1 // Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
2 // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
4 // This library is free software; you can redistribute it and/or
5 // modify it under the terms of the GNU Lesser General Public
6 // License as published by the Free Software Foundation; either
7 // version 2.1 of the License.
9 // This library is distributed in the hope that it will be useful,
10 // but WITHOUT ANY WARRANTY; without even the implied warranty of
11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 // Lesser General Public License for more details.
14 // You should have received a copy of the GNU Lesser General Public
15 // License along with this library; if not, write to the Free Software
16 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
20 // File : SMESH_Pattern.hxx
21 // Created : Mon Aug 2 10:30:00 2004
22 // Author : Edward AGAPOV (eap)
24 #include "SMESH_Pattern.hxx"
26 #include <BRepAdaptor_Curve.hxx>
27 #include <BRepTools.hxx>
28 #include <BRepTools_WireExplorer.hxx>
29 #include <BRep_Tool.hxx>
30 #include <Bnd_Box.hxx>
31 #include <Bnd_Box2d.hxx>
33 #include <Extrema_GenExtPS.hxx>
34 #include <Extrema_POnSurf.hxx>
35 #include <Geom2d_Curve.hxx>
36 #include <GeomAdaptor_Surface.hxx>
37 #include <Geom_Curve.hxx>
38 #include <Geom_Surface.hxx>
39 #include <IntAna2d_AnaIntersection.hxx>
40 #include <TopAbs_ShapeEnum.hxx>
42 #include <TopLoc_Location.hxx>
44 #include <TopoDS_Edge.hxx>
45 #include <TopoDS_Face.hxx>
46 #include <TopoDS_Iterator.hxx>
47 #include <TopoDS_Shell.hxx>
48 #include <TopoDS_Vertex.hxx>
49 #include <TopoDS_Wire.hxx>
50 #include <TopTools_ListIteratorOfListOfShape.hxx>
52 #include <gp_Lin2d.hxx>
53 #include <gp_Pnt2d.hxx>
54 #include <gp_Trsf.hxx>
58 #include "SMDS_EdgePosition.hxx"
59 #include "SMDS_FacePosition.hxx"
60 #include "SMDS_MeshElement.hxx"
61 #include "SMDS_MeshFace.hxx"
62 #include "SMDS_MeshNode.hxx"
63 #include "SMDS_VolumeTool.hxx"
64 #include "SMESHDS_Group.hxx"
65 #include "SMESHDS_Mesh.hxx"
66 #include "SMESHDS_SubMesh.hxx"
67 #include "SMESH_Block.hxx"
68 #include "SMESH_Mesh.hxx"
69 #include "SMESH_MeshEditor.hxx"
70 #include "SMESH_subMesh.hxx"
72 #include "utilities.h"
76 typedef map< const SMDS_MeshElement*, int > TNodePointIDMap;
78 #define smdsNode( elem ) static_cast<const SMDS_MeshNode*>( elem )
80 //=======================================================================
81 //function : SMESH_Pattern
83 //=======================================================================
85 SMESH_Pattern::SMESH_Pattern ()
88 //=======================================================================
91 //=======================================================================
93 static inline int getInt( const char * theSring )
95 if ( *theSring < '0' || *theSring > '9' )
99 int val = strtol( theSring, &ptr, 10 );
100 if ( ptr == theSring ||
101 // there must not be neither '.' nor ',' nor 'E' ...
102 (*ptr != ' ' && *ptr != '\n' && *ptr != '\0'))
108 //=======================================================================
109 //function : getDouble
111 //=======================================================================
113 static inline double getDouble( const char * theSring )
116 return strtod( theSring, &ptr );
119 //=======================================================================
120 //function : readLine
121 //purpose : Put token starting positions in theFields until '\n' or '\0'
122 // Return the number of the found tokens
123 //=======================================================================
125 static int readLine (list <const char*> & theFields,
126 const char* & theLineBeg,
127 const bool theClearFields )
129 if ( theClearFields )
134 /* switch ( symbol ) { */
135 /* case white-space: */
136 /* look for a non-space symbol; */
137 /* case string-end: */
140 /* case comment beginning: */
141 /* skip all till a line-end; */
143 /* put its position in theFields, skip till a white-space;*/
149 bool stopReading = false;
152 bool isNumber = false;
153 switch ( *theLineBeg )
155 case ' ': // white space
160 case '\n': // a line ends
161 stopReading = ( nbRead > 0 );
166 while ( *theLineBeg != '\n' && *theLineBeg != '\0' );
170 case '\0': // file ends
173 case '-': // real number
178 isNumber = isNumber || ( *theLineBeg >= '0' && *theLineBeg <= '9' );
180 theFields.push_back( theLineBeg );
183 while (*theLineBeg != ' ' &&
184 *theLineBeg != '\n' &&
185 *theLineBeg != '\0');
189 return 0; // incorrect file format
195 } while ( !stopReading );
200 //=======================================================================
202 //purpose : Load a pattern from <theFile>
203 //=======================================================================
205 bool SMESH_Pattern::Load (const char* theFileContents)
207 MESSAGE("Load( file ) ");
211 // ! This is a comment
212 // NB_POINTS ! 1 integer - the number of points in the pattern.
213 // X1 Y1 [Z1] ! 2 or 3 reals - nodes coordinates within 2D or 3D domain:
214 // X2 Y2 [Z2] ! the pattern dimention is defined by the number of coordinates
216 // [ ID1 ID2 ... IDn ] ! Indices of key-points for a 2D pattern (only).
217 // ! elements description goes after all
218 // ID1 ID2 ... IDn ! 2-4 or 4-8 integers - nodal connectivity of a 2D or 3D element.
223 const char* lineBeg = theFileContents;
224 list <const char*> fields;
225 const bool clearFields = true;
227 // NB_POINTS ! 1 integer - the number of points in the pattern.
229 if ( readLine( fields, lineBeg, clearFields ) != 1 ) {
230 MESSAGE("Error reading NB_POINTS");
231 return setErrorCode( ERR_READ_NB_POINTS );
233 int nbPoints = getInt( fields.front() );
235 // X1 Y1 [Z1] ! 2 or 3 reals - nodes coordinates within 2D or 3D domain:
237 // read the first point coordinates to define pattern dimention
238 int dim = readLine( fields, lineBeg, clearFields );
244 MESSAGE("Error reading points: wrong nb of coordinates");
245 return setErrorCode( ERR_READ_POINT_COORDS );
247 if ( nbPoints <= dim ) {
248 MESSAGE(" Too few points ");
249 return setErrorCode( ERR_READ_TOO_FEW_POINTS );
252 // read the rest points
254 for ( iPoint = 1; iPoint < nbPoints; iPoint++ )
255 if ( readLine( fields, lineBeg, !clearFields ) != dim ) {
256 MESSAGE("Error reading points : wrong nb of coordinates ");
257 return setErrorCode( ERR_READ_POINT_COORDS );
259 // store point coordinates
260 myPoints.resize( nbPoints );
261 list <const char*>::iterator fIt = fields.begin();
262 for ( iPoint = 0; iPoint < nbPoints; iPoint++ )
264 TPoint & p = myPoints[ iPoint ];
265 for ( int iCoord = 1; iCoord <= dim; iCoord++, fIt++ )
267 double coord = getDouble( *fIt );
268 if ( !myIs2D && ( coord < 0.0 || coord > 1.0 )) {
269 MESSAGE("Error reading 3D points, value should be in [0,1]: " << coord);
271 return setErrorCode( ERR_READ_3D_COORD );
273 p.myInitXYZ.SetCoord( iCoord, coord );
275 p.myInitUV.SetCoord( iCoord, coord );
279 // [ ID1 ID2 ... IDn ] ! Indices of key-points for a 2D pattern (only).
282 if ( readLine( fields, lineBeg, clearFields ) == 0 ) {
283 MESSAGE("Error: missing key-points");
285 return setErrorCode( ERR_READ_NO_KEYPOINT );
288 for ( fIt = fields.begin(); fIt != fields.end(); fIt++ )
290 int pointIndex = getInt( *fIt );
291 if ( pointIndex >= nbPoints || pointIndex < 0 ) {
292 MESSAGE("Error: invalid point index " << pointIndex );
294 return setErrorCode( ERR_READ_BAD_INDEX );
296 if ( idSet.insert( pointIndex ).second ) // unique?
297 myKeyPointIDs.push_back( pointIndex );
301 // ID1 ID2 ... IDn ! 2-4 or 4-8 integers - nodal connectivity of a 2D or 3D element.
303 while ( readLine( fields, lineBeg, clearFields ))
305 myElemPointIDs.push_back( TElemDef() );
306 TElemDef& elemPoints = myElemPointIDs.back();
307 for ( fIt = fields.begin(); fIt != fields.end(); fIt++ )
309 int pointIndex = getInt( *fIt );
310 if ( pointIndex >= nbPoints || pointIndex < 0 ) {
311 MESSAGE("Error: invalid point index " << pointIndex );
313 return setErrorCode( ERR_READ_BAD_INDEX );
315 elemPoints.push_back( pointIndex );
317 // check the nb of nodes in element
319 switch ( elemPoints.size() ) {
320 case 3: if ( !myIs2D ) Ok = false; break;
324 case 8: if ( myIs2D ) Ok = false; break;
328 MESSAGE("Error: wrong nb of nodes in element " << elemPoints.size() );
330 return setErrorCode( ERR_READ_ELEM_POINTS );
333 if ( myElemPointIDs.empty() ) {
334 MESSAGE("Error: no elements");
336 return setErrorCode( ERR_READ_NO_ELEMS );
339 findBoundaryPoints(); // sort key-points
341 return setErrorCode( ERR_OK );
344 //=======================================================================
346 //purpose : Save the loaded pattern into the file <theFileName>
347 //=======================================================================
349 bool SMESH_Pattern::Save (ostream& theFile)
351 MESSAGE(" ::Save(file) " );
353 MESSAGE(" Pattern not loaded ");
354 return setErrorCode( ERR_SAVE_NOT_LOADED );
357 theFile << "!!! SALOME Mesh Pattern file" << endl;
358 theFile << "!!!" << endl;
359 theFile << "!!! Nb of points:" << endl;
360 theFile << myPoints.size() << endl;
364 // theFile.width( 8 );
365 // theFile.setf(ios::fixed);// use 123.45 floating notation
366 // theFile.setf(ios::right);
367 // theFile.flags( theFile.flags() & ~ios::showpoint); // do not show trailing zeros
368 // theFile.setf(ios::showpoint); // do not show trailing zeros
369 vector< TPoint >::const_iterator pVecIt = myPoints.begin();
370 for ( int i = 0; pVecIt != myPoints.end(); pVecIt++, i++ ) {
371 const gp_XYZ & xyz = (*pVecIt).myInitXYZ;
372 theFile << " " << setw( width ) << xyz.X() << " " << setw( width ) << xyz.Y();
373 if ( !myIs2D ) theFile << " " << setw( width ) << xyz.Z();
374 theFile << " !- " << i << endl; // point id to ease reading by a human being
378 theFile << "!!! Indices of " << myKeyPointIDs.size() << " key-points:" << endl;
379 list< int >::const_iterator kpIt = myKeyPointIDs.begin();
380 for ( ; kpIt != myKeyPointIDs.end(); kpIt++ )
381 theFile << " " << *kpIt;
382 if ( !myKeyPointIDs.empty() )
386 theFile << "!!! Indices of points of " << myElemPointIDs.size() << " elements:" << endl;
387 list<TElemDef >::const_iterator epIt = myElemPointIDs.begin();
388 for ( ; epIt != myElemPointIDs.end(); epIt++ )
390 const TElemDef & elemPoints = *epIt;
391 TElemDef::const_iterator iIt = elemPoints.begin();
392 for ( ; iIt != elemPoints.end(); iIt++ )
393 theFile << " " << *iIt;
399 return setErrorCode( ERR_OK );
402 //=======================================================================
403 //function : sortBySize
404 //purpose : sort theListOfList by size
405 //=======================================================================
407 template<typename T> struct TSizeCmp {
408 bool operator ()( const list < T > & l1, const list < T > & l2 )
409 const { return l1.size() < l2.size(); }
412 template<typename T> void sortBySize( list< list < T > > & theListOfList )
414 if ( theListOfList.size() > 2 ) {
415 TSizeCmp< T > SizeCmp;
416 theListOfList.sort( SizeCmp );
420 //=======================================================================
423 //=======================================================================
425 static gp_XY project (const SMDS_MeshNode* theNode,
426 Extrema_GenExtPS & theProjectorPS)
428 gp_Pnt P( theNode->X(), theNode->Y(), theNode->Z() );
429 theProjectorPS.Perform( P );
430 if ( !theProjectorPS.IsDone() ) {
431 MESSAGE( "SMESH_Pattern: point projection FAILED");
434 double u, v, minVal = DBL_MAX;
435 for ( int i = theProjectorPS.NbExt(); i > 0; i-- )
436 if ( theProjectorPS.Value( i ) < minVal ) {
437 minVal = theProjectorPS.Value( i );
438 theProjectorPS.Point( i ).Parameter( u, v );
440 return gp_XY( u, v );
443 //=======================================================================
444 //function : areNodesBound
445 //purpose : true if all nodes of faces are bound to shapes
446 //=======================================================================
448 template <class TFaceIterator> bool areNodesBound( TFaceIterator & faceItr )
450 while ( faceItr->more() )
452 SMDS_ElemIteratorPtr nIt = faceItr->next()->nodesIterator();
453 while ( nIt->more() )
455 const SMDS_MeshNode* node = smdsNode( nIt->next() );
456 SMDS_PositionPtr pos = node->GetPosition();
457 if ( !pos || !pos->GetShapeId() ) {
465 //=======================================================================
466 //function : isMeshBoundToShape
467 //purpose : return true if all 2d elements are bound to shape
468 // if aFaceSubmesh != NULL, then check faces bound to it
469 // else check all faces in aMeshDS
470 //=======================================================================
472 static bool isMeshBoundToShape(SMESHDS_Mesh * aMeshDS,
473 SMESHDS_SubMesh * aFaceSubmesh,
474 const bool isMainShape)
477 // check that all faces are bound to aFaceSubmesh
478 if ( aMeshDS->NbFaces() != aFaceSubmesh->NbElements() )
482 // check face nodes binding
483 if ( aFaceSubmesh ) {
484 SMDS_ElemIteratorPtr fIt = aFaceSubmesh->GetElements();
485 return areNodesBound( fIt );
487 SMDS_FaceIteratorPtr fIt = aMeshDS->facesIterator();
488 return areNodesBound( fIt );
491 //=======================================================================
493 //purpose : Create a pattern from the mesh built on <theFace>.
494 // <theProject>==true makes override nodes positions
495 // on <theFace> computed by mesher
496 //=======================================================================
498 bool SMESH_Pattern::Load (SMESH_Mesh* theMesh,
499 const TopoDS_Face& theFace,
502 MESSAGE(" ::Load(face) " );
506 SMESHDS_Mesh * aMeshDS = theMesh->GetMeshDS();
507 SMESHDS_SubMesh * fSubMesh = aMeshDS->MeshElements( theFace );
508 SMESH_MesherHelper helper( *theMesh );
509 helper.SetSubShape( theFace );
511 int nbNodes = ( !fSubMesh ? 0 : fSubMesh->NbNodes() );
512 int nbElems = ( !fSubMesh ? 0 : fSubMesh->NbElements() );
513 if ( nbElems == 0 && aMeshDS->NbFaces() == 0 )
515 MESSAGE( "No elements bound to the face");
516 return setErrorCode( ERR_LOAD_EMPTY_SUBMESH );
519 TopoDS_Face face = TopoDS::Face( theFace.Oriented( TopAbs_FORWARD ));
521 // check that face is not closed
522 bool isClosed = helper.HasSeam();
524 list<TopoDS_Edge> eList;
525 list<TopoDS_Edge>::iterator elIt;
526 SMESH_Block::GetOrderedEdges( face, bidon, eList, myNbKeyPntInBoundary );
528 // check that requested or needed projection is possible
529 bool isMainShape = theMesh->IsMainShape( face );
530 bool needProject = !isMeshBoundToShape( aMeshDS, fSubMesh, isMainShape );
531 bool canProject = ( nbElems ? true : isMainShape );
533 canProject = false; // so far
535 if ( ( theProject || needProject ) && !canProject )
536 return setErrorCode( ERR_LOADF_CANT_PROJECT );
538 Extrema_GenExtPS projector;
539 GeomAdaptor_Surface aSurface( BRep_Tool::Surface( face ));
540 if ( theProject || needProject )
541 projector.Initialize( aSurface, 20,20, 1e-5,1e-5 );
544 TNodePointIDMap nodePointIDMap;
545 TNodePointIDMap closeNodePointIDMap; // for nodes on seam edges
549 MESSAGE("Project the submesh");
550 // ---------------------------------------------------------------
551 // The case where the submesh is projected to theFace
552 // ---------------------------------------------------------------
555 list< const SMDS_MeshElement* > faces;
557 SMDS_ElemIteratorPtr fIt = fSubMesh->GetElements();
558 while ( fIt->more() ) {
559 const SMDS_MeshElement* f = fIt->next();
560 if ( f && f->GetType() == SMDSAbs_Face )
561 faces.push_back( f );
565 SMDS_FaceIteratorPtr fIt = aMeshDS->facesIterator();
566 while ( fIt->more() )
567 faces.push_back( fIt->next() );
570 // put nodes of all faces into the nodePointIDMap and fill myElemPointIDs
571 list< const SMDS_MeshElement* >::iterator fIt = faces.begin();
572 for ( ; fIt != faces.end(); ++fIt )
574 myElemPointIDs.push_back( TElemDef() );
575 TElemDef& elemPoints = myElemPointIDs.back();
576 SMDS_ElemIteratorPtr nIt = (*fIt)->nodesIterator();
577 while ( nIt->more() )
579 const SMDS_MeshElement* node = nIt->next();
580 TNodePointIDMap::iterator nIdIt = nodePointIDMap.find( node );
581 if ( nIdIt == nodePointIDMap.end() )
583 elemPoints.push_back( iPoint );
584 nodePointIDMap.insert( make_pair( node, iPoint++ ));
587 elemPoints.push_back( (*nIdIt).second );
590 myPoints.resize( iPoint );
592 // project all nodes of 2d elements to theFace
593 TNodePointIDMap::iterator nIdIt = nodePointIDMap.begin();
594 for ( ; nIdIt != nodePointIDMap.end(); nIdIt++ )
596 const SMDS_MeshNode* node = smdsNode( (*nIdIt).first );
597 TPoint * p = & myPoints[ (*nIdIt).second ];
598 p->myInitUV = project( node, projector );
599 p->myInitXYZ.SetCoord( p->myInitUV.X(), p->myInitUV.Y(), 0 );
601 // find key-points: the points most close to UV of vertices
602 TopExp_Explorer vExp( face, TopAbs_VERTEX );
603 set<int> foundIndices;
604 for ( ; vExp.More(); vExp.Next() ) {
605 const TopoDS_Vertex v = TopoDS::Vertex( vExp.Current() );
606 gp_Pnt2d uv = BRep_Tool::Parameters( v, face );
607 double minDist = DBL_MAX;
609 vector< TPoint >::const_iterator pVecIt = myPoints.begin();
610 for ( iPoint = 0; pVecIt != myPoints.end(); pVecIt++, iPoint++ ) {
611 double dist = uv.SquareDistance( (*pVecIt).myInitUV );
612 if ( dist < minDist ) {
617 if ( foundIndices.insert( index ).second ) // unique?
