmin_l_bfgs_b(
128             func        = CostFunction,
129             x0          = Xini,
130             fprime      = GradientOfCostFunction,
131             args        = (),
132             maxfun      = selfA._parameters["MaximumNumberOfIterations"]-1,
133             factr       = selfA._parameters["CostDecrementTolerance"]*1.e14,
134             pgtol       = selfA._parameters["ProjectedGradientTolerance"],
135             iprint      = selfA._parameters["optiprint"],
136             )
137         # nfeval = Informations['funcalls']
138         # rc     = Informations['warnflag']
139     elif selfA._parameters["Minimizer"] == "TNC":
140         Minimum, nfeval, rc = scipy.optimize.fmin_tnc(
141             func        = CostFunction,
142             x0          = Xini,
143             fprime      = GradientOfCostFunction,
144             args        = (),
145             maxfun      = selfA._parameters["MaximumNumberOfIterations"],
146             pgtol       = selfA._parameters["ProjectedGradientTolerance"],
147             ftol        = selfA._parameters["CostDecrementTolerance"],
148             messages    = selfA._parameters["optmessages"],
149             )
150     elif selfA._parameters["Minimizer"] == "CG":
151         Minimum, fopt, nfeval, grad_calls, rc = scipy.optimize.fmin_cg(
152             f           = CostFunction,
153             x0          = Xini,
154             fprime      = GradientOfCostFunction,
155             args        = (),
156             maxiter     = selfA._parameters["MaximumNumberOfIterations"],
157             gtol        = selfA._parameters["GradientNormTolerance"],
158             disp        = selfA._parameters["optdisp"],
159             full_output = True,
160             )
161     elif selfA._parameters["Minimizer"] == "NCG":
162         Minimum, fopt, nfeval, grad_calls, hcalls, rc = scipy.optimize.fmin_ncg(
163             f           = CostFunction,
164             x0          = Xini,
165             fprime      = GradientOfCostFunction,
166             args        = (),
167             maxiter     = selfA._parameters["MaximumNumberOfIterations"],
168             avextol     = selfA._parameters["CostDecrementTolerance"],
169             disp        = selfA._parameters["optdisp"],
170             full_output = True,
171             )
172     elif selfA._parameters["Minimizer"] == "BFGS":
173         Minimum, fopt, gopt, Hopt, nfeval, grad_calls, rc = scipy.optimize.fmin_bfgs(
174             f           = CostFunction,
175             x0          = Xini,
176             fprime      = GradientOfCostFunction,
177             args        = (),
178             maxiter     = selfA._parameters["MaximumNumberOfIterations"],
179             gtol        = selfA._parameters["GradientNormTolerance"],
180             disp        = selfA._parameters["optdisp"],
181             full_output = True,
182             )
183     else:
184         raise ValueError("Error in minimizer name: %s is unkown"%selfA._parameters["Minimizer"])
185     #
186     IndexMin = numpy.argmin( selfA.StoredVariables["CostFunctionJ"][nbPreviousSteps:] ) + nbPreviousSteps
187     MinJ     = selfA.StoredVariables["CostFunctionJ"][IndexMin]
188     #
189     # Correction pour pallier a un bug de TNC sur le retour du Minimum
190     # ----------------------------------------------------------------
191     if selfA._parameters["StoreInternalVariables"] or selfA._toStore("CurrentState"):
192         Minimum = selfA.StoredVariables["CurrentState"][IndexMin]
193     else:
194         Minimum = Xb + BHT @ Minimum.reshape((-1,1))
195     #
196     Xa = Minimum
197     if __storeState: selfA._setInternalState("Xn", Xa)
198     #--------------------------
199     #
200     selfA.StoredVariables["Analysis"].store( Xa )
201     #
202     if selfA._toStore("OMA") or \