618 myKeyPointIDs.push_back( index );
620 myIsBoundaryPointsFound = false;
625 // ---------------------------------------------------------------------
626 // The case where a pattern is being made from the mesh built by mesher
627 // ---------------------------------------------------------------------
629 // Load shapes in the consequent order and count nb of points
632 for ( elIt = eList.begin(); elIt != eList.end(); elIt++ ) {
633 myShapeIDMap.Add( TopExp::FirstVertex( *elIt, true ));
634 if ( BRep_Tool::IsClosed( *elIt, theFace ) )
635 myShapeIDMap.Add( TopExp::LastVertex( *elIt, true ));
636 SMESHDS_SubMesh * eSubMesh = aMeshDS->MeshElements( *elIt );
638 nbNodes += eSubMesh->NbNodes() + 1;
641 for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
642 myShapeIDMap.Add( *elIt );
644 myShapeIDMap.Add( face );
646 myPoints.resize( nbNodes );
648 // Load U of points on edges
650 for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
652 TopoDS_Edge & edge = *elIt;
653 list< TPoint* > & ePoints = getShapePoints( edge );
655 Handle(Geom2d_Curve) C2d;
657 C2d = BRep_Tool::CurveOnSurface( edge, face, f, l );
658 bool isForward = ( edge.Orientation() == TopAbs_FORWARD );
660 TopoDS_Shape v1 = TopExp::FirstVertex( edge, true ); // always FORWARD
661 TopoDS_Shape v2 = TopExp::LastVertex( edge, true ); // always REVERSED
662 // to make adjacent edges share key-point, we make v2 FORWARD too
663 // (as we have different points for same shape with different orienation)
666 // on closed face we must have REVERSED some of seam vertices
667 bool isSeam = helper.IsSeamShape( edge );
669 if ( isSeam ) { // reverse on reversed SEAM edge
675 else { // on CLOSED edge
676 for ( int is2 = 0; is2 < 2; ++is2 ) {
677 TopoDS_Shape & v = is2 ? v2 : v1;
678 if ( helper.IsSeamShape( v ) ) {
679 // reverse or not depending on orientation of adjacent seam
681 list<TopoDS_Edge>::iterator eIt2 = elIt;
683 seam = ( ++eIt2 == eList.end() ? eList.front() : *eIt2 );
685 seam = ( eIt2 == eList.begin() ? eList.back() : *(--eIt2) );
686 if ( seam.Orientation() == TopAbs_REVERSED )
693 // the forward key-point
694 list< TPoint* > * vPoint = & getShapePoints( v1 );
695 if ( vPoint->empty() )
697 SMESHDS_SubMesh * vSubMesh = aMeshDS->MeshElements( v1 );
698 if ( vSubMesh && vSubMesh->NbNodes() ) {
699 myKeyPointIDs.push_back( iPoint );
700 SMDS_NodeIteratorPtr nIt = vSubMesh->GetNodes();
701 const SMDS_MeshNode* node = nIt->next();
702 if ( v1.Orientation() == TopAbs_REVERSED )
703 closeNodePointIDMap.insert( make_pair( node, iPoint ));
705 nodePointIDMap.insert( make_pair( node, iPoint ));
707 TPoint* keyPoint = &myPoints[ iPoint++ ];
708 vPoint->push_back( keyPoint );
710 keyPoint->myInitUV = project( node, projector );
712 keyPoint->myInitUV = C2d->Value( isForward ? f : l ).XY();
713 keyPoint->myInitXYZ.SetCoord (keyPoint->myInitUV.X(), keyPoint->myInitUV.Y(), 0);
716 if ( !vPoint->empty() )
717 ePoints.push_back( vPoint->front() );
720 SMESHDS_SubMesh * eSubMesh = aMeshDS->MeshElements( edge );
721 if ( eSubMesh && eSubMesh->NbNodes() )
723 // loop on nodes of an edge: sort them by param on edge
724 typedef map < double, const SMDS_MeshNode* > TParamNodeMap;
725 TParamNodeMap paramNodeMap;
726 SMDS_NodeIteratorPtr nIt = eSubMesh->GetNodes();
727 while ( nIt->more() )
729 const SMDS_MeshNode* node = smdsNode( nIt->next() );
730 const SMDS_EdgePosition* epos =
731 static_cast<const SMDS_EdgePosition*>(node->GetPosition().get());
732 double u = epos->GetUParameter();
733 paramNodeMap.insert( TParamNodeMap::value_type( u, node ));
735 // put U in [0,1] so that the first key-point has U==0
737 TParamNodeMap::iterator unIt = paramNodeMap.begin();
738 TParamNodeMap::reverse_iterator unRIt = paramNodeMap.rbegin();
739 while ( unIt != paramNodeMap.end() )
741 TPoint* p = & myPoints[ iPoint ];
742 ePoints.push_back( p );
743 const SMDS_MeshNode* node = isForward ? (*unIt).second : (*unRIt).second;
744 if ( isSeam && !isForward )
745 closeNodePointIDMap.insert( make_pair( node, iPoint ));
747 nodePointIDMap.insert ( make_pair( node, iPoint ));
750 p->myInitUV = project( node, projector );
752 double u = isForward ? (*unIt).first : (*unRIt).first;
753 p->myInitU = isForward ? (( u - f ) / du ) : ( 1.0 - ( u - f ) / du );
754 p->myInitUV = C2d->Value( u ).XY();
756 p->myInitXYZ.SetCoord( p->myInitUV.X(), p->myInitUV.Y(), 0 );
761 // the reverse key-point
762 vPoint = & getShapePoints( v2 );
763 if ( vPoint->empty() )
765 SMESHDS_SubMesh * vSubMesh = aMeshDS->MeshElements( v2 );
766 if ( vSubMesh && vSubMesh->NbNodes() ) {
767 myKeyPointIDs.push_back( iPoint );
768 SMDS_NodeIteratorPtr nIt = vSubMesh->GetNodes();
769 const SMDS_MeshNode* node = nIt->next();
770 if ( v2.Orientation() == TopAbs_REVERSED )
771 closeNodePointIDMap.insert( make_pair( node, iPoint ));
773 nodePointIDMap.insert( make_pair( node, iPoint ));
775 TPoint* keyPoint = &myPoints[ iPoint++ ];
776 vPoint->push_back( keyPoint );
778 keyPoint->myInitUV = project( node, projector );
780 keyPoint->myInitUV = C2d->Value( isForward ? l : f ).XY();
781 keyPoint->myInitXYZ.SetCoord( keyPoint->myInitUV.X(), keyPoint->myInitUV.Y(), 0 );
784 if ( !vPoint->empty() )
785 ePoints.push_back( vPoint->front() );
787 // compute U of edge-points
790 double totalDist = 0;
791 list< TPoint* >::iterator pIt = ePoints.begin();
792 TPoint* prevP = *pIt;
793 prevP->myInitU = totalDist;
794 for ( pIt++; pIt != ePoints.end(); pIt++ ) {
796 totalDist += ( p->myInitUV - prevP->myInitUV ).Modulus();
797 p->myInitU = totalDist;
800 if ( totalDist > DBL_MIN)
801 for ( pIt = ePoints.begin(); pIt != ePoints.end(); pIt++ ) {
803 p->myInitU /= totalDist;
806 } // loop on edges of a wire
808 // Load in-face points and elements
810 if ( fSubMesh && fSubMesh->NbElements() )
812 list< TPoint* > & fPoints = getShapePoints( face );
813 SMDS_NodeIteratorPtr nIt = fSubMesh->GetNodes();
814 while ( nIt->more() )
816 const SMDS_MeshNode* node = smdsNode( nIt->next() );
817 nodePointIDMap.insert( make_pair( node, iPoint ));
818 TPoint* p = &myPoints[ iPoint++ ];
819 fPoints.push_back( p );
821 p->myInitUV = project( node, projector );
823 const SMDS_FacePosition* pos =
824 static_cast<const SMDS_FacePosition*>(node->GetPosition().get());
825 p->myInitUV.SetCoord( pos->GetUParameter(), pos->GetVParameter() );
827 p->myInitXYZ.SetCoord( p->myInitUV.X(), p->myInitUV.Y(), 0 );
830 SMDS_ElemIteratorPtr elemIt = fSubMesh->GetElements();
831 while ( elemIt->more() )
833 const SMDS_MeshElement* elem = elemIt->next();
834 SMDS_ElemIteratorPtr nIt = elem->nodesIterator();
835 myElemPointIDs.push_back( TElemDef() );
836 TElemDef& elemPoints = myElemPointIDs.back();
837 // find point indices corresponding to element nodes
838 while ( nIt->more() )
840 const SMDS_MeshNode* node = smdsNode( nIt->next() );
841 iPoint = nodePointIDMap[ node ]; // point index of interest
842 // for a node on a seam edge there are two points
843 TNodePointIDMap::iterator n_id = closeNodePointIDMap.end();
844 if ( helper.IsSeamShape( node->GetPosition()->GetShapeId() ))
845 n_id = closeNodePointIDMap.find( node );
846 if ( n_id != closeNodePointIDMap.end() )
848 TPoint & p1 = myPoints[ iPoint ];
849 TPoint & p2 = myPoints[ n_id->second ];
850 // Select point closest to the rest nodes of element in UV space
851 SMDS_ElemIteratorPtr nIt2 = elem->nodesIterator();
852 const SMDS_MeshNode* notSeamNode = 0;
853 // find node not on a seam edge
854 while ( nIt2->more() && !notSeamNode ) {
855 const SMDS_MeshNode* n = smdsNode( nIt2->next() );
856 if ( !helper.IsSeamShape( n->GetPosition()->GetShapeId() ))
859 gp_Pnt2d uv = helper.GetNodeUV( theFace, node, notSeamNode );
860 double dist1 = uv.SquareDistance( p1.myInitUV );
861 double dist2 = uv.SquareDistance( p2.myInitUV );
863 iPoint = n_id->second;
865 elemPoints.push_back( iPoint );
870 myIsBoundaryPointsFound = true;
873 // Assure that U range is proportional to V range
876 vector< TPoint >::iterator pVecIt = myPoints.begin();
877 for ( ; pVecIt != myPoints.end(); pVecIt++ )
878 bndBox.Add( gp_Pnt2d( (*pVecIt).myInitUV ));
879 double minU, minV, maxU, maxV;
880 bndBox.Get( minU, minV, maxU, maxV );
881 double dU = maxU - minU, dV = maxV - minV;
882 if ( dU <= DBL_MIN || dV <= DBL_MIN ) {
885 // define where is the problem, in the face or in the mesh
886 TopExp_Explorer vExp( face, TopAbs_VERTEX );
887 for ( ; vExp.More(); vExp.Next() ) {
888 gp_Pnt2d uv = BRep_Tool::Parameters( TopoDS::Vertex( vExp.Current() ), face );
891 bndBox.Get( minU, minV, maxU, maxV );
892 dU = maxU - minU, dV = maxV - minV;
893 if ( dU <= DBL_MIN || dV <= DBL_MIN )
895 return setErrorCode( ERR_LOADF_NARROW_FACE );
897 // mesh is projected onto a line, e.g.
898 return setErrorCode( ERR_LOADF_CANT_PROJECT );
900 double ratio = dU / dV, maxratio = 3, scale;
902 if ( ratio > maxratio ) {
903 scale = ratio / maxratio;
906 else if ( ratio < 1./maxratio ) {
907 scale = maxratio / ratio;
912 for ( pVecIt = myPoints.begin(); pVecIt != myPoints.end(); pVecIt++ ) {
913 TPoint & p = *pVecIt;
914 p.myInitUV.SetCoord( iCoord, p.myInitUV.Coord( iCoord ) * scale );
915 p.myInitXYZ.SetCoord( p.myInitUV.X(), p.myInitUV.Y(), 0 );
918 if ( myElemPointIDs.empty() ) {
919 MESSAGE( "No elements bound to the face");
920 return setErrorCode( ERR_LOAD_EMPTY_SUBMESH );
923 return setErrorCode( ERR_OK );
926 //=======================================================================
927 //function : computeUVOnEdge
928 //purpose : compute coordinates of points on theEdge
929 //=======================================================================
931 void SMESH_Pattern::computeUVOnEdge (const TopoDS_Edge& theEdge,
932 const list< TPoint* > & ePoints )
934 bool isForward = ( theEdge.Orientation() == TopAbs_FORWARD );
936 Handle(Geom2d_Curve) C2d =
937 BRep_Tool::CurveOnSurface( theEdge, TopoDS::Face( myShape ), f, l );
939 ePoints.back()->myInitU = 1.0;
940 list< TPoint* >::const_iterator pIt = ePoints.begin();
941 for ( pIt++; pIt != ePoints.end(); pIt++ )
943 TPoint* point = *pIt;
945 double du = ( isForward ? point->myInitU : 1 - point->myInitU );
946 point->myU = ( f * ( 1 - du ) + l * du );
948 point->myUV = C2d->Value( point->myU ).XY();
952 //=======================================================================
953 //function : intersectIsolines
955 //=======================================================================
957 static bool intersectIsolines(const gp_XY& uv11, const gp_XY& uv12, const double r1,
958 const gp_XY& uv21, const gp_XY& uv22, const double r2,
962 gp_XY loc1 = uv11 * ( 1 - r1 ) + uv12 * r1;
963 gp_XY loc2 = uv21 * ( 1 - r2 ) + uv22 * r2;
964 resUV = 0.5 * ( loc1 + loc2 );
965 isDeformed = ( loc1 - loc2 ).SquareModulus() > 1e-8;
966 // double len1 = ( uv11 - uv12 ).Modulus();
967 // double len2 = ( uv21 - uv22 ).Modulus();
968 // resUV = loc1 * len2 / ( len1 + len2 ) + loc2 * len1 / ( len1 + len2 );
972 // gp_Lin2d line1( uv11, uv12 - uv11 );
973 // gp_Lin2d line2( uv21, uv22 - uv21 );
974 // double angle = Abs( line1.Angle( line2 ) );
976 // IntAna2d_AnaIntersection inter;
977 // inter.Perform( line1.Normal( loc1 ), line2.Normal( loc2 ) );
978 // if ( inter.IsDone() && inter.NbPoints() == 1 )
980 // gp_Pnt2d interUV = inter.Point(1).Value();
981 // resUV += interUV.XY();
982 // inter.Perform( line1, line2 );
983 // interUV = inter.Point(1).Value();
984 // resUV += interUV.XY();
991 //=======================================================================
992 //function : compUVByIsoIntersection
994 //=======================================================================
996 bool SMESH_Pattern::compUVByIsoIntersection (const list< list< TPoint* > >& theBndPoints,
997 const gp_XY& theInitUV,
999 bool & theIsDeformed )
1001 // compute UV by intersection of 2 iso lines
1002 //gp_Lin2d isoLine[2];
1003 gp_XY uv1[2], uv2[2];
1005 const double zero = DBL_MIN;
1006 for ( int iIso = 0; iIso < 2; iIso++ )
1008 // to build an iso line:
1009 // find 2 pairs of consequent edge-points such that the range of their
1010 // initial parameters encloses the in-face point initial parameter
1011 gp_XY UV[2], initUV[2];
1012 int nbUV = 0, iCoord = iIso + 1;
1013 double initParam = theInitUV.Coord( iCoord );
1015 list< list< TPoint* > >::const_iterator bndIt = theBndPoints.begin();
1016 for ( ; bndIt != theBndPoints.end(); bndIt++ )
1018 const list< TPoint* > & bndPoints = * bndIt;
1019 TPoint* prevP = bndPoints.back(); // this is the first point
1020 list< TPoint* >::const_iterator pIt = bndPoints.begin();
1021 bool coincPrev = false;
1022 // loop on the edge-points
1023 for ( ; pIt != bndPoints.end(); pIt++ )
1025 double paramDiff = initParam - (*pIt)->myInitUV.Coord( iCoord );
1026 double prevParamDiff = initParam - prevP->myInitUV.Coord( iCoord );
1027 double sumOfDiff = Abs(prevParamDiff) + Abs(paramDiff);
1028 if (!coincPrev && // ignore if initParam coincides with prev point param
1029 sumOfDiff > zero && // ignore if both points coincide with initParam
1030 prevParamDiff * paramDiff <= zero )
1032 // find UV in parametric space of theFace
1033 double r = Abs(prevParamDiff) / sumOfDiff;
1034 gp_XY uvInit = (*pIt)->myInitUV * r + prevP->myInitUV * ( 1 - r );
1037 // throw away uv most distant from <theInitUV>
1038 gp_XY vec0 = initUV[0] - theInitUV;
1039 gp_XY vec1 = initUV[1] - theInitUV;
1040 gp_XY vec = uvInit - theInitUV;
1041 bool isBetween = ( vec0 * vec1 < 0 ); // is theInitUV between initUV[0] and initUV[1]
1042 double dist0 = vec0.SquareModulus();
1043 double dist1 = vec1.SquareModulus();
1044 double dist = vec .SquareModulus();
1045 if ( !isBetween || dist < dist0 || dist < dist1 ) {
1046 i = ( dist0 < dist1 ? 1 : 0 );
1047 if ( isBetween && vec.Dot( i ? vec1 : vec0 ) < 0 )
1048 i = 3; // theInitUV must remain between
1052 initUV[ i ] = uvInit;
1053 UV[ i ] = (*pIt)->myUV * r + prevP->myUV * ( 1 - r );
1055 coincPrev = ( Abs(paramDiff) <= zero );
1062 if ( nbUV < 2 || (UV[0]-UV[1]).SquareModulus() <= DBL_MIN*DBL_MIN ) {
1063 MESSAGE(" consequent edge-points not found, nb UV found: " << nbUV <<
1064 ", for point: " << theInitUV.X() <<" " << theInitUV.Y() );
1065 return setErrorCode( ERR_APPLF_BAD_TOPOLOGY );
1067 // an iso line should be normal to UV[0] - UV[1] direction
1068 // and be located at the same relative distance as from initial ends
1069 //gp_Lin2d iso( UV[0], UV[0] - UV[1] );
1071 (initUV[0]-theInitUV).Modulus() / (initUV[0]-initUV[1]).Modulus();
1072 //gp_Pnt2d isoLoc = UV[0] * ( 1 - r ) + UV[1] * r;
1073 //isoLine[ iIso ] = iso.Normal( isoLoc );
1074 uv1[ iIso ] = UV[0];
1075 uv2[ iIso ] = UV[1];
1078 if ( !intersectIsolines( uv1[0], uv2[0], ratio[0],
1079 uv1[1], uv2[1], ratio[1], theUV, theIsDeformed )) {
1080 MESSAGE(" Cant intersect isolines for a point "<<theInitUV.X()<<", "<<theInitUV.Y());
1081 return setErrorCode( ERR_APPLF_BAD_TOPOLOGY );
1088 // ==========================================================
1089 // structure representing a node of a grid of iso-poly-lines
1090 // ==========================================================
1097 gp_Dir2d myDir[2]; // boundary tangent dir for boundary nodes, iso dir for internal ones
1098 TIsoNode* myNext[4]; // order: (iDir=0,isForward=0), (1,0), (0,1), (1,1)
1099 TIsoNode* myBndNodes[4]; // order: (iDir=0,i=0), (1,0), (0,1), (1,1)
1100 TIsoNode(double initU, double initV):
1101 myInitUV( initU, initV ), myUV( 1e100, 1e100 ), myIsMovable(true)
1102 { myNext[0] = myNext[1] = myNext[2] = myNext[3] = 0; }
1103 bool IsUVComputed() const
1104 { return myUV.X() != 1e100; }
1105 bool IsMovable() const
1106 { return myIsMovable && myNext[0] && myNext[1] && myNext[2] && myNext[3]; }
1107 void SetNotMovable()
1108 { myIsMovable = false; }
1109 void SetBoundaryNode(TIsoNode* node, int iDir, int i)
1110 { myBndNodes[ iDir + i * 2 ] = node; }
1111 TIsoNode* GetBoundaryNode(int iDir, int i)
1112 { return myBndNodes[ iDir + i * 2 ]; }
1113 void SetNext(TIsoNode* node, int iDir, int isForward)
1114 { myNext[ iDir + isForward * 2 ] = node; }
1115 TIsoNode* GetNext(int iDir, int isForward)
1116 { return myNext[ iDir + isForward * 2 ]; }
1119 //=======================================================================
1120 //function : getNextNode
1122 //=======================================================================
1124 static inline TIsoNode* getNextNode(const TIsoNode* node, int dir )
1126 TIsoNode* n = node->myNext[ dir ];
1127 if ( n && !n->IsUVComputed()/* && node->IsMovable()*/ ) {
1128 n = 0;//node->myBndNodes[ dir ];
1129 // MESSAGE("getNextNode: use bnd for node "<<
1130 // node->myInitUV.X()<<" "<<node->myInitUV.Y());
1134 //=======================================================================
1135 //function : checkQuads
1136 //purpose : check if newUV destortes quadrangles around node,
1137 // and if ( crit == FIX_OLD ) fix newUV in this case
1138 //=======================================================================
1140 enum { CHECK_NEW_IN, CHECK_NEW_OK, FIX_OLD };
1142 static bool checkQuads (const TIsoNode* node,
1144 const bool reversed,
1145 const int crit = FIX_OLD,
1146 double fixSize = 0.)
1148 gp_XY oldUV = node->myUV, oldUVFixed[4], oldUVImpr[4];
1149 int nbOldFix = 0, nbOldImpr = 0;
1150 double newBadRate = 0, oldBadRate = 0;
1151 bool newIsOk = true, newIsIn = true, oldIsIn = true, oldIsOk = true;
1152 int i, dir1 = 0, dir2 = 3;
1153 for ( ; dir1 < 4; dir1++, dir2++ ) // loop on 4 quadrangles around <node>
1155 if ( dir2 > 3 ) dir2 = 0;
1157 // walking counterclockwise around a quad,
1158 // nodes are in the order: node, n[0], n[1], n[2]
1159 n[0] = getNextNode( node, dir1 );
1160 n[2] = getNextNode( node, dir2 );
1161 if ( !n[0] || !n[2] ) continue;
1162 n[1] = getNextNode( n[0], dir2 );
1163 if ( !n[1] ) n[1] = getNextNode( n[2], dir1 );
1164 bool isTriangle = ( !n[1] );
1166 TIsoNode* tmp = n[0]; n[0] = n[2]; n[2] = tmp;
1168 // if ( fixSize != 0 ) {
1169 // cout<<"NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<" UV: "<<node->myUV.X()<<" "<<node->myUV.Y()<<endl;
1170 // cout<<"\t0: "<<n[0]->myInitUV.X()<<" "<<n[0]->myInitUV.Y()<<" UV: "<<n[0]->myUV.X()<<" "<<n[0]->myUV.Y()<<endl;
1171 // cout<<"\t1: "<<n[1]->myInitUV.X()<<" "<<n[1]->myInitUV.Y()<<" UV: "<<n[1]->myUV.X()<<" "<<n[1]->myUV.Y()<<endl;
1172 // cout<<"\t2: "<<n[2]->myInitUV.X()<<" "<<n[2]->myInitUV.Y()<<" UV: "<<n[2]->myUV.X()<<" "<<n[2]->myUV.Y()<<endl;
1174 // check if a quadrangle is degenerated
1176 ((( n[0]->myUV - n[1]->myUV ).SquareModulus() <= DBL_MIN ) ||
1177 (( n[2]->myUV - n[1]->myUV ).SquareModulus() <= DBL_MIN )))
1180 ( n[0]->myUV - n[2]->myUV ).SquareModulus() <= DBL_MIN )
1183 // find min size of the diagonal node-n[1]
1184 double minDiag = fixSize;
1185 if ( minDiag == 0. ) {
1186 double maxLen2 = ( node->myUV - n[0]->myUV ).SquareModulus();
1187 if ( !isTriangle ) {
1188 maxLen2 = Max( maxLen2, ( n[0]->myUV - n[1]->myUV ).SquareModulus() );
1189 maxLen2 = Max( maxLen2, ( n[1]->myUV - n[2]->myUV ).SquareModulus() );
1191 maxLen2 = Max( maxLen2, ( n[2]->myUV - node->myUV ).SquareModulus() );
1192 minDiag = sqrt( maxLen2 ) * PI / 60.; // ~ maxLen * Sin( 3 deg )
1195 // check if newUV is behind 3 dirs: n[0]-n[1], n[1]-n[2] and n[0]-n[2]
1196 // ( behind means "to the right of")
1198 // 1. newUV is not behind 01 and 12 dirs
1199 // 2. or newUV is not behind 02 dir and n[2] is convex
1200 bool newIn[3] = { true, true, true }, newOk[3] = { true, true, true };
1201 bool wasIn[3] = { true, true, true }, wasOk[3] = { true, true, true };
1202 gp_Vec2d moveVec[3], outVec[3];
1203 for ( i = isTriangle ? 2 : 0; i < 3; i++ )
1205 bool isDiag = ( i == 2 );
1206 if ( isDiag && newOk[0] && newOk[1] && !isTriangle )
1210 sideDir = gp_Vec2d( n[0]->myUV, n[2]->myUV );
1212 sideDir = gp_Vec2d( n[i]->myUV, n[i+1]->myUV );
1214 gp_Vec2d outDir( sideDir.Y(), -sideDir.X() ); // to the right
1216 gp_Vec2d newDir( n[i]->myUV, newUV );
1217 gp_Vec2d oldDir( n[i]->myUV, oldUV );
1219 if ( newIsOk ) newOk[i] = ( outDir * newDir < -minDiag );
1220 if ( newIsIn ) newIn[i] = ( outDir * newDir < 0 );
1221 if ( crit == FIX_OLD ) {
1222 wasIn[i] = ( outDir * oldDir < 0 );
1223 wasOk[i] = ( outDir * oldDir < -minDiag );
1225 newBadRate += outDir * newDir;
1227 oldBadRate += outDir * oldDir;
1230 double oldDist = - outDir * oldDir;//, l2 = outDir * newDir;
1231 // double r = ( l1 - minDiag ) / ( l1 + l2 );
1232 // moveVec[i] = r * gp_Vec2d( node->myUV, newUV );
1233 moveVec[i] = ( oldDist - minDiag ) * outDir;
1238 // check if n[2] is convex
1241 convex = ( outVec[0] * gp_Vec2d( n[1]->myUV, n[2]->myUV ) < 0 );
1243 bool isNewOk = ( newOk[0] && newOk[1] ) || ( newOk[2] && convex );
1244 bool isNewIn = ( newIn[0] && newIn[1] ) || ( newIn[2] && convex );
1245 newIsOk = ( newIsOk && isNewOk );
1246 newIsIn = ( newIsIn && isNewIn );
1248 if ( crit != FIX_OLD ) {
1249 if ( crit == CHECK_NEW_OK && !newIsOk ) break;
1250 if ( crit == CHECK_NEW_IN && !newIsIn ) break;
1254 bool isOldIn = ( wasIn[0] && wasIn[1] ) || ( wasIn[2] && convex );
1255 bool isOldOk = ( wasOk[0] && wasOk[1] ) || ( wasOk[2] && convex );
1256 oldIsIn = ( oldIsIn && isOldIn );
1257 oldIsOk = ( oldIsOk && isOldIn );
1260 if ( !isOldIn ) { // node is outside a quadrangle
1261 // move newUV inside a quadrangle
1262 //MESSAGE("Quad "<< dir1 << " WAS IN " << wasIn[0]<<" "<<wasIn[1]<<" "<<wasIn[2]);
1263 // node and newUV are outside: push newUV inside
1265 if ( convex || isTriangle ) {
1266 uv = 0.5 * ( n[0]->myUV + n[2]->myUV ) - minDiag * outVec[2].XY();
1269 gp_Vec2d out = outVec[0].Normalized() + outVec[1].Normalized();
1270 double outSize = out.Magnitude();
1271 if ( outSize > DBL_MIN )
1274 out.SetCoord( -outVec[1].Y(), outVec[1].X() );
1275 uv = n[1]->myUV - minDiag * out.XY();
1277 oldUVFixed[ nbOldFix++ ] = uv;
1278 //node->myUV = newUV;
1280 else if ( !isOldOk ) {
1281 // try to fix old UV: move node inside as less as possible
1282 //MESSAGE("Quad "<< dir1 << " old is BAD, try to fix old, minDiag: "<< minDiag);
1283 gp_XY uv1, uv2 = node->myUV;
1284 for ( i = isTriangle ? 2 : 0; i < 3; i++ ) // mark not computed vectors
1286 moveVec[ i ].SetCoord( 1, 2e100); // not use this vector
1287 while ( !isOldOk ) {
1288 // find the least moveVec
1290 double minMove2 = 1e100;
1291 for ( i = isTriangle ? 2 : 0; i < 3; i++ )
1293 if ( moveVec[i].Coord(1) < 1e100 ) {
1294 double move2 = moveVec[i].SquareMagnitude();
1295 if ( move2 < minMove2 ) {
1304 // move node to newUV
1305 uv1 = node->myUV + moveVec[ iMin ].XY();
1306 uv2 += moveVec[ iMin ].XY();
1307 moveVec[ iMin ].SetCoord( 1, 2e100); // not use this vector more
1308 // check if uv1 is ok
1309 for ( i = isTriangle ? 2 : 0; i < 3; i++ )
1310 wasOk[i] = ( outVec[i] * gp_Vec2d( n[i]->myUV, uv1 ) < -minDiag );
1311 isOldOk = ( wasOk[0] && wasOk[1] ) || ( wasOk[2] && convex );
1313 oldUVImpr[ nbOldImpr++ ] = uv1;
1315 // check if uv2 is ok
1316 for ( i = isTriangle ? 2 : 0; i < 3; i++ )
1317 wasOk[i] = ( outVec[i] * gp_Vec2d( n[i]->myUV, uv2 ) < -minDiag );
1318 isOldOk = ( wasOk[0] && wasOk[1] ) || ( wasOk[2] && convex );
1320 oldUVImpr[ nbOldImpr++ ] = uv2;
1325 } // loop on 4 quadrangles around <node>
1327 if ( crit == CHECK_NEW_OK )
1329 if ( crit == CHECK_NEW_IN )
1338 if ( oldIsIn && nbOldImpr ) {
1339 // MESSAGE(" Try to improve UV, init: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<
1340 // " uv: "<<oldUV.X()<<" "<<oldUV.Y() );
1341 gp_XY uv = oldUVImpr[ 0 ];
1342 for ( int i = 1; i < nbOldImpr; i++ )
1343 uv += oldUVImpr[ i ];
1345 if ( checkQuads( node, uv, reversed, CHECK_NEW_OK )) {
1350 //MESSAGE(" Cant improve UV, uv: "<<uv.X()<<" "<<uv.Y());
1353 if ( !oldIsIn && nbOldFix ) {
1354 // MESSAGE(" Try to fix UV, init: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<
1355 // " uv: "<<oldUV.X()<<" "<<oldUV.Y() );
1356 gp_XY uv = oldUVFixed[ 0 ];
1357 for ( int i = 1; i < nbOldFix; i++ )
1358 uv += oldUVFixed[ i ];
1360 if ( checkQuads( node, uv, reversed, CHECK_NEW_IN )) {
1365 //MESSAGE(" Cant fix UV, uv: "<<uv.X()<<" "<<uv.Y());
1368 if ( newIsIn && oldIsIn )
1369 newUV = ( newBadRate < oldBadRate ) ? newUV : oldUV;
1370 else if ( !newIsIn )
1377 //=======================================================================
1378 //function : compUVByElasticIsolines
1379 //purpose : compute UV as nodes of iso-poly-lines consisting of
1380 // segments keeping relative size as in the pattern
1381 //=======================================================================
1382 //#define DEB_COMPUVBYELASTICISOLINES
1383 bool SMESH_Pattern::
1384 compUVByElasticIsolines(const list< list< TPoint* > >& theBndPoints,
1385 const list< TPoint* >& thePntToCompute)
1388 //cout << "============================== KEY POINTS =============================="<<endl;
1389 // list< int >::iterator kpIt = myKeyPointIDs.begin();
1390 // for ( ; kpIt != myKeyPointIDs.end(); kpIt++ ) {
1391 // TPoint& p = myPoints[ *kpIt ];
1392 // cout << "INIT: " << p.myInitUV.X() << " " << p.myInitUV.Y() <<
1393 // " UV: " << p.myUV.X() << " " << p.myUV.Y() << endl;
1395 //cout << "=============================="<<endl;
1397 // Define parameters of iso-grid nodes in U and V dir
1399 set< double > paramSet[ 2 ];
1400 list< list< TPoint* > >::const_iterator pListIt;
1401 list< TPoint* >::const_iterator pIt;
1402 for ( pListIt = theBndPoints.begin(); pListIt != theBndPoints.end(); pListIt++ ) {
1403 const list< TPoint* > & pList = * pListIt;
1404 for ( pIt = pList.begin(); pIt != pList.end(); pIt++ ) {
1405 paramSet[0].insert( (*pIt)->myInitUV.X() );
1406 paramSet[1].insert( (*pIt)->myInitUV.Y() );
1409 for ( pIt = thePntToCompute.begin(); pIt != thePntToCompute.end(); pIt++ ) {
1410 paramSet[0].insert( (*pIt)->myInitUV.X() );
1411 paramSet[1].insert( (*pIt)->myInitUV.Y() );
1413 // unite close parameters and split too long segments
1416 for ( iDir = 0; iDir < 2; iDir++ )
1418 set< double > & params = paramSet[ iDir ];
1419 double range = ( *params.rbegin() - *params.begin() );
1420 double toler = range / 1e6;
1421 tol[ iDir ] = toler;
1422 // double maxSegment = range / params.size() / 2.;
1424 // set< double >::iterator parIt = params.begin();
1425 // double prevPar = *parIt;
1426 // for ( parIt++; parIt != params.end(); parIt++ )
1428 // double segLen = (*parIt) - prevPar;
1429 // if ( segLen < toler )
1430 // ;//params.erase( prevPar ); // unite
1431 // else if ( segLen > maxSegment )
1432 // params.insert( prevPar + 0.5 * segLen ); // split
1433 // prevPar = (*parIt);
1437 // Make nodes of a grid of iso-poly-lines
1439 list < TIsoNode > nodes;
1440 typedef list < TIsoNode *> TIsoLine;
1441 map < double, TIsoLine > isoMap[ 2 ];
1443 set< double > & params0 = paramSet[ 0 ];
1444 set< double >::iterator par0It = params0.begin();
1445 for ( ; par0It != params0.end(); par0It++ )
1447 TIsoLine & isoLine0 = isoMap[0][ *par0It ]; // vertical isoline with const U
1448 set< double > & params1 = paramSet[ 1 ];
1449 set< double >::iterator par1It = params1.begin();
1450 for ( ; par1It != params1.end(); par1It++ )
1452 nodes.push_back( TIsoNode( *par0It, *par1It ) );
1453 isoLine0.push_back( & nodes.back() );
1454 isoMap[1][ *par1It ].push_back( & nodes.back() );
1458 // Compute intersections of boundaries with iso-lines:
1459 // only boundary nodes will have computed UV so far
1462 list< list< TPoint* > >::const_iterator bndIt = theBndPoints.begin();
1463 list< TIsoNode* > bndNodes; // nodes corresponding to outer theBndPoints
1464 for ( ; bndIt != theBndPoints.end(); bndIt++ )
1466 const list< TPoint* > & bndPoints = * bndIt;
1467 TPoint* prevP = bndPoints.back(); // this is the first point
1468 list< TPoint* >::const_iterator pIt = bndPoints.begin();
1469 // loop on the edge-points
1470 for ( ; pIt != bndPoints.end(); pIt++ )
1472 TPoint* point = *pIt;
1473 for ( iDir = 0; iDir < 2; iDir++ )
1475 const int iCoord = iDir + 1;
1476 const int iOtherCoord = 2 - iDir;
1477 double par1 = prevP->myInitUV.Coord( iCoord );
1478 double par2 = point->myInitUV.Coord( iCoord );
1479 double parDif = par2 - par1;
1480 if ( Abs( parDif ) <= DBL_MIN )
1482 // find iso-lines intersecting a bounadry
1483 double toler = tol[ 1 - iDir ];
1484 double minPar = Min ( par1, par2 );
1485 double maxPar = Max ( par1, par2 );
1486 map < double, TIsoLine >& isos = isoMap[ iDir ];
1487 map < double, TIsoLine >::iterator isoIt = isos.begin();
1488 for ( ; isoIt != isos.end(); isoIt++ )
1490 double isoParam = (*isoIt).first;
1491 if ( isoParam < minPar || isoParam > maxPar )
1493 double r = ( isoParam - par1 ) / parDif;
1494 gp_XY uv = ( 1 - r ) * prevP->myUV + r * point->myUV;
1495 gp_XY initUV = ( 1 - r ) * prevP->myInitUV + r * point->myInitUV;
1496 double otherPar = initUV.Coord( iOtherCoord ); // along isoline
1497 // find existing node with otherPar or insert a new one
1498 TIsoLine & isoLine = (*isoIt).second;
1500 TIsoLine::iterator nIt = isoLine.begin();
1501 for ( ; nIt != isoLine.end(); nIt++ ) {
1502 nodePar = (*nIt)->myInitUV.Coord( iOtherCoord );
1503 if ( nodePar >= otherPar )
1507 if ( Abs( nodePar - otherPar ) <= toler )
1508 node = ( nIt == isoLine.end() ) ? isoLine.back() : (*nIt);
1510 nodes.push_back( TIsoNode( initUV.X(), initUV.Y() ) );
1511 node = & nodes.back();
1512 isoLine.insert( nIt, node );
1514 node->SetNotMovable();
1516 uvBnd.Add( gp_Pnt2d( uv ));
1517 // cout << "bnd: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<" UV: "<<node->myUV.X()<<" "<<node->myUV.Y()<<endl;
1519 gp_XY tgt( point->myUV - prevP->myUV );
1520 if ( ::IsEqual( r, 1. ))
1521 node->myDir[ 0 ] = tgt;
1522 else if ( ::IsEqual( r, 0. ))
1523 node->myDir[ 1 ] = tgt;
1525 node->myDir[ 1 ] = node->myDir[ 0 ] = tgt;
1526 // keep boundary nodes corresponding to boundary points
1527 if ( bndIt == theBndPoints.begin() && ::IsEqual( r, 1. ))
1528 if ( bndNodes.empty() || bndNodes.back() != node )
1529 bndNodes.push_back( node );
1530 } // loop on isolines
1531 } // loop on 2 directions
1533 } // loop on boundary points
1534 } // loop on boundaries
1536 // Define orientation
1538 // find the point with the least X
1539 double leastX = DBL_MAX;
1540 TIsoNode * leftNode;
1541 list < TIsoNode >::iterator nodeIt = nodes.begin();
1542 for ( ; nodeIt != nodes.end(); nodeIt++ ) {
1543 TIsoNode & node = *nodeIt;
1544 if ( node.IsUVComputed() && node.myUV.X() < leastX ) {
1545 leastX = node.myUV.X();
1548 // if ( node.IsUVComputed() ) {
1549 // cout << "bndNode INIT: " << node.myInitUV.X()<<" "<<node.myInitUV.Y()<<" UV: "<<
1550 // node.myUV.X()<<" "<<node.myUV.Y()<<endl<<
1551 // " dir0: "<<node.myDir[0].X()<<" "<<node.myDir[0].Y() <<
1552 // " dir1: "<<node.myDir[1].X()<<" "<<node.myDir[1].Y() << endl;
1555 bool reversed = ( leftNode->myDir[0].Y() + leftNode->myDir[1].Y() > 0 );
1556 //SCRUTE( reversed );
1558 // Prepare internal nodes:
1560 // 2. compute ratios
1561 // 3. find boundary nodes for each node
1562 // 4. remove nodes out of the boundary
1563 for ( iDir = 0; iDir < 2; iDir++ )
1565 const int iCoord = 2 - iDir; // coord changing along an isoline
1566 map < double, TIsoLine >& isos = isoMap[ iDir ];
1567 map < double, TIsoLine >::iterator isoIt = isos.begin();
1568 for ( ; isoIt != isos.end(); isoIt++ )
1570 TIsoLine & isoLine = (*isoIt).second;
1571 bool firstCompNodeFound = false;
1572 TIsoLine::iterator lastCompNodePos, nPrevIt, nIt, nNextIt, nIt2;
1573 nPrevIt = nIt = nNextIt = isoLine.begin();
1575 nNextIt++; nNextIt++;
1576 while ( nIt != isoLine.end() )
1578 // 1. connect prev - cur
1579 TIsoNode* node = *nIt, * prevNode = *nPrevIt;
1580 if ( !firstCompNodeFound && prevNode->IsUVComputed() ) {
1581 firstCompNodeFound = true;
1582 lastCompNodePos = nPrevIt;
1584 if ( firstCompNodeFound ) {
1585 node->SetNext( prevNode, iDir, 0 );
1586 prevNode->SetNext( node, iDir, 1 );
1589 if ( nNextIt != isoLine.end() ) {
1590 double par1 = prevNode->myInitUV.Coord( iCoord );
1591 double par2 = node->myInitUV.Coord( iCoord );
1592 double par3 = (*nNextIt)->myInitUV.Coord( iCoord );
1593 node->myRatio[ iDir ] = ( par2 - par1 ) / ( par3 - par1 );
1595 // 3. find boundary nodes
1596 if ( node->IsUVComputed() )
1597 lastCompNodePos = nIt;
1598 else if ( firstCompNodeFound && nNextIt != isoLine.end() ) {
1599 TIsoNode* bndNode1 = *lastCompNodePos, *bndNode2 = 0;
1600 for ( nIt2 = nNextIt; nIt2 != isoLine.end(); nIt2++ )
1601 if ( (*nIt2)->IsUVComputed() )
1603 if ( nIt2 != isoLine.end() ) {
1605 node->SetBoundaryNode( bndNode1, iDir, 0 );
1606 node->SetBoundaryNode( bndNode2, iDir, 1 );
1607 // cout << "--------------------------------------------------"<<endl;
1608 // cout << "bndNode1: " << bndNode1->myUV.X()<<" "<<bndNode1->myUV.Y()<<endl<<
1609 // " dir0: "<<bndNode1->myDir[0].X()<<" "<<bndNode1->myDir[0].Y() <<
1610 // " dir1: "<<bndNode1->myDir[1].X()<<" "<<bndNode1->myDir[1].Y() << endl;
1611 // cout << "bndNode2: " << bndNode2->myUV.X()<<" "<<bndNode2->myUV.Y()<<endl<<
1612 // " dir0: "<<bndNode2->myDir[0].X()<<" "<<bndNode2->myDir[0].Y() <<
1613 // " dir1: "<<bndNode2->myDir[1].X()<<" "<<bndNode2->myDir[1].Y() << endl;
1616 /// WHAT IN THIS CASE ????????????? MAY BE THIS, I AM NOT SURE :(
1617 node->SetBoundaryNode( 0, iDir, 0 );
1618 node->SetBoundaryNode( 0, iDir, 1 );
1622 if ( nNextIt != isoLine.end() ) nNextIt++;
1623 // 4. remove nodes out of the boundary
1624 if ( !firstCompNodeFound )
1625 isoLine.pop_front();
1626 } // loop on isoLine nodes
1628 // remove nodes after the boundary
1629 // for ( nIt = ++lastCompNodePos; nIt != isoLine.end(); nIt++ )
1630 // (*nIt)->SetNotMovable();
1631 isoLine.erase( ++lastCompNodePos, isoLine.end() );
1632 } // loop on isolines
1633 } // loop on 2 directions
1635 // Compute local isoline direction for internal nodes
1638 map < double, TIsoLine >& isos = isoMap[ 0 ]; // vertical isolines with const U
1639 map < double, TIsoLine >::iterator isoIt = isos.begin();
1640 for ( ; isoIt != isos.end(); isoIt++ )
1642 TIsoLine & isoLine = (*isoIt).second;
1643 TIsoLine::iterator nIt = isoLine.begin();
1644 for ( ; nIt != isoLine.end(); nIt++ )
1646 TIsoNode* node = *nIt;
1647 if ( node->IsUVComputed() || !node->IsMovable() )
1649 gp_Vec2d aTgt[2], aNorm[2];
1652 for ( iDir = 0; iDir < 2; iDir++ )
1654 TIsoNode* bndNode1 = node->GetBoundaryNode( iDir, 0 );
1655 TIsoNode* bndNode2 = node->GetBoundaryNode( iDir, 1 );
1656 if ( !bndNode1 || !bndNode2 ) {
1660 const int iCoord = 2 - iDir; // coord changing along an isoline
1661 double par1 = bndNode1->myInitUV.Coord( iCoord );
1662 double par2 = node->myInitUV.Coord( iCoord );
1663 double par3 = bndNode2->myInitUV.Coord( iCoord );
1664 ratio[ iDir ] = ( par2 - par1 ) / ( par3 - par1 );
1666 gp_Vec2d tgt1( bndNode1->myDir[0].XY() + bndNode1->myDir[1].XY() );
1667 gp_Vec2d tgt2( bndNode2->myDir[0].XY() + bndNode2->myDir[1].XY() );
1668 if ( bool( iDir ) == reversed ) tgt2.Reverse(); // along perpend. isoline
1669 else tgt1.Reverse();
1670 //cout<<" tgt: " << tgt1.X()<<" "<<tgt1.Y()<<" | "<< tgt2.X()<<" "<<tgt2.Y()<<endl;
1672 if ( ratio[ iDir ] < 0.5 )
1673 aNorm[ iDir ] = gp_Vec2d( -tgt1.Y(), tgt1.X() ); // rotate tgt to the left