203         selfA._toStore("InnovationAtCurrentAnalysis") or \
204         selfA._toStore("SigmaObs2") or \
205         selfA._toStore("SimulationQuantiles") or \
206         selfA._toStore("SimulatedObservationAtOptimum"):
207         if selfA._toStore("SimulatedObservationAtCurrentState"):
208             HXa = selfA.StoredVariables["SimulatedObservationAtCurrentState"][IndexMin]
209         elif selfA._toStore("SimulatedObservationAtCurrentOptimum"):
210             HXa = selfA.StoredVariables["SimulatedObservationAtCurrentOptimum"][-1]
211         else:
212             HXa = Hm( Xa )
213         oma = Y - HXa.reshape((-1,1))
214     #
215     if selfA._toStore("APosterioriCovariance") or \
216         selfA._toStore("SimulationQuantiles") or \
217         selfA._toStore("JacobianMatrixAtOptimum") or \
218         selfA._toStore("KalmanGainAtOptimum"):
219         HtM = HO["Tangent"].asMatrix(ValueForMethodForm = Xa)
220         HtM = HtM.reshape(Y.size,Xa.size) # ADAO & check shape
221     if selfA._toStore("APosterioriCovariance") or \
222         selfA._toStore("SimulationQuantiles") or \
223         selfA._toStore("KalmanGainAtOptimum"):
224         HaM = HO["Adjoint"].asMatrix(ValueForMethodForm = Xa)
225         HaM = HaM.reshape(Xa.size,Y.size) # ADAO & check shape
226     if selfA._toStore("APosterioriCovariance") or \
227         selfA._toStore("SimulationQuantiles"):
228         BI = B.getI()
229         RI = R.getI()
230         A = HessienneEstimation(selfA, Xa.size, HaM, HtM, BI, RI)
231     if selfA._toStore("APosterioriCovariance"):
232         selfA.StoredVariables["APosterioriCovariance"].store( A )
233     if selfA._toStore("JacobianMatrixAtOptimum"):
234         selfA.StoredVariables["JacobianMatrixAtOptimum"].store( HtM )
235     if selfA._toStore("KalmanGainAtOptimum"):
236         if   (Y.size <= Xb.size): KG  = B * HaM * (R + numpy.dot(HtM, B * HaM)).I
237         elif (Y.size >  Xb.size): KG = (BI + numpy.dot(HaM, RI * HtM)).I * HaM * RI
238         selfA.StoredVariables["KalmanGainAtOptimum"].store( KG )
239     #
240     # Calculs et/ou stockages supplémentaires
241     # ---------------------------------------
242     if selfA._toStore("Innovation") or \
243         selfA._toStore("SigmaObs2") or \
244         selfA._toStore("MahalanobisConsistency") or \
245         selfA._toStore("OMB"):
246         Innovation  = Y - HXb
247     if selfA._toStore("Innovation"):
248         selfA.StoredVariables["Innovation"].store( Innovation )
249     if selfA._toStore("BMA"):
250         selfA.StoredVariables["BMA"].store( numpy.ravel(Xb) - numpy.ravel(Xa) )
251     if selfA._toStore("OMA"):
252         selfA.StoredVariables["OMA"].store( oma )
253     if selfA._toStore("InnovationAtCurrentAnalysis"):
254         selfA.StoredVariables["InnovationAtCurrentAnalysis"].store( oma )
255     if selfA._toStore("OMB"):
256         selfA.StoredVariables["OMB"].store( Innovation )
257     if selfA._toStore("SigmaObs2"):
258         TraceR = R.trace(Y.size)
259         selfA.StoredVariables["SigmaObs2"].store( float( (Innovation.T @ oma) ) / TraceR )
260     if selfA._toStore("MahalanobisConsistency"):
261         selfA.StoredVariables["MahalanobisConsistency"].store( float( 2.*MinJ/Innovation.size ) )
262     if selfA._toStore("SimulationQuantiles"):
263         QuantilesEstimations(selfA, A, Xa, HXa, Hm, HtM)
264     if selfA._toStore("SimulatedObservationAtBackground"):
265         selfA.StoredVariables["SimulatedObservationAtBackground"].store( HXb )
266     if selfA._toStore("SimulatedObservationAtOptimum"):
267         selfA.StoredVariables["SimulatedObservationAtOptimum"].store( HXa )
268     #
269     return 0
270
271 # ==============================================================================
272 if __name__ == "__main__":
273     print('\n AUTODIAGNOSTIC\n')