1675 aNorm[ iDir ] = gp_Vec2d( -tgt2.Y(), tgt2.X() );
1677 aNorm[ iDir ].Reverse(); // along iDir isoline
1679 double angle = tgt1.Angle( tgt2 ); // [-PI, PI]
1680 // maybe angle is more than |PI|
1681 if ( Abs( angle ) > PI / 2. ) {
1682 // check direction of the last but one perpendicular isoline
1683 TIsoNode* prevNode = bndNode2->GetNext( iDir, 0 );
1684 bndNode1 = prevNode->GetBoundaryNode( 1 - iDir, 0 );
1685 bndNode2 = prevNode->GetBoundaryNode( 1 - iDir, 1 );
1686 gp_Vec2d isoDir( bndNode1->myUV, bndNode2->myUV );
1687 if ( isoDir * tgt2 < 0 )
1689 double angle2 = tgt1.Angle( isoDir );
1690 //cout << " isoDir: "<< isoDir.X() <<" "<<isoDir.Y() << " ANGLE: "<< angle << " "<<angle2<<endl;
1691 if (angle2 * angle < 0 && // check the sign of an angle close to PI
1692 Abs ( Abs ( angle ) - PI ) <= PI / 180. ) {
1693 //MESSAGE("REVERSE ANGLE");
1696 if ( Abs( angle2 ) > Abs( angle ) ||
1697 ( angle2 * angle < 0 && Abs( angle2 ) > Abs( angle - angle2 ))) {
1698 //MESSAGE("Add PI");
1699 // cout << "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
1700 // cout <<"ISO: " << isoParam << " " << (*iso2It).first << endl;
1701 // cout << "bndNode1: " << bndNode1->myUV.X()<<" "<<bndNode1->myUV.Y()<< endl;
1702 // cout << "bndNode2: " << bndNode2->myUV.X()<<" "<<bndNode2->myUV.Y()<<endl;
1703 // cout <<" tgt: " << tgt1.X()<<" "<<tgt1.Y()<<" "<< tgt2.X()<<" "<<tgt2.Y()<<endl;
1704 angle += ( angle < 0 ) ? 2. * PI : -2. * PI;
1707 aTgt[ iDir ] = tgt1.Rotated( angle * ratio[ iDir ] ).XY();
1711 for ( iDir = 0; iDir < 2; iDir++ )
1713 aTgt[iDir].Normalize();
1714 aNorm[1-iDir].Normalize();
1715 double r = Abs ( ratio[iDir] - 0.5 ) * 2.0; // [0,1] - distance from the middle
1718 node->myDir[iDir] = //aTgt[iDir];
1719 aNorm[1-iDir] * r + aTgt[iDir] * ( 1. - r );
1721 // cout << "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
1722 // cout <<" tgt: " << tgt1.X()<<" "<<tgt1.Y()<<" - "<< tgt2.X()<<" "<<tgt2.Y()<<endl;
1723 // cout << " isoDir: "<< node->myDir[0].X() <<" "<<node->myDir[0].Y()<<" | "
1724 // << node->myDir[1].X() <<" "<<node->myDir[1].Y()<<endl;
1726 } // loop on iso nodes
1727 } // loop on isolines
1729 // Find nodes to start computing UV from
1731 list< TIsoNode* > startNodes;
1732 list< TIsoNode* >::iterator nIt = bndNodes.end();
1733 TIsoNode* node = *(--nIt);
1734 TIsoNode* prevNode = *(--nIt);
1735 for ( nIt = bndNodes.begin(); nIt != bndNodes.end(); nIt++ )
1737 TIsoNode* nextNode = *nIt;
1738 gp_Vec2d initTgt1( prevNode->myInitUV, node->myInitUV );
1739 gp_Vec2d initTgt2( node->myInitUV, nextNode->myInitUV );
1740 double initAngle = initTgt1.Angle( initTgt2 );
1741 double angle = node->myDir[0].Angle( node->myDir[1] );
1742 if ( reversed ) angle = -angle;
1743 if ( initAngle > angle && initAngle - angle > PI / 2.1 ) {
1744 // find a close internal node
1745 TIsoNode* nClose = 0;
1746 list< TIsoNode* > testNodes;
1747 testNodes.push_back( node );
1748 list< TIsoNode* >::iterator it = testNodes.begin();
1749 for ( ; !nClose && it != testNodes.end(); it++ )
1751 for (int i = 0; i < 4; i++ )
1753 nClose = (*it)->myNext[ i ];
1755 if ( !nClose->IsUVComputed() )
1758 testNodes.push_back( nClose );
1764 startNodes.push_back( nClose );
1765 // cout << "START: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<" UV: "<<
1766 // node->myUV.X()<<" "<<node->myUV.Y()<<endl<<
1767 // "initAngle: " << initAngle << " angle: " << angle << endl;
1768 // cout <<" init tgt: " << initTgt1.X()<<" "<<initTgt1.Y()<<" | "<< initTgt2.X()<<" "<<initTgt2.Y()<<endl;
1769 // cout << " tgt: "<< node->myDir[ 0 ].X() <<" "<<node->myDir[ 0 ].Y()<<" | "<<
1770 // node->myDir[ 1 ].X() <<" "<<node->myDir[ 1 ].Y()<<endl;
1771 // cout << "CLOSE: "<<nClose->myInitUV.X()<<" "<<nClose->myInitUV.Y()<<endl;
1777 // Compute starting UV of internal nodes
1779 list < TIsoNode* > internNodes;
1780 bool needIteration = true;
1781 if ( startNodes.empty() ) {
1782 MESSAGE( " Starting UV by compUVByIsoIntersection()");
1783 needIteration = false;
1784 map < double, TIsoLine >& isos = isoMap[ 0 ];
1785 map < double, TIsoLine >::iterator isoIt = isos.begin();
1786 for ( ; isoIt != isos.end(); isoIt++ )
1788 TIsoLine & isoLine = (*isoIt).second;
1789 TIsoLine::iterator nIt = isoLine.begin();
1790 for ( ; !needIteration && nIt != isoLine.end(); nIt++ )
1792 TIsoNode* node = *nIt;
1793 if ( !node->IsUVComputed() && node->IsMovable() ) {
1794 internNodes.push_back( node );
1796 if ( !compUVByIsoIntersection(theBndPoints, node->myInitUV,
1797 node->myUV, needIteration ))
1798 node->myUV = node->myInitUV;
1802 if ( needIteration )
1803 for ( nIt = bndNodes.begin(); nIt != bndNodes.end(); nIt++ )
1805 TIsoNode* node = *nIt, *nClose = 0;
1806 list< TIsoNode* > testNodes;
1807 testNodes.push_back( node );
1808 list< TIsoNode* >::iterator it = testNodes.begin();
1809 for ( ; !nClose && it != testNodes.end(); it++ )
1811 for (int i = 0; i < 4; i++ )
1813 nClose = (*it)->myNext[ i ];
1815 if ( !nClose->IsUVComputed() && nClose->IsMovable() )
1818 testNodes.push_back( nClose );
1824 startNodes.push_back( nClose );
1828 double aMin[2], aMax[2], step[2];
1829 uvBnd.Get( aMin[0], aMin[1], aMax[0], aMax[1] );
1830 double minUvSize = Min ( aMax[0]-aMin[0], aMax[1]-aMin[1] );
1831 step[0] = minUvSize / paramSet[ 0 ].size() / 10;
1832 step[1] = minUvSize / paramSet[ 1 ].size() / 10;
1833 //cout << "STEPS: " << step[0] << " " << step[1]<< endl;
1835 for ( nIt = startNodes.begin(); nIt != startNodes.end(); nIt++ )
1837 TIsoNode* prevN[2], *node = *nIt;
1838 if ( node->IsUVComputed() || !node->IsMovable() )
1840 gp_XY newUV( 0, 0 ), sumDir( 0, 0 );
1841 int nbComp = 0, nbPrev = 0;
1842 for ( iDir = 0; iDir < 2; iDir++ )
1844 TIsoNode* prevNode1 = 0, *prevNode2 = 0;
1845 TIsoNode* n = node->GetNext( iDir, 0 );
1846 if ( n->IsUVComputed() )
1849 startNodes.push_back( n );
1850 n = node->GetNext( iDir, 1 );
1851 if ( n->IsUVComputed() )
1854 startNodes.push_back( n );
1856 prevNode1 = prevNode2;
1859 if ( prevNode1 ) nbPrev++;
1860 if ( prevNode2 ) nbPrev++;
1863 double prevPar = prevNode1->myInitUV.Coord( 2 - iDir );
1864 double par = node->myInitUV.Coord( 2 - iDir );
1865 bool isEnd = ( prevPar > par );
1866 // dir = node->myDir[ 1 - iDir ].XY() * ( isEnd ? -1. : 1. );
1867 //cout << "__________"<<endl<< "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
1868 TIsoNode* bndNode = node->GetBoundaryNode( iDir, isEnd );
1870 MESSAGE("Why we are here?");
1873 gp_XY tgt( bndNode->myDir[0].XY() + bndNode->myDir[1].XY() );
1874 dir.SetCoord( 1, tgt.Y() * ( reversed ? 1 : -1 ));
1875 dir.SetCoord( 2, tgt.X() * ( reversed ? -1 : 1 ));
1876 //cout << "bndNode UV: " << bndNode->myUV.X()<<" "<<bndNode->myUV.Y()<< endl;
1877 // cout << " tgt: "<< bndNode->myDir[ 0 ].X() <<" "<<bndNode->myDir[ 0 ].Y()<<" | "<<
1878 // bndNode->myDir[ 1 ].X() <<" "<<bndNode->myDir[ 1 ].Y()<<endl;
1879 //cout << "prevNode UV: " << prevNode1->myUV.X()<<" "<<prevNode1->myUV.Y()<<
1880 //" par: " << prevPar << endl;
1881 // cout <<" tgt: " << tgt.X()<<" "<<tgt.Y()<<endl;
1882 //cout << " DIR: "<< dir.X() <<" "<<dir.Y()<<endl;
1884 //cout << "____2next______"<<endl<< "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
1885 gp_XY & uv1 = prevNode1->myUV;
1886 gp_XY & uv2 = prevNode2->myUV;
1887 // dir = ( uv2 - uv1 );
1888 // double len = dir.Modulus();
1889 // if ( len > DBL_MIN )
1890 // dir /= len * 0.5;
1891 double r = node->myRatio[ iDir ];
1892 newUV += uv1 * ( 1 - r ) + uv2 * r;
1895 newUV += prevNode1->myUV + dir * step[ iDir ];
1898 prevN[ iDir ] = prevNode1;
1902 if ( !nbComp ) continue;
1905 //cout << "NODE: "<<node->myInitUV.X()<<" "<<node->myInitUV.Y()<<endl;
1907 // check if a quadrangle is not distorted
1909 //int crit = ( nbPrev == 4 ) ? FIX_OLD : CHECK_NEW_IN;
1910 if ( !checkQuads( node, newUV, reversed, FIX_OLD, step[0] + step[1] )) {
1911 //cout <<" newUV: " << node->myUV.X() << " "<<node->myUV.Y() << " nbPrev: "<<nbPrev<< endl;
1912 // cout << "_FIX_INIT_ fixedUV: " << newUV.X() << " "<<newUV.Y() << endl;
1916 internNodes.push_back( node );
1921 static int maxNbIter = 100;
1922 #ifdef DEB_COMPUVBYELASTICISOLINES
1924 bool useNbMoveNode = 0;
1925 static int maxNbNodeMove = 100;
1928 if ( !useNbMoveNode )
1929 maxNbIter = ( maxNbIter < 0 ) ? 100 : -1;
1934 if ( !needIteration) break;
1935 #ifdef DEB_COMPUVBYELASTICISOLINES
1936 if ( nbIter >= maxNbIter ) break;
1939 list < TIsoNode* >::iterator nIt = internNodes.begin();
1940 for ( ; nIt != internNodes.end(); nIt++ ) {
1941 #ifdef DEB_COMPUVBYELASTICISOLINES
1943 cout << nbNodeMove <<" =================================================="<<endl;
1945 TIsoNode * node = *nIt;
1949 for ( iDir = 0; iDir < 2; iDir++ )
1951 gp_XY & uv1 = node->GetNext( iDir, 0 )->myUV;
1952 gp_XY & uv2 = node->GetNext( iDir, 1 )->myUV;
1953 double r = node->myRatio[ iDir ];
1954 loc[ iDir ] = uv1 * ( 1 - r ) + uv2 * r;
1955 // line[ iDir ].SetLocation( loc[ iDir ] );
1956 // line[ iDir ].SetDirection( node->myDir[ iDir ] );
1959 bool ok = true; // <- stupid fix TO AVOID PB OF NODES WITH NULL BND NODES
1960 double locR[2] = { 0, 0 };
1961 for ( iDir = 0; iDir < 2; iDir++ )
1963 const int iCoord = 2 - iDir; // coord changing along an isoline
1964 TIsoNode* bndNode1 = node->GetBoundaryNode( iDir, 0 );
1965 TIsoNode* bndNode2 = node->GetBoundaryNode( iDir, 1 );
1966 if ( !bndNode1 || !bndNode2 ) {
1969 double par1 = bndNode1->myInitUV.Coord( iCoord );
1970 double par2 = node->myInitUV.Coord( iCoord );
1971 double par3 = bndNode2->myInitUV.Coord( iCoord );
1972 double r = ( par2 - par1 ) / ( par3 - par1 );
1973 r = Abs ( r - 0.5 ) * 2.0; // [0,1] - distance from the middle
1974 locR[ iDir ] = ( 1 - r * r ) * 0.25;
1976 //locR[0] = locR[1] = 0.25;
1977 // intersect the 2 lines and move a node
1978 //IntAna2d_AnaIntersection inter( line[0], line[1] );
1979 if ( ok /*inter.IsDone() && inter.NbPoints() ==*/ )
1981 // double intR = 1 - locR[0] - locR[1];
1982 // gp_XY newUV = inter.Point(1).Value().XY();
1983 // if ( !checkQuads( node, newUV, reversed, CHECK_NEW_IN ))
1984 // newUV = ( locR[0] * loc[0] + locR[1] * loc[1] ) / ( 1 - intR );
1986 // newUV = intR * newUV + locR[0] * loc[0] + locR[1] * loc[1];
1987 gp_XY newUV = 0.5 * ( loc[0] + loc[1] );
1988 // avoid parallel isolines intersection
1989 checkQuads( node, newUV, reversed );
1991 maxMove = Max( maxMove, ( newUV - node->myUV ).SquareModulus());
1993 } // intersection found
1994 #ifdef DEB_COMPUVBYELASTICISOLINES
1995 if (useNbMoveNode && ++nbNodeMove >= maxNbNodeMove ) break;
1997 } // loop on internal nodes
1998 #ifdef DEB_COMPUVBYELASTICISOLINES
1999 if (useNbMoveNode && nbNodeMove >= maxNbNodeMove ) break;
2001 } while ( maxMove > 1e-8 && nbIter++ < maxNbIter );
2003 MESSAGE( "compUVByElasticIsolines(): Nb iterations " << nbIter << " dist: " << sqrt( maxMove ));
2005 if ( nbIter >= maxNbIter && sqrt(maxMove) > minUvSize * 0.05 ) {
2006 MESSAGE( "compUVByElasticIsolines() failed: "<<sqrt(maxMove)<<">"<<minUvSize * 0.05);
2007 #ifndef DEB_COMPUVBYELASTICISOLINES
2012 // Set computed UV to points
2014 for ( pIt = thePntToCompute.begin(); pIt != thePntToCompute.end(); pIt++ ) {
2015 TPoint* point = *pIt;
2016 //gp_XY oldUV = point->myUV;
2017 double minDist = DBL_MAX;
2018 list < TIsoNode >::iterator nIt = nodes.begin();
2019 for ( ; nIt != nodes.end(); nIt++ ) {
2020 double dist = ( (*nIt).myInitUV - point->myInitUV ).SquareModulus();
2021 if ( dist < minDist ) {
2023 point->myUV = (*nIt).myUV;
2033 //=======================================================================
2034 //function : setFirstEdge
2035 //purpose : choose the best first edge of theWire; return the summary distance
2036 // between point UV computed by isolines intersection and
2037 // eventual UV got from edge p-curves
2038 //=======================================================================
2040 //#define DBG_SETFIRSTEDGE
2041 double SMESH_Pattern::setFirstEdge (list< TopoDS_Edge > & theWire, int theFirstEdgeID)
2043 int iE, nbEdges = theWire.size();
2047 // Transform UVs computed by iso to fit bnd box of a wire
2049 // max nb of points on an edge
2051 int eID = theFirstEdgeID;
2052 for ( iE = 0; iE < nbEdges; iE++ )
2053 maxNbPnt = Max ( maxNbPnt, getShapePoints( eID++ ).size() );
2055 // compute bnd boxes
2056 TopoDS_Face face = TopoDS::Face( myShape );
2057 Bnd_Box2d bndBox, eBndBox;
2058 eID = theFirstEdgeID;
2059 list< TopoDS_Edge >::iterator eIt;
2060 list< TPoint* >::iterator pIt;
2061 for ( eIt = theWire.begin(); eIt != theWire.end(); eIt++ )
2063 // UV by isos stored in TPoint.myXYZ
2064 list< TPoint* > & ePoints = getShapePoints( eID++ );
2065 for ( pIt = ePoints.begin(); pIt != ePoints.end(); pIt++ ) {
2067 bndBox.Add( gp_Pnt2d( p->myXYZ.X(), p->myXYZ.Y() ));
2069 // UV by an edge p-curve
2071 Handle(Geom2d_Curve) C2d = BRep_Tool::CurveOnSurface( *eIt, face, f, l );
2072 double dU = ( l - f ) / ( maxNbPnt - 1 );
2073 for ( int i = 0; i < maxNbPnt; i++ )
2074 eBndBox.Add( C2d->Value( f + i * dU ));
2077 // transform UVs by isos
2078 double minPar[2], maxPar[2], eMinPar[2], eMaxPar[2];
2079 bndBox.Get( minPar[0], minPar[1], maxPar[0], maxPar[1] );
2080 eBndBox.Get( eMinPar[0], eMinPar[1], eMaxPar[0], eMaxPar[1] );
2081 #ifdef DBG_SETFIRSTEDGE
2082 cout << "EDGES: X: " << eMinPar[0] << " - " << eMaxPar[0] << " Y: "
2083 << eMinPar[1] << " - " << eMaxPar[1] << endl;
2085 for ( int iC = 1, i = 0; i < 2; iC++, i++ ) // loop on 2 coordinates
2087 double dMin = eMinPar[i] - minPar[i];
2088 double dMax = eMaxPar[i] - maxPar[i];
2089 double dPar = maxPar[i] - minPar[i];
2090 eID = theFirstEdgeID;
2091 for ( iE = 0; iE < nbEdges; iE++ ) // loop on edges of a boundary
2093 list< TPoint* > & ePoints = getShapePoints( eID++ );
2094 for ( pIt = ++ePoints.begin(); pIt != ePoints.end(); pIt++ ) // loop on edge points
2096 double par = (*pIt)->myXYZ.Coord( iC );
2097 double r = ( par - minPar[i] ) / dPar;
2098 par += ( 1 - r ) * dMin + r * dMax;
2099 (*pIt)->myXYZ.SetCoord( iC, par );
2105 double minDist = DBL_MAX;
2106 for ( iE = 0 ; iE < nbEdges; iE++ )
2108 #ifdef DBG_SETFIRSTEDGE
2109 cout << " VARIANT " << iE << endl;
2111 // evaluate the distance between UV computed by the 2 methods:
2112 // by isos intersection ( myXYZ ) and by edge p-curves ( myUV )
2114 int eID = theFirstEdgeID;
2115 for ( eIt = theWire.begin(); eIt != theWire.end(); eIt++ )
2117 list< TPoint* > & ePoints = getShapePoints( eID++ );
2118 computeUVOnEdge( *eIt, ePoints );
2119 for ( pIt = ++ePoints.begin(); pIt != ePoints.end(); pIt++ ) {
2121 dist += ( p->myUV - gp_XY( p->myXYZ.X(), p->myXYZ.Y() )).SquareModulus();
2122 #ifdef DBG_SETFIRSTEDGE
2123 cout << " ISO : ( " << p->myXYZ.X() << ", "<< p->myXYZ.Y() << " ) PCURVE : ( " <<
2124 p->myUV.X() << ", " << p->myUV.Y() << ") " << endl;
2128 #ifdef DBG_SETFIRSTEDGE
2129 cout << "dist -- " << dist << endl;
2131 if ( dist < minDist ) {
2133 eBest = theWire.front();
2135 // check variant with another first edge
2136 theWire.splice( theWire.begin(), theWire, --theWire.end(), theWire.end() );
2138 // put the best first edge to the theWire front
2139 if ( eBest != theWire.front() ) {
2140 eIt = find ( theWire.begin(), theWire.end(), eBest );
2141 theWire.splice( theWire.begin(), theWire, eIt, theWire.end() );
2147 //=======================================================================
2148 //function : sortSameSizeWires
2149 //purpose : sort wires in theWireList from theFromWire until theToWire,
2150 // the wires are set in the order to correspond to the order
2151 // of boundaries; after sorting, edges in the wires are put
2152 // in a good order, point UVs on edges are computed and points
2153 // are appended to theEdgesPointsList
2154 //=======================================================================
2156 bool SMESH_Pattern::sortSameSizeWires (TListOfEdgesList & theWireList,
2157 const TListOfEdgesList::iterator& theFromWire,
2158 const TListOfEdgesList::iterator& theToWire,
2159 const int theFirstEdgeID,
2160 list< list< TPoint* > >& theEdgesPointsList )
2162 TopoDS_Face F = TopoDS::Face( myShape );
2163 int iW, nbWires = 0;
2164 TListOfEdgesList::iterator wlIt = theFromWire;
2165 while ( wlIt++ != theToWire )
2168 // Recompute key-point UVs by isolines intersection,
2169 // compute CG of key-points for each wire and bnd boxes of GCs
2172 gp_XY orig( gp::Origin2d().XY() );
2173 vector< gp_XY > vGcVec( nbWires, orig ), gcVec( nbWires, orig );
2174 Bnd_Box2d bndBox, vBndBox;
2175 int eID = theFirstEdgeID;
2176 list< TopoDS_Edge >::iterator eIt;
2177 for ( iW = 0, wlIt = theFromWire; wlIt != theToWire; wlIt++, iW++ )
2179 list< TopoDS_Edge > & wire = *wlIt;
2180 for ( eIt = wire.begin(); eIt != wire.end(); eIt++ )
2182 list< TPoint* > & ePoints = getShapePoints( eID++ );
2183 TPoint* p = ePoints.front();
2184 if ( !compUVByIsoIntersection( theEdgesPointsList, p->myInitUV, p->myUV, aBool )) {
2185 MESSAGE("cant sortSameSizeWires()");
2188 gcVec[iW] += p->myUV;
2189 bndBox.Add( gp_Pnt2d( p->myUV ));
2190 TopoDS_Vertex V = TopExp::FirstVertex( *eIt, true );
2191 gp_Pnt2d vXY = BRep_Tool::Parameters( V, F );
2192 vGcVec[iW] += vXY.XY();
2194 // keep the computed UV to compare against by setFirstEdge()
2195 p->myXYZ.SetCoord( p->myUV.X(), p->myUV.Y(), 0. );
2197 gcVec[iW] /= nbWires;
2198 vGcVec[iW] /= nbWires;
2199 // cout << " Wire " << iW << " iso: " << gcVec[iW].X() << " " << gcVec[iW].Y() << endl <<
2200 // " \t vertex: " << vGcVec[iW].X() << " " << vGcVec[iW].Y() << endl;
2203 // Transform GCs computed by isos to fit in bnd box of GCs by vertices
2205 double minPar[2], maxPar[2], vMinPar[2], vMaxPar[2];
2206 bndBox.Get( minPar[0], minPar[1], maxPar[0], maxPar[1] );
2207 vBndBox.Get( vMinPar[0], vMinPar[1], vMaxPar[0], vMaxPar[1] );
2208 for ( int iC = 1, i = 0; i < 2; iC++, i++ ) // loop on 2 coordinates
2210 double dMin = vMinPar[i] - minPar[i];
2211 double dMax = vMaxPar[i] - maxPar[i];
2212 double dPar = maxPar[i] - minPar[i];
2213 if ( Abs( dPar ) <= DBL_MIN )
2215 for ( iW = 0; iW < nbWires; iW++ ) { // loop on GCs of wires
2216 double par = gcVec[iW].Coord( iC );
2217 double r = ( par - minPar[i] ) / dPar;
2218 par += ( 1 - r ) * dMin + r * dMax;
2219 gcVec[iW].SetCoord( iC, par );
2223 // Define boundary - wire correspondence by GC closeness
2225 TListOfEdgesList tmpWList;
2226 tmpWList.splice( tmpWList.end(), theWireList, theFromWire, theToWire );
2227 typedef map< int, TListOfEdgesList::iterator > TIntWirePosMap;
2228 TIntWirePosMap bndIndWirePosMap;
2229 vector< bool > bndFound( nbWires, false );
2230 for ( iW = 0, wlIt = tmpWList.begin(); iW < nbWires; iW++, wlIt++ )
2232 // cout << " TRSF Wire " << iW << " iso: " << gcVec[iW].X() << " " << gcVec[iW].Y() << endl <<
2233 // " \t vertex: " << vGcVec[iW].X() << " " << vGcVec[iW].Y() << endl;
2234 double minDist = DBL_MAX;
2235 gp_XY & wGc = vGcVec[ iW ];
2237 for ( int iB = 0; iB < nbWires; iB++ ) {
2238 if ( bndFound[ iB ] ) continue;
2239 double dist = ( wGc - gcVec[ iB ] ).SquareModulus();
2240 if ( dist < minDist ) {
2245 bndFound[ bIndex ] = true;
2246 bndIndWirePosMap.insert( TIntWirePosMap::value_type( bIndex, wlIt ));
2251 TIntWirePosMap::iterator bIndWPosIt = bndIndWirePosMap.begin();
2252 eID = theFirstEdgeID;
2253 for ( ; bIndWPosIt != bndIndWirePosMap.end(); bIndWPosIt++ )
2255 TListOfEdgesList::iterator wirePos = (*bIndWPosIt).second;
2256 list < TopoDS_Edge > & wire = ( *wirePos );
2258 // choose the best first edge of a wire
2259 setFirstEdge( wire, eID );
2261 // compute eventual UV and fill theEdgesPointsList
2262 theEdgesPointsList.push_back( list< TPoint* >() );
2263 list< TPoint* > & edgesPoints = theEdgesPointsList.back();
2264 for ( eIt = wire.begin(); eIt != wire.end(); eIt++ )
2266 list< TPoint* > & ePoints = getShapePoints( eID++ );
2267 computeUVOnEdge( *eIt, ePoints );
2268 edgesPoints.insert( edgesPoints.end(), ePoints.begin(), (--ePoints.end()));
2270 // put wire back to theWireList
2272 theWireList.splice( theToWire, tmpWList, wlIt, wirePos );
2278 //=======================================================================
2280 //purpose : Compute nodes coordinates applying
2281 // the loaded pattern to <theFace>. The first key-point
2282 // will be mapped into <theVertexOnKeyPoint1>
2283 //=======================================================================
2285 bool SMESH_Pattern::Apply (const TopoDS_Face& theFace,
2286 const TopoDS_Vertex& theVertexOnKeyPoint1,
2287 const bool theReverse)
2289 MESSAGE(" ::Apply(face) " );
2290 TopoDS_Face face = theReverse ? TopoDS::Face( theFace.Reversed() ) : theFace;
2291 if ( !setShapeToMesh( face ))
2294 // find points on edges, it fills myNbKeyPntInBoundary
2295 if ( !findBoundaryPoints() )
2298 // Define the edges order so that the first edge starts at
2299 // theVertexOnKeyPoint1
2301 list< TopoDS_Edge > eList;
2302 list< int > nbVertexInWires;
2303 int nbWires = SMESH_Block::GetOrderedEdges( face, theVertexOnKeyPoint1, eList, nbVertexInWires);
2304 if ( !theVertexOnKeyPoint1.IsSame( TopExp::FirstVertex( eList.front(), true )))
2306 MESSAGE( " theVertexOnKeyPoint1 not found in the outer wire ");
2307 return setErrorCode( ERR_APPLF_BAD_VERTEX );
2309 // check nb wires and edges
2310 list< int > l1 = myNbKeyPntInBoundary, l2 = nbVertexInWires;
2311 l1.sort(); l2.sort();
2314 MESSAGE( "Wrong nb vertices in wires" );
2315 return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
2318 // here shapes get IDs, for the outer wire IDs are OK
2319 list<TopoDS_Edge>::iterator elIt = eList.begin();
2320 for ( ; elIt != eList.end(); elIt++ ) {
2321 myShapeIDMap.Add( TopExp::FirstVertex( *elIt, true ));
2322 if ( BRep_Tool::IsClosed( *elIt, theFace ) )
2323 myShapeIDMap.Add( TopExp::LastVertex( *elIt, true ));
2325 int nbVertices = myShapeIDMap.Extent();
2327 for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
2328 myShapeIDMap.Add( *elIt );
2330 myShapeIDMap.Add( face );
2332 if ( myShapeIDToPointsMap.size() != myShapeIDMap.Extent()/* + nbSeamShapes*/ ) {
2333 MESSAGE( myShapeIDToPointsMap.size() <<" != " << myShapeIDMap.Extent());
2334 return setErrorCode( ERR_APPLF_INTERNAL_EEROR );
2337 // points on edges to be used for UV computation of in-face points
2338 list< list< TPoint* > > edgesPointsList;
2339 edgesPointsList.push_back( list< TPoint* >() );
2340 list< TPoint* > * edgesPoints = & edgesPointsList.back();
2341 list< TPoint* >::iterator pIt;
2343 // compute UV of points on the outer wire
2344 int iE, nbEdgesInOuterWire = nbVertexInWires.front();
2345 for (iE = 0, elIt = eList.begin();
2346 iE < nbEdgesInOuterWire && elIt != eList.end();
2349 list< TPoint* > & ePoints = getShapePoints( *elIt );
2351 computeUVOnEdge( *elIt, ePoints );
2352 // collect on-edge points (excluding the last one)
2353 edgesPoints->insert( edgesPoints->end(), ePoints.begin(), --ePoints.end());
2356 // If there are several wires, define the order of edges of inner wires:
2357 // compute UV of inner edge-points using 2 methods: the one for in-face points
2358 // and the one for on-edge points and then choose the best edge order
2359 // by the best correspondance of the 2 results
2362 // compute UV of inner edge-points using the method for in-face points
2363 // and devide eList into a list of separate wires
2365 list< list< TopoDS_Edge > > wireList;
2366 list<TopoDS_Edge>::iterator eIt = elIt;
2367 list<int>::iterator nbEIt = nbVertexInWires.begin();
2368 for ( nbEIt++; nbEIt != nbVertexInWires.end(); nbEIt++ )
2370 int nbEdges = *nbEIt;
2371 wireList.push_back( list< TopoDS_Edge >() );
2372 list< TopoDS_Edge > & wire = wireList.back();
2373 for ( iE = 0 ; iE < nbEdges; eIt++, iE++ )
2375 list< TPoint* > & ePoints = getShapePoints( *eIt );
2376 pIt = ePoints.begin();
2377 for ( pIt++; pIt != ePoints.end(); pIt++ ) {
2379 if ( !compUVByIsoIntersection( edgesPointsList, p->myInitUV, p->myUV, aBool )) {
2380 MESSAGE("cant Apply(face)");
2383 // keep the computed UV to compare against by setFirstEdge()
2384 p->myXYZ.SetCoord( p->myUV.X(), p->myUV.Y(), 0. );
2386 wire.push_back( *eIt );
2389 // remove inner edges from eList
2390 eList.erase( elIt, eList.end() );
2392 // sort wireList by nb edges in a wire
2393 sortBySize< TopoDS_Edge > ( wireList );
2395 // an ID of the first edge of a boundary
2396 int id1 = nbVertices + nbEdgesInOuterWire + 1;
2397 // if ( nbSeamShapes > 0 )
2398 // id1 += 2; // 2 vertices more
2400 // find points - edge correspondence for wires of unique size,
2401 // edge order within a wire should be defined only
2403 list< list< TopoDS_Edge > >::iterator wlIt = wireList.begin();
2404 while ( wlIt != wireList.end() )
2406 list< TopoDS_Edge >& wire = (*wlIt);
2407 int nbEdges = wire.size();
2409 if ( wlIt == wireList.end() || (*wlIt).size() != nbEdges ) // a unique size wire
2411 // choose the best first edge of a wire
2412 setFirstEdge( wire, id1 );
2414 // compute eventual UV and collect on-edge points
2415 edgesPointsList.push_back( list< TPoint* >() );
2416 edgesPoints = & edgesPointsList.back();
2418 for ( eIt = wire.begin(); eIt != wire.end(); eIt++ )
2420 list< TPoint* > & ePoints = getShapePoints( eID++ );
2421 computeUVOnEdge( *eIt, ePoints );
2422 edgesPoints->insert( edgesPoints->end(), ePoints.begin(), (--ePoints.end()));
2428 // find boundary - wire correspondence for several wires of same size
2430 id1 = nbVertices + nbEdgesInOuterWire + 1;
2431 wlIt = wireList.begin();
2432 while ( wlIt != wireList.end() )
2434 int nbSameSize = 0, nbEdges = (*wlIt).size();
2435 list< list< TopoDS_Edge > >::iterator wlIt2 = wlIt;
2437 while ( wlIt2 != wireList.end() && (*wlIt2).size() == nbEdges ) { // a same size wire
2441 if ( nbSameSize > 0 )
2442 if (!sortSameSizeWires(wireList, wlIt, wlIt2, id1, edgesPointsList))
2445 id1 += nbEdges * ( nbSameSize + 1 );
2448 // add well-ordered edges to eList
2450 for ( wlIt = wireList.begin(); wlIt != wireList.end(); wlIt++ )
2452 list< TopoDS_Edge >& wire = (*wlIt);
2453 eList.splice( eList.end(), wire, wire.begin(), wire.end() );
2456 // re-fill myShapeIDMap - all shapes get good IDs
2458 myShapeIDMap.Clear();
2459 for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
2460 myShapeIDMap.Add( TopExp::FirstVertex( *elIt, true ));
2461 for ( elIt = eList.begin(); elIt != eList.end(); elIt++ )
2462 myShapeIDMap.Add( *elIt );
2463 myShapeIDMap.Add( face );
2465 } // there are inner wires
2467 // Compute XYZ of on-edge points
2469 TopLoc_Location loc;
2470 for ( iE = nbVertices + 1, elIt = eList.begin(); elIt != eList.end(); elIt++ )
2472 BRepAdaptor_Curve C3d( *elIt );
2473 list< TPoint* > & ePoints = getShapePoints( iE++ );
2474 pIt = ePoints.begin();
2475 for ( pIt++; pIt != ePoints.end(); pIt++ )
2477 TPoint* point = *pIt;
2478 point->myXYZ = C3d.Value( point->myU );
2482 // Compute UV and XYZ of in-face points
2484 // try to use a simple algo
2485 list< TPoint* > & fPoints = getShapePoints( face );
2486 bool isDeformed = false;
2487 for ( pIt = fPoints.begin(); !isDeformed && pIt != fPoints.end(); pIt++ )
2488 if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
2489 (*pIt)->myUV, isDeformed )) {
2490 MESSAGE("cant Apply(face)");
2493 // try to use a complex algo if it is a difficult case
2494 if ( isDeformed && !compUVByElasticIsolines( edgesPointsList, fPoints ))
2496 for ( ; pIt != fPoints.end(); pIt++ ) // continue with the simple algo
2497 if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
2498 (*pIt)->myUV, isDeformed )) {
2499 MESSAGE("cant Apply(face)");
2504 Handle(Geom_Surface) aSurface = BRep_Tool::Surface( face, loc );
2505 const gp_Trsf & aTrsf = loc.Transformation();
2506 for ( pIt = fPoints.begin(); pIt != fPoints.end(); pIt++ )
2508 TPoint * point = *pIt;
2509 point->myXYZ = aSurface->Value( point->myUV.X(), point->myUV.Y() );
2510 if ( !loc.IsIdentity() )
2511 aTrsf.Transforms( point->myXYZ.ChangeCoord() );
2514 myIsComputed = true;
2516 return setErrorCode( ERR_OK );
2519 //=======================================================================
2521 //purpose : Compute nodes coordinates applying
2522 // the loaded pattern to <theFace>. The first key-point
2523 // will be mapped into <theNodeIndexOnKeyPoint1>-th node
2524 //=======================================================================
2526 bool SMESH_Pattern::Apply (const SMDS_MeshFace* theFace,
2527 const int theNodeIndexOnKeyPoint1,
2528 const bool theReverse)
2530 // MESSAGE(" ::Apply(MeshFace) " );
2532 if ( !IsLoaded() ) {
2533 MESSAGE( "Pattern not loaded" );
2534 return setErrorCode( ERR_APPL_NOT_LOADED );
2537 // check nb of nodes
2538 if (theFace->NbNodes() != myNbKeyPntInBoundary.front() ) {
2539 MESSAGE( myKeyPointIDs.size() << " != " << theFace->NbNodes() );
2540 return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
2543 // find points on edges, it fills myNbKeyPntInBoundary
2544 if ( !findBoundaryPoints() )
2547 // check that there are no holes in a pattern
2548 if (myNbKeyPntInBoundary.size() > 1 ) {
2549 return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
2552 // Define the nodes order
2554 list< const SMDS_MeshNode* > nodes;
2555 list< const SMDS_MeshNode* >::iterator n = nodes.end();
2556 SMDS_ElemIteratorPtr noIt = theFace->nodesIterator();
2558 while ( noIt->more() ) {
2559 const SMDS_MeshNode* node = smdsNode( noIt->next() );
2560 nodes.push_back( node );
2561 if ( iSub++ == theNodeIndexOnKeyPoint1 )
2564 if ( n != nodes.end() ) {
2566 if ( n != --nodes.end() )
2567 nodes.splice( nodes.begin(), nodes, ++n, nodes.end() );
2570 else if ( n != nodes.begin() )
2571 nodes.splice( nodes.end(), nodes, nodes.begin(), n );
2573 list< gp_XYZ > xyzList;
2574 myOrderedNodes.resize( theFace->NbNodes() );
2575 for ( iSub = 0, n = nodes.begin(); n != nodes.end(); ++n ) {
2576 xyzList.push_back( gp_XYZ( (*n)->X(), (*n)->Y(), (*n)->Z() ));
2577 myOrderedNodes[ iSub++] = *n;
2580 // Define a face plane
2582 list< gp_XYZ >::iterator xyzIt = xyzList.begin();
2583 gp_Pnt P ( *xyzIt++ );
2584 gp_Vec Vx( P, *xyzIt++ ), N;
2586 N = Vx ^ gp_Vec( P, *xyzIt++ );
2587 } while ( N.SquareMagnitude() <= DBL_MIN && xyzIt != xyzList.end() );
2588 if ( N.SquareMagnitude() <= DBL_MIN )
2589 return setErrorCode( ERR_APPLF_BAD_FACE_GEOM );
2590 gp_Ax2 pos( P, N, Vx );
2592 // Compute UV of key-points on a plane
2593 for ( xyzIt = xyzList.begin(), iSub = 1; xyzIt != xyzList.end(); xyzIt++, iSub++ )
2595 gp_Vec vec ( pos.Location(), *xyzIt );
2596 TPoint* p = getShapePoints( iSub ).front();
2597 p->myUV.SetX( vec * pos.XDirection() );
2598 p->myUV.SetY( vec * pos.YDirection() );
2602 // points on edges to be used for UV computation of in-face points
2603 list< list< TPoint* > > edgesPointsList;
2604 edgesPointsList.push_back( list< TPoint* >() );
2605 list< TPoint* > * edgesPoints = & edgesPointsList.back();
2606 list< TPoint* >::iterator pIt;
2608 // compute UV and XYZ of points on edges
2610 for ( xyzIt = xyzList.begin(); xyzIt != xyzList.end(); iSub++ )
2612 gp_XYZ& xyz1 = *xyzIt++;
2613 gp_XYZ& xyz2 = ( xyzIt != xyzList.end() ) ? *xyzIt : xyzList.front();
2615 list< TPoint* > & ePoints = getShapePoints( iSub );
2616 ePoints.back()->myInitU = 1.0;
2617 list< TPoint* >::const_iterator pIt = ++ePoints.begin();
2618 while ( *pIt != ePoints.back() )
2621 p->myXYZ = xyz1 * ( 1 - p->myInitU ) + xyz2 * p->myInitU;
2622 gp_Vec vec ( pos.Location(), p->myXYZ );
2623 p->myUV.SetX( vec * pos.XDirection() );
2624 p->myUV.SetY( vec * pos.YDirection() );
2626 // collect on-edge points (excluding the last one)
2627 edgesPoints->insert( edgesPoints->end(), ePoints.begin(), --ePoints.end());
2630 // Compute UV and XYZ of in-face points
2632 // try to use a simple algo to compute UV
2633 list< TPoint* > & fPoints = getShapePoints( iSub );
2634 bool isDeformed = false;
2635 for ( pIt = fPoints.begin(); !isDeformed && pIt != fPoints.end(); pIt++ )
2636 if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
2637 (*pIt)->myUV, isDeformed )) {
2638 MESSAGE("cant Apply(face)");
2641 // try to use a complex algo if it is a difficult case
2642 if ( isDeformed && !compUVByElasticIsolines( edgesPointsList, fPoints ))
2644 for ( ; pIt != fPoints.end(); pIt++ ) // continue with the simple algo
2645 if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
2646 (*pIt)->myUV, isDeformed )) {
2647 MESSAGE("cant Apply(face)");
2652 for ( pIt = fPoints.begin(); pIt != fPoints.end(); pIt++ )
2654 (*pIt)->myXYZ = ElSLib::PlaneValue( (*pIt)->myUV.X(), (*pIt)->myUV.Y(), pos );
2657 myIsComputed = true;
2659 return setErrorCode( ERR_OK );
2662 //=======================================================================
2664 //purpose : Compute nodes coordinates applying
2665 // the loaded pattern to <theFace>. The first key-point
2666 // will be mapped into <theNodeIndexOnKeyPoint1>-th node
2667 //=======================================================================
2669 bool SMESH_Pattern::Apply (SMESH_Mesh* theMesh,
2670 const SMDS_MeshFace* theFace,
2671 const TopoDS_Shape& theSurface,
2672 const int theNodeIndexOnKeyPoint1,
2673 const bool theReverse)
2675 // MESSAGE(" ::Apply(MeshFace) " );
2676 if ( theSurface.IsNull() || theSurface.ShapeType() != TopAbs_FACE ) {
2677 return Apply( theFace, theNodeIndexOnKeyPoint1, theReverse);
2679 const TopoDS_Face& face = TopoDS::Face( theSurface );
2680 TopLoc_Location loc;
2681 Handle(Geom_Surface) surface = BRep_Tool::Surface( face, loc );
2682 const gp_Trsf & aTrsf = loc.Transformation();
2684 if ( !IsLoaded() ) {
2685 MESSAGE( "Pattern not loaded" );
2686 return setErrorCode( ERR_APPL_NOT_LOADED );
2689 // check nb of nodes
2690 if (theFace->NbNodes() != myNbKeyPntInBoundary.front() ) {
2691 MESSAGE( myKeyPointIDs.size() << " != " << theFace->NbNodes() );
2692 return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
2695 // find points on edges, it fills myNbKeyPntInBoundary
2696 if ( !findBoundaryPoints() )
2699 // check that there are no holes in a pattern
2700 if (myNbKeyPntInBoundary.size() > 1 ) {
2701 return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
2704 // Define the nodes order
2706 list< const SMDS_MeshNode* > nodes;
2707 list< const SMDS_MeshNode* >::iterator n = nodes.end();
2708 SMDS_ElemIteratorPtr noIt = theFace->nodesIterator();
2710 while ( noIt->more() ) {
2711 const SMDS_MeshNode* node = smdsNode( noIt->next() );
2712 nodes.push_back( node );
2713 if ( iSub++ == theNodeIndexOnKeyPoint1 )
2716 if ( n != nodes.end() ) {
2718 if ( n != --nodes.end() )
2719 nodes.splice( nodes.begin(), nodes, ++n, nodes.end() );
2722 else if ( n != nodes.begin() )
2723 nodes.splice( nodes.end(), nodes, nodes.begin(), n );
2726 // find a node not on a seam edge, if necessary
2727 SMESH_MesherHelper helper( *theMesh );
2728 helper.SetSubShape( theSurface );
2729 const SMDS_MeshNode* inFaceNode = 0;
2730 if ( helper.GetNodeUVneedInFaceNode() )
2732 SMESH_MeshEditor editor( theMesh );
2733 for ( n = nodes.begin(); ( !inFaceNode && n != nodes.end()); ++n ) {
2734 int shapeID = editor.FindShape( *n );
2736 return Apply( theFace, theNodeIndexOnKeyPoint1, theReverse);
2737 if ( !helper.IsSeamShape( shapeID ))
2742 // Set UV of key-points (i.e. of nodes of theFace )
2743 vector< gp_XY > keyUV( theFace->NbNodes() );
2744 myOrderedNodes.resize( theFace->NbNodes() );
2745 for ( iSub = 1, n = nodes.begin(); n != nodes.end(); ++n, ++iSub )
2747 TPoint* p = getShapePoints( iSub ).front();
2748 p->myUV = helper.GetNodeUV( face, *n, inFaceNode );
2749 p->myXYZ = gp_XYZ( (*n)->X(), (*n)->Y(), (*n)->Z() );
2751 keyUV[ iSub-1 ] = p->myUV;
2752 myOrderedNodes[ iSub-1 ] = *n;
2755 // points on edges to be used for UV computation of in-face points
2756 list< list< TPoint* > > edgesPointsList;
2757 edgesPointsList.push_back( list< TPoint* >() );
2758 list< TPoint* > * edgesPoints = & edgesPointsList.back();
2759 list< TPoint* >::iterator pIt;
2761 // compute UV and XYZ of points on edges
2763 for ( int i = 0; i < myOrderedNodes.size(); ++i, ++iSub )
2765 gp_XY& uv1 = keyUV[ i ];
2766 gp_XY& uv2 = ( i+1 < keyUV.size() ) ? keyUV[ i+1 ] : keyUV[ 0 ];
2768 list< TPoint* > & ePoints = getShapePoints( iSub );
2769 ePoints.back()->myInitU = 1.0;
2770 list< TPoint* >::const_iterator pIt = ++ePoints.begin();
2771 while ( *pIt != ePoints.back() )
2774 p->myUV = uv1 * ( 1 - p->myInitU ) + uv2 * p->myInitU;
2775 p->myXYZ = surface->Value( p->myUV.X(), p->myUV.Y() );
2776 if ( !loc.IsIdentity() )
2777 aTrsf.Transforms( p->myXYZ.ChangeCoord() );
2779 // collect on-edge points (excluding the last one)
2780 edgesPoints->insert( edgesPoints->end(), ePoints.begin(), --ePoints.end());
2783 // Compute UV and XYZ of in-face points
2785 // try to use a simple algo to compute UV
2786 list< TPoint* > & fPoints = getShapePoints( iSub );
2787 bool isDeformed = false;
2788 for ( pIt = fPoints.begin(); !isDeformed && pIt != fPoints.end(); pIt++ )
2789 if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
2790 (*pIt)->myUV, isDeformed )) {
2791 MESSAGE("cant Apply(face)");
2794 // try to use a complex algo if it is a difficult case
2795 if ( isDeformed && !compUVByElasticIsolines( edgesPointsList, fPoints ))
2797 for ( ; pIt != fPoints.end(); pIt++ ) // continue with the simple algo
2798 if ( !compUVByIsoIntersection( edgesPointsList, (*pIt)->myInitUV,
2799 (*pIt)->myUV, isDeformed )) {
2800 MESSAGE("cant Apply(face)");
2805 for ( pIt = fPoints.begin(); pIt != fPoints.end(); pIt++ )
2807 TPoint * point = *pIt;
2808 point->myXYZ = surface->Value( point->myUV.X(), point->myUV.Y() );
2809 if ( !loc.IsIdentity() )
2810 aTrsf.Transforms( point->myXYZ.ChangeCoord() );
2813 myIsComputed = true;
2815 return setErrorCode( ERR_OK );
2818 //=======================================================================
2819 //function : undefinedXYZ
2821 //=======================================================================
2823 static const gp_XYZ& undefinedXYZ()
2825 static gp_XYZ xyz( 1.e100, 0., 0. );
2829 //=======================================================================
2830 //function : isDefined
2832 //=======================================================================
2834 inline static bool isDefined(const gp_XYZ& theXYZ)
2836 return theXYZ.X() < 1.e100;
2839 //=======================================================================
2841 //purpose : Compute nodes coordinates applying
2842 // the loaded pattern to <theFaces>. The first key-point
2843 // will be mapped into <theNodeIndexOnKeyPoint1>-th node
2844 //=======================================================================
2846 bool SMESH_Pattern::Apply (SMESH_Mesh* theMesh,
2847 std::set<const SMDS_MeshFace*>& theFaces,
2848 const int theNodeIndexOnKeyPoint1,
2849 const bool theReverse)
2851 MESSAGE(" ::Apply(set<MeshFace>) " );
2853 if ( !IsLoaded() ) {
2854 MESSAGE( "Pattern not loaded" );
2855 return setErrorCode( ERR_APPL_NOT_LOADED );
2858 // find points on edges, it fills myNbKeyPntInBoundary
2859 if ( !findBoundaryPoints() )
2862 // check that there are no holes in a pattern
2863 if (myNbKeyPntInBoundary.size() > 1 ) {
2864 return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
2869 myElemXYZIDs.clear();
2870 myXYZIdToNodeMap.clear();
2872 myIdsOnBoundary.clear();
2873 myReverseConnectivity.clear();
2875 myXYZ.resize( myPoints.size() * theFaces.size(), undefinedXYZ() );
2876 myElements.reserve( theFaces.size() );
2878 // to find point index
2879 map< TPoint*, int > pointIndex;
2880 for ( int i = 0; i < myPoints.size(); i++ )
2881 pointIndex.insert( make_pair( & myPoints[ i ], i ));
2883 int ind1 = 0; // lowest point index for a face
2888 // SMESH_MeshEditor editor( theMesh );
2890 // apply to each face in theFaces set
2891 set<const SMDS_MeshFace*>::iterator face = theFaces.begin();
2892 for ( ; face != theFaces.end(); ++face )
2894 // int curShapeId = editor.FindShape( *face );
2895 // if ( curShapeId != shapeID ) {
2896 // if ( curShapeId )
2897 // shape = theMesh->GetMeshDS()->IndexToShape( curShapeId );
2900 // shapeID = curShapeId;
2903 if ( shape.IsNull() )
2904 ok = Apply( *face, theNodeIndexOnKeyPoint1, theReverse );
2906 ok = Apply( theMesh, *face, shape, theNodeIndexOnKeyPoint1, theReverse );
2908 MESSAGE( "Failed on " << *face );
2911 myElements.push_back( *face );
2913 // store computed points belonging to elements
2914 list< TElemDef >::iterator ll = myElemPointIDs.begin();
2915 for ( ; ll != myElemPointIDs.end(); ++ll )
2917 myElemXYZIDs.push_back(TElemDef());
2918 TElemDef& xyzIds = myElemXYZIDs.back();
2919 TElemDef& pIds = *ll;
2920 for ( TElemDef::iterator id = pIds.begin(); id != pIds.end(); id++ ) {
2921 int pIndex = *id + ind1;
2922 xyzIds.push_back( pIndex );
2923 myXYZ[ pIndex ] = myPoints[ *id ].myXYZ.XYZ();
2924 myReverseConnectivity[ pIndex ].push_back( & xyzIds );
2927 // put points on links to myIdsOnBoundary,
2928 // they will be used to sew new elements on adjacent refined elements
2929 int nbNodes = (*face)->NbNodes(), eID = nbNodes + 1;
2930 for ( int i = 0; i < nbNodes; i++ )
2932 list< TPoint* > & linkPoints = getShapePoints( eID++ );
2933 const SMDS_MeshNode* n1 = myOrderedNodes[ i ];
2934 const SMDS_MeshNode* n2 = myOrderedNodes[ i + 1 == nbNodes ? 0 : i + 1 ];
2935 // make a link and a node set
2936 TNodeSet linkSet, node1Set;
2937 linkSet.insert( n1 );
2938 linkSet.insert( n2 );
2939 node1Set.insert( n1 );
2940 list< TPoint* >::iterator p = linkPoints.begin();
2942 // map the first link point to n1
2943 int nId = pointIndex[ *p ] + ind1;
2944 myXYZIdToNodeMap[ nId ] = n1;
2945 list< list< int > >& groups = myIdsOnBoundary[ node1Set ];
2946 groups.push_back(list< int > ());
2947 groups.back().push_back( nId );
2949 // add the linkSet to the map
2950 list< list< int > >& groups = myIdsOnBoundary[ linkSet ];
2951 groups.push_back(list< int > ());
2952 list< int >& indList = groups.back();
2953 // add points to the map excluding the end points
2954 for ( p++; *p != linkPoints.back(); p++ )
2955 indList.push_back( pointIndex[ *p ] + ind1 );
2957 ind1 += myPoints.size();
2960 return !myElemXYZIDs.empty();
2963 //=======================================================================
2965 //purpose : Compute nodes coordinates applying
2966 // the loaded pattern to <theVolumes>. The (0,0,0) key-point
2967 // will be mapped into <theNode000Index>-th node. The
2968 // (0,0,1) key-point will be mapped into <theNode000Index>-th
2970 //=======================================================================
2972 bool SMESH_Pattern::Apply (std::set<const SMDS_MeshVolume*> & theVolumes,
2973 const int theNode000Index,
2974 const int theNode001Index)
2976 MESSAGE(" ::Apply(set<MeshVolumes>) " );
2978 if ( !IsLoaded() ) {
2979 MESSAGE( "Pattern not loaded" );
2980 return setErrorCode( ERR_APPL_NOT_LOADED );
2983 // bind ID to points
2984 if ( !findBoundaryPoints() )
2987 // check that there are no holes in a pattern
2988 if (myNbKeyPntInBoundary.size() > 1 ) {
2989 return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
2994 myElemXYZIDs.clear();
2995 myXYZIdToNodeMap.clear();
2997 myIdsOnBoundary.clear();
2998 myReverseConnectivity.clear();
3000 myXYZ.resize( myPoints.size() * theVolumes.size(), undefinedXYZ() );
3001 myElements.reserve( theVolumes.size() );
3003 // to find point index
3004 map< TPoint*, int > pointIndex;
3005 for ( int i = 0; i < myPoints.size(); i++ )
3006 pointIndex.insert( make_pair( & myPoints[ i ], i ));
3008 int ind1 = 0; // lowest point index for an element
3010 // apply to each element in theVolumes set
3011 set<const SMDS_MeshVolume*>::iterator vol = theVolumes.begin();
3012 for ( ; vol != theVolumes.end(); ++vol )
3014 if ( !Apply( *vol, theNode000Index, theNode001Index )) {
3015 MESSAGE( "Failed on " << *vol );
3018 myElements.push_back( *vol );
3020 // store computed points belonging to elements
3021 list< TElemDef >::iterator ll = myElemPointIDs.begin();
3022 for ( ; ll != myElemPointIDs.end(); ++ll )
3024 myElemXYZIDs.push_back(TElemDef());
3025 TElemDef& xyzIds = myElemXYZIDs.back();
3026 TElemDef& pIds = *ll;
3027 for ( TElemDef::iterator id = pIds.begin(); id != pIds.end(); id++ ) {
3028 int pIndex = *id + ind1;
3029 xyzIds.push_back( pIndex );
3030 myXYZ[ pIndex ] = myPoints[ *id ].myXYZ.XYZ();
3031 myReverseConnectivity[ pIndex ].push_back( & xyzIds );
3034 // put points on edges and faces to myIdsOnBoundary,
3035 // they will be used to sew new elements on adjacent refined elements
3036 for ( int Id = SMESH_Block::ID_V000; Id <= SMESH_Block::ID_F1yz; Id++ )
3038 // make a set of sub-points
3040 vector< int > subIDs;
3041 if ( SMESH_Block::IsVertexID( Id )) {
3042 subNodes.insert( myOrderedNodes[ Id - 1 ]);
3044 else if ( SMESH_Block::IsEdgeID( Id )) {
3045 SMESH_Block::GetEdgeVertexIDs( Id, subIDs );
3046 subNodes.insert( myOrderedNodes[ subIDs.front() - 1 ]);
3047 subNodes.insert( myOrderedNodes[ subIDs.back() - 1 ]);
3050 SMESH_Block::GetFaceEdgesIDs( Id, subIDs );
3051 int e1 = subIDs[ 0 ], e2 = subIDs[ 1 ];
3052 SMESH_Block::GetEdgeVertexIDs( e1, subIDs );
3053 subNodes.insert( myOrderedNodes[ subIDs.front() - 1 ]);
3054 subNodes.insert( myOrderedNodes[ subIDs.back() - 1 ]);
3055 SMESH_Block::GetEdgeVertexIDs( e2, subIDs );
3056 subNodes.insert( myOrderedNodes[ subIDs.front() - 1 ]);
3057 subNodes.insert( myOrderedNodes[ subIDs.back() - 1 ]);
3060 list< TPoint* > & points = getShapePoints( Id );
3061 list< TPoint* >::iterator p = points.begin();
3062 list< list< int > >& groups = myIdsOnBoundary[ subNodes ];
3063 groups.push_back(list< int > ());
3064 list< int >& indList = groups.back();
3065 for ( ; p != points.end(); p++ )
3066 indList.push_back( pointIndex[ *p ] + ind1 );
3067 if ( subNodes.size() == 1 ) // vertex case
3068 myXYZIdToNodeMap[ indList.back() ] = myOrderedNodes[ Id - 1 ];
3070 ind1 += myPoints.size();
3073 return !myElemXYZIDs.empty();
3076 //=======================================================================
3078 //purpose : Create a pattern from the mesh built on <theBlock>
3079 //=======================================================================
3081 bool SMESH_Pattern::Load (SMESH_Mesh* theMesh,
3082 const TopoDS_Shell& theBlock)
3084 MESSAGE(" ::Load(volume) " );
3087 SMESHDS_SubMesh * aSubMesh;
3089 // load shapes in myShapeIDMap
3091 TopoDS_Vertex v1, v2;
3092 if ( !block.LoadBlockShapes( theBlock, v1, v2, myShapeIDMap ))
3093 return setErrorCode( ERR_LOADV_BAD_SHAPE );
3096 int nbNodes = 0, shapeID;
3097 for ( shapeID = 1; shapeID <= myShapeIDMap.Extent(); shapeID++ )
3099 const TopoDS_Shape& S = myShapeIDMap( shapeID );
3100 aSubMesh = getSubmeshWithElements( theMesh, S );
3102 nbNodes += aSubMesh->NbNodes();
3104 myPoints.resize( nbNodes );
3106 // load U of points on edges
3107 TNodePointIDMap nodePointIDMap;
3109 for ( shapeID = 1; shapeID <= myShapeIDMap.Extent(); shapeID++ )
3111 const TopoDS_Shape& S = myShapeIDMap( shapeID );
3112 list< TPoint* > & shapePoints = getShapePoints( shapeID );
3113 aSubMesh = getSubmeshWithElements( theMesh, S );
3114 if ( ! aSubMesh ) continue;
3115 SMDS_NodeIteratorPtr nIt = aSubMesh->GetNodes();
3116 if ( !nIt->more() ) continue;
3118 // store a node and a point
3119 while ( nIt->more() ) {
3120 const SMDS_MeshNode* node = smdsNode( nIt->next() );
3121 nodePointIDMap.insert( make_pair( node, iPoint ));
3122 if ( block.IsVertexID( shapeID ))
3123 myKeyPointIDs.push_back( iPoint );
3124 TPoint* p = & myPoints[ iPoint++ ];
3125 shapePoints.push_back( p );
3126 p->myXYZ.SetCoord( node->X(), node->Y(), node->Z() );
3127 p->myInitXYZ.SetCoord( 0,0,0 );
3129 list< TPoint* >::iterator pIt = shapePoints.begin();
3132 switch ( S.ShapeType() )
3137 for ( ; pIt != shapePoints.end(); pIt++ ) {
3138 double * coef = block.GetShapeCoef( shapeID );
3139 for ( int iCoord = 1; iCoord <= 3; iCoord++ )
3140 if ( coef[ iCoord - 1] > 0 )
3141 (*pIt)->myInitXYZ.SetCoord( iCoord, 1. );
3143 if ( S.ShapeType() == TopAbs_VERTEX )
3146 const TopoDS_Edge& edge = TopoDS::Edge( S );
3148 BRep_Tool::Range( edge, f, l );
3149 int iCoord = SMESH_Block::GetCoordIndOnEdge( shapeID );
3150 bool isForward = SMESH_Block::IsForwardEdge( edge, myShapeIDMap );
3151 pIt = shapePoints.begin();
3152 nIt = aSubMesh->GetNodes();
3153 for ( ; nIt->more(); pIt++ )
3155 const SMDS_MeshNode* node = smdsNode( nIt->next() );
3156 const SMDS_EdgePosition* epos =
3157 static_cast<const SMDS_EdgePosition*>(node->GetPosition().get());
3158 double u = ( epos->GetUParameter() - f ) / ( l - f );
3159 (*pIt)->myInitXYZ.SetCoord( iCoord, isForward ? u : 1 - u );
3164 for ( ; pIt != shapePoints.end(); pIt++ )
3166 if ( !block.ComputeParameters( (*pIt)->myXYZ, (*pIt)->myInitXYZ, shapeID )) {
3167 MESSAGE( "!block.ComputeParameters()" );
3168 return setErrorCode( ERR_LOADV_COMPUTE_PARAMS );
3172 } // loop on block sub-shapes
3176 aSubMesh = getSubmeshWithElements( theMesh, theBlock );
3179 SMDS_ElemIteratorPtr elemIt = aSubMesh->GetElements();
3180 while ( elemIt->more() ) {
3181 SMDS_ElemIteratorPtr nIt = elemIt->next()->nodesIterator();
3182 myElemPointIDs.push_back( TElemDef() );
3183 TElemDef& elemPoints = myElemPointIDs.back();
3184 while ( nIt->more() )
3185 elemPoints.push_back( nodePointIDMap[ nIt->next() ]);
3189 myIsBoundaryPointsFound = true;
3191 return setErrorCode( ERR_OK );
3194 //=======================================================================
3195 //function : getSubmeshWithElements
3196 //purpose : return submesh containing elements bound to theBlock in theMesh
3197 //=======================================================================
3199 SMESHDS_SubMesh * SMESH_Pattern::getSubmeshWithElements(SMESH_Mesh* theMesh,
3200 const TopoDS_Shape& theShape)
3202 SMESHDS_SubMesh * aSubMesh = theMesh->GetMeshDS()->MeshElements( theShape );
3203 if ( aSubMesh && ( aSubMesh->GetElements()->more() || aSubMesh->GetNodes()->more() ))
3206 if ( theShape.ShapeType() == TopAbs_SHELL )
3208 // look for submesh of VOLUME
3209 TopTools_ListIteratorOfListOfShape it( theMesh->GetAncestors( theShape ));
3210 for (; it.More(); it.Next()) {
3211 aSubMesh = theMesh->GetMeshDS()->MeshElements( it.Value() );
3212 if ( aSubMesh && ( aSubMesh->GetElements()->more() || aSubMesh->GetNodes()->more() ))
3220 //=======================================================================
3222 //purpose : Compute nodes coordinates applying
3223 // the loaded pattern to <theBlock>. The (0,0,0) key-point
3224 // will be mapped into <theVertex000>. The (0,0,1)
3225 // fifth key-point will be mapped into <theVertex001>.
3226 //=======================================================================
3228 bool SMESH_Pattern::Apply (const TopoDS_Shell& theBlock,
3229 const TopoDS_Vertex& theVertex000,
3230 const TopoDS_Vertex& theVertex001)
3232 MESSAGE(" ::Apply(volume) " );
3234 if (!findBoundaryPoints() || // bind ID to points
3235 !setShapeToMesh( theBlock )) // check theBlock is a suitable shape
3238 SMESH_Block block; // bind ID to shape
3239 if (!block.LoadBlockShapes( theBlock, theVertex000, theVertex001, myShapeIDMap ))
3240 return setErrorCode( ERR_APPLV_BAD_SHAPE );
3242 // compute XYZ of points on shapes
3244 for ( int shapeID = 1; shapeID <= myShapeIDMap.Extent(); shapeID++ )
3246 list< TPoint* > & shapePoints = getShapePoints( shapeID );
3247 list< TPoint* >::iterator pIt = shapePoints.begin();
3248 const TopoDS_Shape& S = myShapeIDMap( shapeID );
3249 switch ( S.ShapeType() )
3251 case TopAbs_VERTEX: {
3253 for ( ; pIt != shapePoints.end(); pIt++ )
3254 block.VertexPoint( shapeID, (*pIt)->myXYZ.ChangeCoord() );
3259 for ( ; pIt != shapePoints.end(); pIt++ )
3260 block.EdgePoint( shapeID, (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
3265 for ( ; pIt != shapePoints.end(); pIt++ )
3266 block.FacePoint( shapeID, (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
3270 for ( ; pIt != shapePoints.end(); pIt++ )
3271 block.ShellPoint( (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
3273 } // loop on block sub-shapes
3275 myIsComputed = true;
3277 return setErrorCode( ERR_OK );
3280 //=======================================================================
3282 //purpose : Compute nodes coordinates applying
3283 // the loaded pattern to <theVolume>. The (0,0,0) key-point
3284 // will be mapped into <theNode000Index>-th node. The
3285 // (0,0,1) key-point will be mapped into <theNode000Index>-th
3287 //=======================================================================
3289 bool SMESH_Pattern::Apply (const SMDS_MeshVolume* theVolume,
3290 const int theNode000Index,
3291 const int theNode001Index)
3293 //MESSAGE(" ::Apply(MeshVolume) " );
3295 if (!findBoundaryPoints()) // bind ID to points
3298 SMESH_Block block; // bind ID to shape
3299 if (!block.LoadMeshBlock( theVolume, theNode000Index, theNode001Index, myOrderedNodes ))
3300 return setErrorCode( ERR_APPLV_BAD_SHAPE );
3301 // compute XYZ of points on shapes
3303 for ( int ID = SMESH_Block::ID_V000; ID <= SMESH_Block::ID_Shell; ID++ )
3305 list< TPoint* > & shapePoints = getShapePoints( ID );
3306 list< TPoint* >::iterator pIt = shapePoints.begin();
3308 if ( block.IsVertexID( ID ))
3309 for ( ; pIt != shapePoints.end(); pIt++ ) {
3310 block.VertexPoint( ID, (*pIt)->myXYZ.ChangeCoord() );
3312 else if ( block.IsEdgeID( ID ))
3313 for ( ; pIt != shapePoints.end(); pIt++ ) {
3314 block.EdgePoint( ID, (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
3316 else if ( block.IsFaceID( ID ))
3317 for ( ; pIt != shapePoints.end(); pIt++ ) {
3318 block.FacePoint( ID, (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
3321 for ( ; pIt != shapePoints.end(); pIt++ )
3322 block.ShellPoint( (*pIt)->myInitXYZ, (*pIt)->myXYZ.ChangeCoord() );
3323 } // loop on block sub-shapes
3325 myIsComputed = true;
3327 return setErrorCode( ERR_OK );
3330 //=======================================================================
3331 //function : mergePoints
3332 //purpose : Merge XYZ on edges and/or faces.
3333 //=======================================================================
3335 void SMESH_Pattern::mergePoints (const bool uniteGroups)
3337 map< TNodeSet, list< list< int > > >::iterator idListIt = myIdsOnBoundary.begin();
3338 for ( ; idListIt != myIdsOnBoundary.end(); idListIt++ )
3340 list<list< int > >& groups = idListIt->second;
3341 if ( groups.size() < 2 )
3345 const TNodeSet& nodes = idListIt->first;
3346 double tol2 = 1.e-10;
3347 if ( nodes.size() > 1 ) {
3349 TNodeSet::const_iterator n = nodes.begin();
3350 for ( ; n != nodes.end(); ++n )
3351 box.Add( gp_Pnt( (*n)->X(), (*n)->Y(), (*n)->Z() ));
3352 double x, y, z, X, Y, Z;
3353 box.Get( x, y, z, X, Y, Z );
3354 gp_Pnt p( x, y, z ), P( X, Y, Z );
3355 tol2 = 1.e-4 * p.SquareDistance( P );
3358 // to unite groups on link
3359 bool unite = ( uniteGroups && nodes.size() == 2 );
3360 map< double, int > distIndMap;
3361 const SMDS_MeshNode* node = *nodes.begin();
3362 gp_Pnt P( node->X(), node->Y(), node->Z() );
3364 // compare points, replace indices
3366 list< int >::iterator ind1, ind2;
3367 list< list< int > >::iterator grpIt1, grpIt2;
3368 for ( grpIt1 = groups.begin(); grpIt1 != groups.end(); grpIt1++ )
3370 list< int >& indices1 = *grpIt1;
3372 for ( grpIt2++; grpIt2 != groups.end(); grpIt2++ )
3374 list< int >& indices2 = *grpIt2;
3375 for ( ind1 = indices1.begin(); ind1 != indices1.end(); ind1++ )
3377 gp_XYZ& p1 = myXYZ[ *ind1 ];
3378 ind2 = indices2.begin();
3379 while ( ind2 != indices2.end() )
3381 gp_XYZ& p2 = myXYZ[ *ind2 ];
3382 //MESSAGE("COMP: " << *ind1 << " " << *ind2 << " X: " << p2.X() << " tol2: " << tol2);
3383 if ( ( p1 - p2 ).SquareModulus() <= tol2 )
3385 ASSERT( myReverseConnectivity.find( *ind2 ) != myReverseConnectivity.end() );
3386 list< TElemDef* > & elemXYZIDsList = myReverseConnectivity[ *ind2 ];
3387 list< TElemDef* >::iterator elemXYZIDs = elemXYZIDsList.begin();
3388 for ( ; elemXYZIDs != elemXYZIDsList.end(); elemXYZIDs++ )
3390 //MESSAGE( " Replace " << *ind2 << " with " << *ind1 );
3391 myXYZ[ *ind2 ] = undefinedXYZ();
3392 replace( (*elemXYZIDs)->begin(), (*elemXYZIDs)->end(), *ind2, *ind1 );
3394 ind2 = indices2.erase( ind2 );
3401 if ( unite ) { // sort indices using distIndMap
3402 for ( ind1 = indices1.begin(); ind1 != indices1.end(); ind1++ )
3404 ASSERT( isDefined( myXYZ[ *ind1 ] ));
3405 double dist = P.SquareDistance( myXYZ[ *ind1 ]);
3406 distIndMap.insert( make_pair( dist, *ind1 ));
3410 if ( unite ) { // put all sorted indices into the first group
3411 list< int >& g = groups.front();
3413 map< double, int >::iterator dist_ind = distIndMap.begin();
3414 for ( ; dist_ind != distIndMap.end(); dist_ind++ )
3415 g.push_back( dist_ind->second );
3417 } // loop on myIdsOnBoundary
3420 //=======================================================================
3421 //function : makePolyElements
3422 //purpose : prepare intermediate data to create Polygons and Polyhedrons
3423 //=======================================================================
3425 void SMESH_Pattern::
3426 makePolyElements(const vector< const SMDS_MeshNode* >& theNodes,
3427 const bool toCreatePolygons,
3428 const bool toCreatePolyedrs)
3430 myPolyElemXYZIDs.clear();
3431 myPolyElems.clear();
3432 myPolyElems.reserve( myIdsOnBoundary.size() );
3434 // make a set of refined elements
3435 TIDSortedElemSet avoidSet, elemSet;
3436 std::vector<const SMDS_MeshElement*>::iterator itv = myElements.begin();
3437 for(; itv!=myElements.end(); itv++) {
3438 const SMDS_MeshElement* el = (*itv);
3439 avoidSet.insert( el );
3441 //avoidSet.insert( myElements.begin(), myElements.end() );
3443 map< TNodeSet, list< list< int > > >::iterator indListIt, nn_IdList;
3445 if ( toCreatePolygons )
3447 int lastFreeId = myXYZ.size();
3449 // loop on links of refined elements
3450 indListIt = myIdsOnBoundary.begin();
3451 for ( ; indListIt != myIdsOnBoundary.end(); indListIt++ )
3453 const TNodeSet & linkNodes = indListIt->first;
3454 if ( linkNodes.size() != 2 )
3455 continue; // skip face
3456 const SMDS_MeshNode* n1 = * linkNodes.begin();
3457 const SMDS_MeshNode* n2 = * linkNodes.rbegin();
3459 list<list< int > >& idGroups = indListIt->second; // ids of nodes to build
3460 if ( idGroups.empty() || idGroups.front().empty() )
3463 // find not refined face having n1-n2 link
3467 const SMDS_MeshElement* face =
3468 SMESH_MeshEditor::FindFaceInSet( n1, n2, elemSet, avoidSet );
3471 avoidSet.insert ( face );
3472 myPolyElems.push_back( face );
3474 // some links of <face> are split;
3475 // make list of xyz for <face>
3476 myPolyElemXYZIDs.push_back(TElemDef());
3477 TElemDef & faceNodeIds = myPolyElemXYZIDs.back();
3478 // loop on links of a <face>
3479 SMDS_ElemIteratorPtr nIt = face->nodesIterator();
3480 int i = 0, nbNodes = face->NbNodes();
3481 vector<const SMDS_MeshNode*> nodes( nbNodes + 1 );
3482 while ( nIt->more() )
3483 nodes[ i++ ] = smdsNode( nIt->next() );
3484 nodes[ i ] = nodes[ 0 ];
3485 for ( i = 0; i < nbNodes; ++i )
3487 // look for point mapped on a link
3488 TNodeSet faceLinkNodes;
3489 faceLinkNodes.insert( nodes[ i ] );
3490 faceLinkNodes.insert( nodes[ i + 1 ] );
3491 if ( faceLinkNodes == linkNodes )
3492 nn_IdList = indListIt;
3494 nn_IdList = myIdsOnBoundary.find( faceLinkNodes );
3495 // add face point ids
3496 faceNodeIds.push_back( ++lastFreeId );
3497 myXYZIdToNodeMap.insert( make_pair( lastFreeId, nodes[ i ]));
3498 if ( nn_IdList != myIdsOnBoundary.end() )
3500 // there are points mapped on a link
3501 list< int >& mappedIds = nn_IdList->second.front();
3502 if ( isReversed( nodes[ i ], mappedIds ))
3503 faceNodeIds.insert (faceNodeIds.end(),mappedIds.rbegin(), mappedIds.rend() );
3505 faceNodeIds.insert (faceNodeIds.end(),mappedIds.begin(), mappedIds.end() );
3507 } // loop on links of a <face>
3513 if ( myIs2D && idGroups.size() > 1 ) {
3515 // sew new elements on 2 refined elements sharing n1-n2 link
3517 list< int >& idsOnLink = idGroups.front();
3518 // temporarily add ids of link nodes to idsOnLink
3519 bool rev = isReversed( n1, idsOnLink );
3520 for ( int i = 0; i < 2; ++i )
3523 nodeSet.insert( i ? n2 : n1 );
3524 ASSERT( myIdsOnBoundary.find( nodeSet ) != myIdsOnBoundary.end() );
3525 list<list< int > >& groups = myIdsOnBoundary[ nodeSet ];
3526 int nodeId = groups.front().front();
3528 if ( rev ) append = !append;
3530 idsOnLink.push_back( nodeId );
3532 idsOnLink.push_front( nodeId );
3534 list< int >::iterator id = idsOnLink.begin();
3535 for ( ; id != idsOnLink.end(); ++id ) // loop on XYZ ids on a link
3537 list< TElemDef* >& elemDefs = myReverseConnectivity[ *id ]; // elems sharing id
3538 list< TElemDef* >::iterator pElemDef = elemDefs.begin();
3539 for ( ; pElemDef != elemDefs.end(); pElemDef++ ) // loop on elements sharing id
3541 TElemDef* pIdList = *pElemDef; // ptr on list of ids making element up
3542 // look for <id> in element definition
3543 TElemDef::iterator idDef = find( pIdList->begin(), pIdList->end(), *id );
3544 ASSERT ( idDef != pIdList->end() );
3545 // look for 2 neighbour ids of <id> in element definition
3546 for ( int prev = 0; prev < 2; ++prev ) {
3547 TElemDef::iterator idDef2 = idDef;
3549 idDef2 = ( idDef2 == pIdList->begin() ) ? --pIdList->end() : --idDef2;
3551 idDef2 = ( ++idDef2 == pIdList->end() ) ? pIdList->begin() : idDef2;
3552 // look for idDef2 on a link starting from id
3553 list< int >::iterator id2 = find( id, idsOnLink.end(), *idDef2 );
3554 if ( id2 != idsOnLink.end() && id != --id2 ) { // found not next to id
3555 // insert ids located on link between <id> and <id2>
3556 // into the element definition between idDef and idDef2
3558 for ( ; id2 != id; --id2 )
3559 pIdList->insert( idDef, *id2 );
3561 list< int >::iterator id1 = id;
3562 for ( ++id1, ++id2; id1 != id2; ++id1 )
3563 pIdList->insert( idDef2, *id1 );
3569 // remove ids of link nodes
3570 idsOnLink.pop_front();
3571 idsOnLink.pop_back();
3573 } // loop on myIdsOnBoundary
3574 } // if ( toCreatePolygons )
3576 if ( toCreatePolyedrs )
3578 // check volumes adjacent to the refined elements
3579 SMDS_VolumeTool volTool;
3580 vector<const SMDS_MeshElement*>::iterator refinedElem = myElements.begin();
3581 for ( ; refinedElem != myElements.end(); ++refinedElem )
3583 // loop on nodes of refinedElem
3584 SMDS_ElemIteratorPtr nIt = (*refinedElem)->nodesIterator();
3585 while ( nIt->more() ) {
3586 const SMDS_MeshNode* node = smdsNode( nIt->next() );
3587 // loop on inverse elements of node
3588 SMDS_ElemIteratorPtr eIt = node->GetInverseElementIterator();
3589 while ( eIt->more() )
3591 const SMDS_MeshElement* elem = eIt->next();
3592 if ( !volTool.Set( elem ) || !avoidSet.insert( elem ).second )
3593 continue; // skip faces or refined elements
3594 // add polyhedron definition
3595 myPolyhedronQuantities.push_back(vector<int> ());
3596 myPolyElemXYZIDs.push_back(TElemDef());
3597 vector<int>& quantity = myPolyhedronQuantities.back();
3598 TElemDef & elemDef = myPolyElemXYZIDs.back();
3599 // get definitions of new elements on volume faces
3600 bool makePoly = false;
3601 for ( int iF = 0; iF < volTool.NbFaces(); ++iF )
3603 if ( getFacesDefinition(volTool.GetFaceNodes( iF ),
3604 volTool.NbFaceNodes( iF ),
3605 theNodes, elemDef, quantity))
3609 myPolyElems.push_back( elem );
3611 myPolyhedronQuantities.pop_back();
3612 myPolyElemXYZIDs.pop_back();
3620 //=======================================================================
3621 //function : getFacesDefinition
3622 //purpose : return faces definition for a volume face defined by theBndNodes
3623 //=======================================================================
3625 bool SMESH_Pattern::
3626 getFacesDefinition(const SMDS_MeshNode** theBndNodes,
3627 const int theNbBndNodes,
3628 const vector< const SMDS_MeshNode* >& theNodes,
3629 list< int >& theFaceDefs,
3630 vector<int>& theQuantity)
3632 bool makePoly = false;
3633 // cout << "FROM FACE NODES: " <<endl;
3634 // for ( int i = 0; i < theNbBndNodes; ++i )
3635 // cout << theBndNodes[ i ];
3637 set< const SMDS_MeshNode* > bndNodeSet;
3638 for ( int i = 0; i < theNbBndNodes; ++i )
3639 bndNodeSet.insert( theBndNodes[ i ]);
3641 map< TNodeSet, list< list< int > > >::iterator nn_IdList;
3643 // make a set of all nodes on a face
3645 if ( !myIs2D ) { // for 2D, merge only edges
3646 nn_IdList = myIdsOnBoundary.find( bndNodeSet );
3647 if ( nn_IdList != myIdsOnBoundary.end() ) {
3649 list< int > & faceIds = nn_IdList->second.front();
3650 ids.insert( faceIds.begin(), faceIds.end() );
3653 //bool hasIdsInFace = !ids.empty();
3655 // add ids on links and bnd nodes
3656 int lastFreeId = Max( myXYZIdToNodeMap.rbegin()->first, theNodes.size() );
3657 TElemDef faceDef; // definition for the case if there is no new adjacent volumes
3658 for ( int iN = 0; iN < theNbBndNodes; ++iN )
3660 // add id of iN-th bnd node
3662 nSet.insert( theBndNodes[ iN ] );
3663 nn_IdList = myIdsOnBoundary.find( nSet );
3664 int bndId = ++lastFreeId;
3665 if ( nn_IdList != myIdsOnBoundary.end() ) {
3666 bndId = nn_IdList->second.front().front();
3667 ids.insert( bndId );
3670 myXYZIdToNodeMap.insert( make_pair( bndId, theBndNodes[ iN ] ));
3671 faceDef.push_back( bndId );
3672 // add ids on a link
3674 linkNodes.insert( theBndNodes[ iN ]);
3675 linkNodes.insert( theBndNodes[ iN + 1 == theNbBndNodes ? 0 : iN + 1 ]);
3676 nn_IdList = myIdsOnBoundary.find( linkNodes );
3677 if ( nn_IdList != myIdsOnBoundary.end() ) {
3679 list< int > & linkIds = nn_IdList->second.front();
3680 ids.insert( linkIds.begin(), linkIds.end() );
3681 if ( isReversed( theBndNodes[ iN ], linkIds ))
3682 faceDef.insert( faceDef.end(), linkIds.begin(), linkIds.end() );
3684 faceDef.insert( faceDef.end(), linkIds.rbegin(), linkIds.rend() );
3688 // find faces definition of new volumes
3690 bool defsAdded = false;
3691 if ( !myIs2D ) { // for 2D, merge only edges
3692 SMDS_VolumeTool vol;
3693 set< TElemDef* > checkedVolDefs;
3694 set< int >::iterator id = ids.begin();
3695 for ( ; id != ids.end(); ++id )
3697 // definitions of volumes sharing id
3698 list< TElemDef* >& defList = myReverseConnectivity[ *id ];
3699 ASSERT( !defList.empty() );
3700 // loop on volume definitions
3701 list< TElemDef* >::iterator pIdList = defList.begin();
3702 for ( ; pIdList != defList.end(); ++pIdList)
3704 if ( !checkedVolDefs.insert( *pIdList ).second )
3705 continue; // skip already checked volume definition
3706 vector< int > idVec;
3707 idVec.reserve( (*pIdList)->size() );
3708 idVec.insert( idVec.begin(), (*pIdList)->begin(), (*pIdList)->end() );
3709 // loop on face defs of a volume
3710 SMDS_VolumeTool::VolumeType volType = vol.GetType( idVec.size() );
3711 if ( volType == SMDS_VolumeTool::UNKNOWN )
3713 int nbFaces = vol.NbFaces( volType );
3714 for ( int iF = 0; iF < nbFaces; ++iF )
3716 const int* nodeInds = vol.GetFaceNodesIndices( volType, iF, true );
3717 int iN, nbN = vol.NbFaceNodes( volType, iF );
3718 // check if all nodes of a faces are in <ids>
3720 for ( iN = 0; iN < nbN && all; ++iN ) {
3721 int nodeId = idVec[ nodeInds[ iN ]];
3722 all = ( ids.find( nodeId ) != ids.end() );
3725 // store a face definition
3726 for ( iN = 0; iN < nbN; ++iN ) {
3727 theFaceDefs.push_back( idVec[ nodeInds[ iN ]]);
3729 theQuantity.push_back( nbN );
3737 theQuantity.push_back( faceDef.size() );
3738 theFaceDefs.splice( theFaceDefs.end(), faceDef, faceDef.begin(), faceDef.end() );
3744 //=======================================================================
3745 //function : clearSubMesh
3747 //=======================================================================
3749 static bool clearSubMesh( SMESH_Mesh* theMesh,
3750 const TopoDS_Shape& theShape)
3752 bool removed = false;
3753 if ( SMESH_subMesh * aSubMesh = theMesh->GetSubMeshContaining( theShape ))
3755 if ( aSubMesh->GetSubMeshDS() ) {
3757 aSubMesh->GetSubMeshDS()->NbElements() || aSubMesh->GetSubMeshDS()->NbNodes();
3758 aSubMesh->ComputeStateEngine( SMESH_subMesh::CLEAN );
3762 SMESHDS_Mesh* aMeshDS = theMesh->GetMeshDS();
3763 if ( SMESHDS_SubMesh* aSubMeshDS = aMeshDS->MeshElements( theShape ))
3765 SMDS_ElemIteratorPtr eIt = aSubMeshDS->GetElements();
3766 removed = eIt->more();
3767 while ( eIt->more() )
3768 aMeshDS->RemoveElement( eIt->next() );
3769 SMDS_NodeIteratorPtr nIt = aSubMeshDS->GetNodes();
3770 removed = removed || nIt->more();
3771 while ( nIt->more() )
3772 aMeshDS->RemoveNode( smdsNode( nIt->next() ));
3778 //=======================================================================
3779 //function : clearMesh
3780 //purpose : clear mesh elements existing on myShape in theMesh
3781 //=======================================================================
3783 void SMESH_Pattern::clearMesh(SMESH_Mesh* theMesh) const
3786 if ( !myShape.IsNull() )
3788 if ( !clearSubMesh( theMesh, myShape ) && !myIs2D ) { // myShape is SHELL but volumes may be bound to SOLID
3789 TopTools_ListIteratorOfListOfShape it( theMesh->GetAncestors( myShape ));
3790 for (; it.More() && it.Value().ShapeType() == TopAbs_SOLID; it.Next())
3792 clearSubMesh( theMesh, it.Value() );
3798 //=======================================================================
3799 //function : MakeMesh
3800 //purpose : Create nodes and elements in <theMesh> using nodes
3801 // coordinates computed by either of Apply...() methods
3802 // WARNING : StdMeshers_Projection_... relies on MakeMesh() behavior: that
3803 // it does not care of nodes and elements already existing on
3804 // subshapes. DO NOT MERGE them or modify also StdMeshers_Projection_..
3805 //=======================================================================
3807 bool SMESH_Pattern::MakeMesh(SMESH_Mesh* theMesh,
3808 const bool toCreatePolygons,
3809 const bool toCreatePolyedrs)
3811 MESSAGE(" ::MakeMesh() " );
3812 if ( !myIsComputed )
3813 return setErrorCode( ERR_MAKEM_NOT_COMPUTED );
3815 mergePoints( toCreatePolygons );
3817 SMESHDS_Mesh* aMeshDS = theMesh->GetMeshDS();
3819 // clear elements and nodes existing on myShape
3822 bool onMeshElements = ( !myElements.empty() );
3824 // Create missing nodes
3826 vector< const SMDS_MeshNode* > nodesVector; // i-th point/xyz -> node
3827 if ( onMeshElements )
3829 nodesVector.resize( Max( myXYZ.size(), myXYZIdToNodeMap.rbegin()->first ), 0 );
3830 map< int, const SMDS_MeshNode*>::iterator i_node = myXYZIdToNodeMap.begin();
3831 for ( ; i_node != myXYZIdToNodeMap.end(); i_node++ ) {
3832 nodesVector[ i_node->first ] = i_node->second;
3834 for ( int i = 0; i < myXYZ.size(); ++i ) {
3835 if ( !nodesVector[ i ] && isDefined( myXYZ[ i ] ) )
3836 nodesVector[ i ] = aMeshDS->AddNode (myXYZ[ i ].X(),
3843 nodesVector.resize( myPoints.size(), 0 );
3845 // to find point index
3846 map< TPoint*, int > pointIndex;
3847 for ( int i = 0; i < myPoints.size(); i++ )
3848 pointIndex.insert( make_pair( & myPoints[ i ], i ));
3850 // loop on sub-shapes of myShape: create nodes
3851 map< int, list< TPoint* > >::iterator idPointIt = myShapeIDToPointsMap.begin();
3852 for ( ; idPointIt != myShapeIDToPointsMap.end(); idPointIt++ )
3855 //SMESHDS_SubMesh * subMeshDS = 0;
3856 if ( !myShapeIDMap.IsEmpty() ) {
3857 S = myShapeIDMap( idPointIt->first );
3858 //subMeshDS = aMeshDS->MeshElements( S );
3860 list< TPoint* > & points = idPointIt->second;
3861 list< TPoint* >::iterator pIt = points.begin();
3862 for ( ; pIt != points.end(); pIt++ )
3864 TPoint* point = *pIt;
3865 int pIndex = pointIndex[ point ];
3866 if ( nodesVector [ pIndex ] )
3868 SMDS_MeshNode* node = aMeshDS->AddNode (point->myXYZ.X(),
3871 nodesVector [ pIndex ] = node;
3873 if ( true /*subMeshDS*/ ) {
3874 // !!!!! do not merge new nodes with ones existing on submeshes (see method comment)
3875 switch ( S.ShapeType() ) {
3876 case TopAbs_VERTEX: {
3877 aMeshDS->SetNodeOnVertex( node, TopoDS::Vertex( S )); break;
3880 aMeshDS->SetNodeOnEdge( node, TopoDS::Edge( S ), point->myU ); break;
3883 aMeshDS->SetNodeOnFace( node, TopoDS::Face( S ),
3884 point->myUV.X(), point->myUV.Y() ); break;
3887 aMeshDS->SetNodeInVolume( node, TopoDS::Shell( S ));
3896 if ( onMeshElements )
3898 // prepare data to create poly elements
3899 makePolyElements( nodesVector, toCreatePolygons, toCreatePolyedrs );
3902 createElements( theMesh, nodesVector, myElemXYZIDs, myElements );
3903 // sew old and new elements
3904 createElements( theMesh, nodesVector, myPolyElemXYZIDs, myPolyElems );
3908 createElements( theMesh, nodesVector, myElemPointIDs, myElements );
3911 // const map<int,SMESHDS_SubMesh*>& sm = aMeshDS->SubMeshes();
3912 // map<int,SMESHDS_SubMesh*>::const_iterator i_sm = sm.begin();
3913 // for ( ; i_sm != sm.end(); i_sm++ )
3915 // cout << " SM " << i_sm->first << " ";
3916 // TopAbs::Print( aMeshDS->IndexToShape( i_sm->first ).ShapeType(), cout)<< " ";
3917 // //SMDS_ElemIteratorPtr GetElements();
3918 // SMDS_NodeIteratorPtr nit = i_sm->second->GetNodes();
3919 // while ( nit->more() )
3920 // cout << nit->next()->GetID() << " ";
3923 return setErrorCode( ERR_OK );
3926 //=======================================================================
3927 //function : createElements
3928 //purpose : add elements to the mesh
3929 //=======================================================================
3931 void SMESH_Pattern::createElements(SMESH_Mesh* theMesh,
3932 const vector<const SMDS_MeshNode* >& theNodesVector,
3933 const list< TElemDef > & theElemNodeIDs,
3934 const vector<const SMDS_MeshElement*>& theElements)
3936 SMESHDS_Mesh* aMeshDS = theMesh->GetMeshDS();
3937 SMESH_MeshEditor editor( theMesh );
3939 bool onMeshElements = !theElements.empty();
3941 // shapes and groups theElements are on
3942 vector< int > shapeIDs;
3943 vector< list< SMESHDS_Group* > > groups;
3944 set< const SMDS_MeshNode* > shellNodes;
3945 if ( onMeshElements )
3947 shapeIDs.resize( theElements.size() );
3948 groups.resize( theElements.size() );
3949 const set<SMESHDS_GroupBase*>& allGroups = aMeshDS->GetGroups();
3950 set<SMESHDS_GroupBase*>::const_iterator grIt;
3951 for ( int i = 0; i < theElements.size(); i++ )
3953 shapeIDs[ i ] = editor.FindShape( theElements[ i ] );
3954 for ( grIt = allGroups.begin(); grIt != allGroups.end(); grIt++ ) {
3955 SMESHDS_Group* group = dynamic_cast<SMESHDS_Group*>( *grIt );
3956 if ( group && group->SMDSGroup().Contains( theElements[ i ] ))
3957 groups[ i ].push_back( group );
3960 // get all nodes bound to shells because their SpacePosition is not set
3961 // by SMESHDS_Mesh::SetNodeInVolume()
3962 TopoDS_Shape aMainShape = aMeshDS->ShapeToMesh();
3963 if ( !aMainShape.IsNull() ) {
3964 TopExp_Explorer shellExp( aMainShape, TopAbs_SHELL );
3965 for ( ; shellExp.More(); shellExp.Next() )
3967 SMESHDS_SubMesh * sm = aMeshDS->MeshElements( shellExp.Current() );
3969 SMDS_NodeIteratorPtr nIt = sm->GetNodes();
3970 while ( nIt->more() )
3971 shellNodes.insert( nIt->next() );
3976 // nb new elements per a refined element
3977 int nbNewElemsPerOld = 1;
3978 if ( onMeshElements )
3979 nbNewElemsPerOld = theElemNodeIDs.size() / theElements.size();
3983 list< TElemDef >::const_iterator enIt = theElemNodeIDs.begin();
3984 list< vector<int> >::iterator quantity = myPolyhedronQuantities.begin();
3985 for ( int iElem = 0; enIt != theElemNodeIDs.end(); enIt++, iElem++ )
3987 const TElemDef & elemNodeInd = *enIt;
3989 vector< const SMDS_MeshNode* > nodes( elemNodeInd.size() );
3990 TElemDef::const_iterator id = elemNodeInd.begin();
3992 for ( nbNodes = 0; id != elemNodeInd.end(); id++ ) {
3993 if ( *id < theNodesVector.size() )
3994 nodes[ nbNodes++ ] = theNodesVector[ *id ];
3996 nodes[ nbNodes++ ] = myXYZIdToNodeMap[ *id ];
3998 // dim of refined elem
3999 int elemIndex = iElem / nbNewElemsPerOld; // refined element index
4000 if ( onMeshElements ) {
4001 is2d = ( theElements[ elemIndex ]->GetType() == SMDSAbs_Face );
4004 const SMDS_MeshElement* elem = 0;
4006 switch ( nbNodes ) {
4008 elem = aMeshDS->AddFace( nodes[0], nodes[1], nodes[2] ); break;
4010 elem = aMeshDS->AddFace( nodes[0], nodes[1], nodes[2], nodes[3] ); break;
4012 if ( !onMeshElements ) {// create a quadratic face
4013 elem = aMeshDS->AddFace (nodes[0], nodes[1], nodes[2], nodes[3],
4014 nodes[4], nodes[5] ); break;
4015 } // else do not break but create a polygon
4017 if ( !onMeshElements ) {// create a quadratic face
4018 elem = aMeshDS->AddFace (nodes[0], nodes[1], nodes[2], nodes[3],
4019 nodes[4], nodes[5], nodes[6], nodes[7] ); break;
4020 } // else do not break but create a polygon
4022 elem = aMeshDS->AddPolygonalFace( nodes );
4026 switch ( nbNodes ) {
4028 elem = aMeshDS->AddVolume (nodes[0], nodes[1], nodes[2], nodes[3] ); break;
4030 elem = aMeshDS->AddVolume (nodes[0], nodes[1], nodes[2], nodes[3],
4033 elem = aMeshDS->AddVolume (nodes[0], nodes[1], nodes[2], nodes[3],
4034 nodes[4], nodes[5] ); break;
4036 elem = aMeshDS->AddVolume (nodes[0], nodes[1], nodes[2], nodes[3],
4037 nodes[4], nodes[5], nodes[6], nodes[7] ); break;
4039 elem = aMeshDS->AddPolyhedralVolume( nodes, *quantity++ );
4042 // set element on a shape
4043 if ( elem && onMeshElements ) // applied to mesh elements
4045 int shapeID = shapeIDs[ elemIndex ];
4046 if ( shapeID > 0 ) {
4047 aMeshDS->SetMeshElementOnShape( elem, shapeID );
4048 // set nodes on a shape
4049 TopoDS_Shape S = aMeshDS->IndexToShape( shapeID );
4050 if ( S.ShapeType() == TopAbs_SOLID ) {
4051 TopoDS_Iterator shellIt( S );
4052 if ( shellIt.More() )
4053 shapeID = aMeshDS->ShapeToIndex( shellIt.Value() );
4055 SMDS_ElemIteratorPtr noIt = elem->nodesIterator();
4056 while ( noIt->more() ) {
4057 SMDS_MeshNode* node = const_cast<SMDS_MeshNode*>(smdsNode( noIt->next() ));
4058 if (!node->GetPosition()->GetShapeId() &&
4059 shellNodes.find( node ) == shellNodes.end() ) {
4060 if ( S.ShapeType() == TopAbs_FACE )
4061 aMeshDS->SetNodeOnFace( node, shapeID );
4063 aMeshDS->SetNodeInVolume( node, shapeID );
4064 shellNodes.insert( node );
4069 // add elem in groups
4070 list< SMESHDS_Group* >::iterator g = groups[ elemIndex ].begin();
4071 for ( ; g != groups[ elemIndex ].end(); ++g )
4072 (*g)->SMDSGroup().Add( elem );
4074 if ( elem && !myShape.IsNull() ) // applied to shape
4075 aMeshDS->SetMeshElementOnShape( elem, myShape );
4078 // make that SMESH_subMesh::_computeState == COMPUTE_OK
4079 // so that operations with hypotheses will erase the mesh being built
4081 SMESH_subMesh * subMesh;
4082 if ( !myShape.IsNull() ) {
4083 subMesh = theMesh->GetSubMeshContaining( myShape );
4085 subMesh->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
4087 if ( onMeshElements ) {
4088 list< int > elemIDs;
4089 for ( int i = 0; i < theElements.size(); i++ )
4091 subMesh = theMesh->GetSubMeshContaining( shapeIDs[ i ] );
4093 subMesh->ComputeStateEngine( SMESH_subMesh::CHECK_COMPUTE_STATE );
4095 elemIDs.push_back( theElements[ i ]->GetID() );
4097 // remove refined elements
4098 editor.Remove( elemIDs, false );
4102 //=======================================================================
4103 //function : isReversed
4104 //purpose : check xyz ids order in theIdsList taking into account
4105 // theFirstNode on a link
4106 //=======================================================================
4108 bool SMESH_Pattern::isReversed(const SMDS_MeshNode* theFirstNode,
4109 const list< int >& theIdsList) const
4111 if ( theIdsList.size() < 2 )
4114 gp_Pnt Pf ( theFirstNode->X(), theFirstNode->Y(), theFirstNode->Z() );
4116 list<int>::const_iterator id = theIdsList.begin();
4117 for ( int i = 0; i < 2; ++i, ++id ) {
4118 if ( *id < myXYZ.size() )
4119 P[ i ] = myXYZ[ *id ];
4121 map< int, const SMDS_MeshNode*>::const_iterator i_n;
4122 i_n = myXYZIdToNodeMap.find( *id );
4123 ASSERT( i_n != myXYZIdToNodeMap.end() );
4124 const SMDS_MeshNode* n = i_n->second;
4125 P[ i ].SetCoord( n->X(), n->Y(), n->Z() );
4128 return Pf.SquareDistance( P[ 1 ] ) < Pf.SquareDistance( P[ 0 ] );
4132 //=======================================================================
4133 //function : arrangeBoundaries
4134 //purpose : if there are several wires, arrange boundaryPoints so that
4135 // the outer wire goes first and fix inner wires orientation
4136 // update myKeyPointIDs to correspond to the order of key-points
4137 // in boundaries; sort internal boundaries by the nb of key-points
4138 //=======================================================================
4140 void SMESH_Pattern::arrangeBoundaries (list< list< TPoint* > >& boundaryList)
4142 typedef list< list< TPoint* > >::iterator TListOfListIt;
4143 TListOfListIt bndIt;
4144 list< TPoint* >::iterator pIt;
4146 int nbBoundaries = boundaryList.size();
4147 if ( nbBoundaries > 1 )
4149 // sort boundaries by nb of key-points
4150 if ( nbBoundaries > 2 )
4152 // move boundaries in tmp list
4153 list< list< TPoint* > > tmpList;
4154 tmpList.splice( tmpList.begin(), boundaryList, boundaryList.begin(), boundaryList.end());
4155 // make a map nb-key-points to boundary-position-in-tmpList,
4156 // boundary-positions get ordered in it
4157 typedef map< int, TListOfListIt > TNbKpBndPosMap;
4158 TNbKpBndPosMap nbKpBndPosMap;
4159 bndIt = tmpList.begin();
4160 list< int >::iterator nbKpIt = myNbKeyPntInBoundary.begin();
4161 for ( ; nbKpIt != myNbKeyPntInBoundary.end(); nbKpIt++, bndIt++ ) {
4162 int nb = *nbKpIt * nbBoundaries;
4163 while ( nbKpBndPosMap.find ( nb ) != nbKpBndPosMap.end() )
4165 nbKpBndPosMap.insert( TNbKpBndPosMap::value_type( nb, bndIt ));
4167 // move boundaries back to boundaryList
4168 TNbKpBndPosMap::iterator nbKpBndPosIt = nbKpBndPosMap.begin();
4169 for ( ; nbKpBndPosIt != nbKpBndPosMap.end(); nbKpBndPosIt++ ) {
4170 TListOfListIt & bndPos2 = (*nbKpBndPosIt).second;
4171 TListOfListIt bndPos1 = bndPos2++;
4172 boundaryList.splice( boundaryList.end(), tmpList, bndPos1, bndPos2 );
4176 // Look for the outer boundary: the one with the point with the least X
4177 double leastX = DBL_MAX;
4178 TListOfListIt outerBndPos;
4179 for ( bndIt = boundaryList.begin(); bndIt != boundaryList.end(); bndIt++ )
4181 list< TPoint* >& boundary = (*bndIt);
4182 for ( pIt = boundary.begin(); pIt != boundary.end(); pIt++)
4184 TPoint* point = *pIt;
4185 if ( point->myInitXYZ.X() < leastX ) {
4186 leastX = point->myInitXYZ.X();
4187 outerBndPos = bndIt;
4192 if ( outerBndPos != boundaryList.begin() )
4193 boundaryList.splice( boundaryList.begin(), boundaryList, outerBndPos, ++outerBndPos );
4195 } // if nbBoundaries > 1
4197 // Check boundaries orientation and re-fill myKeyPointIDs
4199 set< TPoint* > keyPointSet;
4200 list< int >::iterator kpIt = myKeyPointIDs.begin();
4201 for ( ; kpIt != myKeyPointIDs.end(); kpIt++ )
4202 keyPointSet.insert( & myPoints[ *kpIt ]);
4203 myKeyPointIDs.clear();
4205 // update myNbKeyPntInBoundary also
4206 list< int >::iterator nbKpIt = myNbKeyPntInBoundary.begin();
4208 for ( bndIt = boundaryList.begin(); bndIt != boundaryList.end(); bndIt++, nbKpIt++ )
4210 // find the point with the least X
4211 double leastX = DBL_MAX;
4212 list< TPoint* >::iterator xpIt;
4213 list< TPoint* >& boundary = (*bndIt);
4214 for ( pIt = boundary.begin(); pIt != boundary.end(); pIt++)
4216 TPoint* point = *pIt;
4217 if ( point->myInitXYZ.X() < leastX ) {
4218 leastX = point->myInitXYZ.X();
4222 // find points next to the point with the least X
4223 TPoint* p = *xpIt, *pPrev, *pNext;
4224 if ( p == boundary.front() )
4225 pPrev = *(++boundary.rbegin());
4231 if ( p == boundary.back() )
4232 pNext = *(++boundary.begin());
4237 // vectors of boundary direction near <p>
4238 gp_Vec2d v1( pPrev->myInitUV, p->myInitUV ), v2( p->myInitUV, pNext->myInitUV );
4239 double sqMag1 = v1.SquareMagnitude(), sqMag2 = v2.SquareMagnitude();
4240 if ( sqMag1 > DBL_MIN && sqMag2 > DBL_MIN ) {
4241 double yPrev = v1.Y() / sqrt( sqMag1 );
4242 double yNext = v2.Y() / sqrt( sqMag2 );
4243 double sumY = yPrev + yNext;
4245 if ( bndIt == boundaryList.begin() ) // outer boundary
4253 // Put key-point IDs of a well-oriented boundary in myKeyPointIDs
4254 (*nbKpIt) = 0; // count nb of key-points again
4255 pIt = boundary.begin();
4256 for ( ; pIt != boundary.end(); pIt++)
4258 TPoint* point = *pIt;
4259 if ( keyPointSet.find( point ) == keyPointSet.end() )
4261 // find an index of a keypoint
4263 vector< TPoint >::const_iterator pVecIt = myPoints.begin();
4264 for ( ; pVecIt != myPoints.end(); pVecIt++, index++ )
4265 if ( &(*pVecIt) == point )
4267 myKeyPointIDs.push_back( index );
4270 myKeyPointIDs.pop_back(); // remove the first key-point from the back
4273 } // loop on a list of boundaries
4275 ASSERT( myKeyPointIDs.size() == keyPointSet.size() );
4278 //=======================================================================
4279 //function : findBoundaryPoints
4280 //purpose : if loaded from file, find points to map on edges and faces and
4281 // compute their parameters
4282 //=======================================================================
4284 bool SMESH_Pattern::findBoundaryPoints()
4286 if ( myIsBoundaryPointsFound ) return true;
4288 MESSAGE(" findBoundaryPoints() ");
4290 myNbKeyPntInBoundary.clear();
4294 set< TPoint* > pointsInElems;
4296 // Find free links of elements:
4297 // put links of all elements in a set and remove links encountered twice
4299 typedef pair< TPoint*, TPoint*> TLink;
4300 set< TLink > linkSet;
4301 list<TElemDef >::iterator epIt = myElemPointIDs.begin();
4302 for ( ; epIt != myElemPointIDs.end(); epIt++ )
4304 TElemDef & elemPoints = *epIt;
4305 TElemDef::iterator pIt = elemPoints.begin();
4306 int prevP = elemPoints.back();
4307 for ( ; pIt != elemPoints.end(); pIt++ ) {
4308 TPoint* p1 = & myPoints[ prevP ];
4309 TPoint* p2 = & myPoints[ *pIt ];
4310 TLink link(( p1 < p2 ? p1 : p2 ), ( p1 < p2 ? p2 : p1 ));
4311 ASSERT( link.first != link.second );
4312 pair<set< TLink >::iterator,bool> itUniq = linkSet.insert( link );
4313 if ( !itUniq.second )
4314 linkSet.erase( itUniq.first );
4317 pointsInElems.insert( p1 );
4320 // Now linkSet contains only free links,
4321 // find the points order that they have in boundaries
4323 // 1. make a map of key-points
4324 set< TPoint* > keyPointSet;
4325 list< int >::iterator kpIt = myKeyPointIDs.begin();
4326 for ( ; kpIt != myKeyPointIDs.end(); kpIt++ )
4327 keyPointSet.insert( & myPoints[ *kpIt ]);
4329 // 2. chain up boundary points
4330 list< list< TPoint* > > boundaryList;
4331 boundaryList.push_back( list< TPoint* >() );
4332 list< TPoint* > * boundary = & boundaryList.back();
4334 TPoint *point1, *point2, *keypoint1;
4335 kpIt = myKeyPointIDs.begin();
4336 point1 = keypoint1 = & myPoints[ *kpIt++ ];
4337 // loop on free links: look for the next point
4339 set< TLink >::iterator lIt = linkSet.begin();
4340 while ( lIt != linkSet.end() )
4342 if ( (*lIt).first == point1 )
4343 point2 = (*lIt).second;
4344 else if ( (*lIt).second == point1 )
4345 point2 = (*lIt).first;
4350 linkSet.erase( lIt );
4351 lIt = linkSet.begin();
4353 if ( keyPointSet.find( point2 ) == keyPointSet.end() ) // not a key-point
4355 boundary->push_back( point2 );
4357 else // a key-point found
4359 keyPointSet.erase( point2 ); // keyPointSet contains not found key-points only
4361 if ( point2 != keypoint1 ) // its not the boundary end
4363 boundary->push_back( point2 );
4365 else // the boundary end reached
4367 boundary->push_front( keypoint1 );
4368 boundary->push_back( keypoint1 );
4369 myNbKeyPntInBoundary.push_back( iKeyPoint );
4370 if ( keyPointSet.empty() )
4371 break; // all boundaries containing key-points are found
4373 // prepare to search for the next boundary
4374 boundaryList.push_back( list< TPoint* >() );
4375 boundary = & boundaryList.back();
4376 point2 = keypoint1 = (*keyPointSet.begin());
4380 } // loop on the free links set
4382 if ( boundary->empty() ) {
4383 MESSAGE(" a separate key-point");
4384 return setErrorCode( ERR_READ_BAD_KEY_POINT );
4387 // if there are several wires, arrange boundaryPoints so that
4388 // the outer wire goes first and fix inner wires orientation;
4389 // sort myKeyPointIDs to correspond to the order of key-points
4391 arrangeBoundaries( boundaryList );
4393 // Find correspondence shape ID - points,
4394 // compute points parameter on edge
4396 keyPointSet.clear();
4397 for ( kpIt = myKeyPointIDs.begin(); kpIt != myKeyPointIDs.end(); kpIt++ )
4398 keyPointSet.insert( & myPoints[ *kpIt ]);
4400 set< TPoint* > edgePointSet; // to find in-face points
4401 int vertexID = 1; // the first index in TopTools_IndexedMapOfShape
4402 int edgeID = myKeyPointIDs.size() + 1;
4404 list< list< TPoint* > >::iterator bndIt = boundaryList.begin();
4405 for ( ; bndIt != boundaryList.end(); bndIt++ )
4407 boundary = & (*bndIt);
4408 double edgeLength = 0;
4409 list< TPoint* >::iterator pIt = boundary->begin();
4410 getShapePoints( edgeID ).push_back( *pIt );
4411 getShapePoints( vertexID++ ).push_back( *pIt );
4412 for ( pIt++; pIt != boundary->end(); pIt++)
4414 list< TPoint* > & edgePoints = getShapePoints( edgeID );
4415 TPoint* prevP = edgePoints.empty() ? 0 : edgePoints.back();
4416 TPoint* point = *pIt;
4417 edgePointSet.insert( point );
4418 if ( keyPointSet.find( point ) == keyPointSet.end() ) // inside-edge point
4420 edgePoints.push_back( point );
4421 edgeLength += ( point->myInitUV - prevP->myInitUV ).Modulus();
4422 point->myInitU = edgeLength;
4426 // treat points on the edge which ends up: compute U [0,1]
4427 edgePoints.push_back( point );
4428 if ( edgePoints.size() > 2 ) {
4429 edgeLength += ( point->myInitUV - prevP->myInitUV ).Modulus();
4430 list< TPoint* >::iterator epIt = edgePoints.begin();
4431 for ( ; epIt != edgePoints.end(); epIt++ )
4432 (*epIt)->myInitU /= edgeLength;
4434 // begin the next edge treatment
4437 if ( point != boundary->front() ) { // not the first key-point again
4438 getShapePoints( edgeID ).push_back( point );
4439 getShapePoints( vertexID++ ).push_back( point );
4445 // find in-face points
4446 list< TPoint* > & facePoints = getShapePoints( edgeID );
4447 vector< TPoint >::iterator pVecIt = myPoints.begin();
4448 for ( ; pVecIt != myPoints.end(); pVecIt++ ) {
4449 TPoint* point = &(*pVecIt);
4450 if ( edgePointSet.find( point ) == edgePointSet.end() &&
4451 pointsInElems.find( point ) != pointsInElems.end())
4452 facePoints.push_back( point );
4459 // bind points to shapes according to point parameters
4460 vector< TPoint >::iterator pVecIt = myPoints.begin();
4461 for ( int i = 0; pVecIt != myPoints.end(); pVecIt++, i++ ) {
4462 TPoint* point = &(*pVecIt);
4463 int shapeID = SMESH_Block::GetShapeIDByParams( point->myInitXYZ );
4464 getShapePoints( shapeID ).push_back( point );
4465 // detect key-points
4466 if ( SMESH_Block::IsVertexID( shapeID ))
4467 myKeyPointIDs.push_back( i );
4471 myIsBoundaryPointsFound = true;
4472 return myIsBoundaryPointsFound;
4475 //=======================================================================
4477 //purpose : clear fields
4478 //=======================================================================
4480 void SMESH_Pattern::Clear()
4482 myIsComputed = myIsBoundaryPointsFound = false;
4485 myKeyPointIDs.clear();
4486 myElemPointIDs.clear();
4487 myShapeIDToPointsMap.clear();
4488 myShapeIDMap.Clear();
4490 myNbKeyPntInBoundary.clear();
4493 //=======================================================================
4494 //function : setShapeToMesh
4495 //purpose : set a shape to be meshed. Return True if meshing is possible
4496 //=======================================================================
4498 bool SMESH_Pattern::setShapeToMesh(const TopoDS_Shape& theShape)
4500 if ( !IsLoaded() ) {
4501 MESSAGE( "Pattern not loaded" );
4502 return setErrorCode( ERR_APPL_NOT_LOADED );
4505 TopAbs_ShapeEnum aType = theShape.ShapeType();
4506 bool dimOk = ( myIs2D ? aType == TopAbs_FACE : aType == TopAbs_SHELL );
4508 MESSAGE( "Pattern dimention mismatch" );
4509 return setErrorCode( ERR_APPL_BAD_DIMENTION );
4512 // check if a face is closed
4513 int nbNodeOnSeamEdge = 0;
4515 TopoDS_Face face = TopoDS::Face( theShape );
4516 TopExp_Explorer eExp( theShape, TopAbs_EDGE );
4517 for ( ; eExp.More() && nbNodeOnSeamEdge == 0; eExp.Next() )
4518 if ( BRep_Tool::IsClosed( TopoDS::Edge( eExp.Current() ), face ))
4519 nbNodeOnSeamEdge = 2;
4522 // check nb of vertices
4523 TopTools_IndexedMapOfShape vMap;
4524 TopExp::MapShapes( theShape, TopAbs_VERTEX, vMap );
4525 if ( vMap.Extent() + nbNodeOnSeamEdge != myKeyPointIDs.size() ) {
4526 MESSAGE( myKeyPointIDs.size() + nbNodeOnSeamEdge << " != " << vMap.Extent() );
4527 return setErrorCode( ERR_APPL_BAD_NB_VERTICES );
4530 myElements.clear(); // not refine elements
4531 myElemXYZIDs.clear();
4533 myShapeIDMap.Clear();
4538 //=======================================================================
4539 //function : GetMappedPoints
4540 //purpose : Return nodes coordinates computed by Apply() method
4541 //=======================================================================
4543 bool SMESH_Pattern::GetMappedPoints ( list< const gp_XYZ * > & thePoints ) const
4546 if ( !myIsComputed )
4549 if ( myElements.empty() ) { // applied to shape
4550 vector< TPoint >::const_iterator pVecIt = myPoints.begin();
4551 for ( ; pVecIt != myPoints.end(); pVecIt++ )
4552 thePoints.push_back( & (*pVecIt).myXYZ.XYZ() );
4554 else { // applied to mesh elements
4555 const gp_XYZ * definedXYZ = & myPoints[ myKeyPointIDs.front() ].myXYZ.XYZ();
4556 vector<gp_XYZ>::const_iterator xyz = myXYZ.begin();
4557 for ( ; xyz != myXYZ.end(); ++xyz )
4558 if ( !isDefined( *xyz ))
4559 thePoints.push_back( definedXYZ );
4561 thePoints.push_back( & (*xyz) );
4563 return !thePoints.empty();
4567 //=======================================================================
4568 //function : GetPoints
4569 //purpose : Return nodes coordinates of the pattern
4570 //=======================================================================
4572 bool SMESH_Pattern::GetPoints ( list< const gp_XYZ * > & thePoints ) const
4579 vector< TPoint >::const_iterator pVecIt = myPoints.begin();
4580 for ( ; pVecIt != myPoints.end(); pVecIt++ )
4581 thePoints.push_back( & (*pVecIt).myInitXYZ );
4583 return ( thePoints.size() > 0 );
4586 //=======================================================================
4587 //function : getShapePoints
4588 //purpose : return list of points located on theShape
4589 //=======================================================================
4591 list< SMESH_Pattern::TPoint* > &
4592 SMESH_Pattern::getShapePoints(const TopoDS_Shape& theShape)
4595 if ( !myShapeIDMap.Contains( theShape ))
4596 aShapeID = myShapeIDMap.Add( theShape );
4598 aShapeID = myShapeIDMap.FindIndex( theShape );
4600 return myShapeIDToPointsMap[ aShapeID ];
4603 //=======================================================================
4604 //function : getShapePoints
4605 //purpose : return list of points located on the shape
4606 //=======================================================================
4608 list< SMESH_Pattern::TPoint* > & SMESH_Pattern::getShapePoints(const int theShapeID)
4610 return myShapeIDToPointsMap[ theShapeID ];
4613 //=======================================================================
4614 //function : DumpPoints
4616 //=======================================================================
4618 void SMESH_Pattern::DumpPoints() const
4621 vector< TPoint >::const_iterator pVecIt = myPoints.begin();
4622 for ( int i = 0; pVecIt != myPoints.end(); pVecIt++, i++ )
4623 cout << i << ": " << *pVecIt;
4627 //=======================================================================
4628 //function : TPoint()
4630 //=======================================================================
4632 SMESH_Pattern::TPoint::TPoint()
4635 myInitXYZ.SetCoord(0,0,0);
4636 myInitUV.SetCoord(0.,0.);
4638 myXYZ.SetCoord(0,0,0);
4639 myUV.SetCoord(0.,0.);
4644 //=======================================================================
4645 //function : operator <<
4647 //=======================================================================
4649 ostream & operator <<(ostream & OS, const SMESH_Pattern::TPoint& p)
4651 gp_XYZ xyz = p.myInitXYZ;
4652 OS << "\tinit( xyz( " << xyz.X() << " " << xyz.Y() << " " << xyz.Z() << " )";
4653 gp_XY xy = p.myInitUV;
4654 OS << " uv( " << xy.X() << " " << xy.Y() << " )";
4655 double u = p.myInitU;
4656 OS << " u( " << u << " )) " << &p << endl;
4657 xyz = p.myXYZ.XYZ();
4658 OS << "\t ( xyz( " << xyz.X() << " " << xyz.Y() << " " << xyz.Z() << " )";
4660 OS << " uv( " << xy.X() << " " << xy.Y() << " )";
4662 OS << " u( " << u << " ))" << endl;